qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "trace.h"
  32
  33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  34{
  35    BDRVQcow2State *s = bs->opaque;
  36    int new_l1_size, i, ret;
  37
  38    if (exact_size >= s->l1_size) {
  39        return 0;
  40    }
  41
  42    new_l1_size = exact_size;
  43
  44#ifdef DEBUG_ALLOC2
  45    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  46#endif
  47
  48    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  49    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  50                                       new_l1_size * sizeof(uint64_t),
  51                             (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
  52    if (ret < 0) {
  53        goto fail;
  54    }
  55
  56    ret = bdrv_flush(bs->file->bs);
  57    if (ret < 0) {
  58        goto fail;
  59    }
  60
  61    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  62    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  63        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  64            continue;
  65        }
  66        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  67                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  68        s->l1_table[i] = 0;
  69    }
  70    return 0;
  71
  72fail:
  73    /*
  74     * If the write in the l1_table failed the image may contain a partially
  75     * overwritten l1_table. In this case it would be better to clear the
  76     * l1_table in memory to avoid possible image corruption.
  77     */
  78    memset(s->l1_table + new_l1_size, 0,
  79           (s->l1_size - new_l1_size) * sizeof(uint64_t));
  80    return ret;
  81}
  82
  83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  84                        bool exact_size)
  85{
  86    BDRVQcow2State *s = bs->opaque;
  87    int new_l1_size2, ret, i;
  88    uint64_t *new_l1_table;
  89    int64_t old_l1_table_offset, old_l1_size;
  90    int64_t new_l1_table_offset, new_l1_size;
  91    uint8_t data[12];
  92
  93    if (min_size <= s->l1_size)
  94        return 0;
  95
  96    /* Do a sanity check on min_size before trying to calculate new_l1_size
  97     * (this prevents overflows during the while loop for the calculation of
  98     * new_l1_size) */
  99    if (min_size > INT_MAX / sizeof(uint64_t)) {
 100        return -EFBIG;
 101    }
 102
 103    if (exact_size) {
 104        new_l1_size = min_size;
 105    } else {
 106        /* Bump size up to reduce the number of times we have to grow */
 107        new_l1_size = s->l1_size;
 108        if (new_l1_size == 0) {
 109            new_l1_size = 1;
 110        }
 111        while (min_size > new_l1_size) {
 112            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 113        }
 114    }
 115
 116    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 117    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
 118        return -EFBIG;
 119    }
 120
 121#ifdef DEBUG_ALLOC2
 122    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 123            s->l1_size, new_l1_size);
 124#endif
 125
 126    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
 127    new_l1_table = qemu_try_blockalign(bs->file->bs,
 128                                       ROUND_UP(new_l1_size2, 512));
 129    if (new_l1_table == NULL) {
 130        return -ENOMEM;
 131    }
 132    memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
 133
 134    if (s->l1_size) {
 135        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
 136    }
 137
 138    /* write new table (align to cluster) */
 139    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 140    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 141    if (new_l1_table_offset < 0) {
 142        qemu_vfree(new_l1_table);
 143        return new_l1_table_offset;
 144    }
 145
 146    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 147    if (ret < 0) {
 148        goto fail;
 149    }
 150
 151    /* the L1 position has not yet been updated, so these clusters must
 152     * indeed be completely free */
 153    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 154                                        new_l1_size2, false);
 155    if (ret < 0) {
 156        goto fail;
 157    }
 158
 159    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 160    for(i = 0; i < s->l1_size; i++)
 161        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 162    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 163                           new_l1_table, new_l1_size2);
 164    if (ret < 0)
 165        goto fail;
 166    for(i = 0; i < s->l1_size; i++)
 167        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 168
 169    /* set new table */
 170    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 171    stl_be_p(data, new_l1_size);
 172    stq_be_p(data + 4, new_l1_table_offset);
 173    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 174                           data, sizeof(data));
 175    if (ret < 0) {
 176        goto fail;
 177    }
 178    qemu_vfree(s->l1_table);
 179    old_l1_table_offset = s->l1_table_offset;
 180    s->l1_table_offset = new_l1_table_offset;
 181    s->l1_table = new_l1_table;
 182    old_l1_size = s->l1_size;
 183    s->l1_size = new_l1_size;
 184    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 185                        QCOW2_DISCARD_OTHER);
 186    return 0;
 187 fail:
 188    qemu_vfree(new_l1_table);
 189    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 190                        QCOW2_DISCARD_OTHER);
 191    return ret;
 192}
 193
 194/*
 195 * l2_load
 196 *
 197 * @bs: The BlockDriverState
 198 * @offset: A guest offset, used to calculate what slice of the L2
 199 *          table to load.
 200 * @l2_offset: Offset to the L2 table in the image file.
 201 * @l2_slice: Location to store the pointer to the L2 slice.
 202 *
 203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 204 * that are loaded by the qcow2 cache). If the slice is in the cache,
 205 * the cache is used; otherwise the L2 slice is loaded from the image
 206 * file.
 207 */
 208static int l2_load(BlockDriverState *bs, uint64_t offset,
 209                   uint64_t l2_offset, uint64_t **l2_slice)
 210{
 211    BDRVQcow2State *s = bs->opaque;
 212    int start_of_slice = sizeof(uint64_t) *
 213        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 214
 215    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 216                           (void **)l2_slice);
 217}
 218
 219/*
 220 * Writes one sector of the L1 table to the disk (can't update single entries
 221 * and we really don't want bdrv_pread to perform a read-modify-write)
 222 */
 223#define L1_ENTRIES_PER_SECTOR (512 / 8)
 224int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 225{
 226    BDRVQcow2State *s = bs->opaque;
 227    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 228    int l1_start_index;
 229    int i, ret;
 230
 231    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 232    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 233         i++)
 234    {
 235        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 236    }
 237
 238    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 239            s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
 240    if (ret < 0) {
 241        return ret;
 242    }
 243
 244    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 245    ret = bdrv_pwrite_sync(bs->file,
 246                           s->l1_table_offset + 8 * l1_start_index,
 247                           buf, sizeof(buf));
 248    if (ret < 0) {
 249        return ret;
 250    }
 251
 252    return 0;
 253}
 254
 255/*
 256 * l2_allocate
 257 *
 258 * Allocate a new l2 entry in the file. If l1_index points to an already
 259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 260 * table) copy the contents of the old L2 table into the newly allocated one.
 261 * Otherwise the new table is initialized with zeros.
 262 *
 263 */
 264
 265static int l2_allocate(BlockDriverState *bs, int l1_index)
 266{
 267    BDRVQcow2State *s = bs->opaque;
 268    uint64_t old_l2_offset;
 269    uint64_t *l2_slice = NULL;
 270    unsigned slice, slice_size2, n_slices;
 271    int64_t l2_offset;
 272    int ret;
 273
 274    old_l2_offset = s->l1_table[l1_index];
 275
 276    trace_qcow2_l2_allocate(bs, l1_index);
 277
 278    /* allocate a new l2 entry */
 279
 280    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 281    if (l2_offset < 0) {
 282        ret = l2_offset;
 283        goto fail;
 284    }
 285
 286    /* The offset must fit in the offset field of the L1 table entry */
 287    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 288
 289    /* If we're allocating the table at offset 0 then something is wrong */
 290    if (l2_offset == 0) {
 291        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 292                                "allocation of L2 table at offset 0");
 293        ret = -EIO;
 294        goto fail;
 295    }
 296
 297    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 298    if (ret < 0) {
 299        goto fail;
 300    }
 301
 302    /* allocate a new entry in the l2 cache */
 303
 304    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
 305    n_slices = s->cluster_size / slice_size2;
 306
 307    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 308    for (slice = 0; slice < n_slices; slice++) {
 309        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 310                                    l2_offset + slice * slice_size2,
 311                                    (void **) &l2_slice);
 312        if (ret < 0) {
 313            goto fail;
 314        }
 315
 316        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 317            /* if there was no old l2 table, clear the new slice */
 318            memset(l2_slice, 0, slice_size2);
 319        } else {
 320            uint64_t *old_slice;
 321            uint64_t old_l2_slice_offset =
 322                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 323
 324            /* if there was an old l2 table, read a slice from the disk */
 325            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 326            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 327                                  (void **) &old_slice);
 328            if (ret < 0) {
 329                goto fail;
 330            }
 331
 332            memcpy(l2_slice, old_slice, slice_size2);
 333
 334            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 335        }
 336
 337        /* write the l2 slice to the file */
 338        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 339
 340        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 341        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 342        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 343    }
 344
 345    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 346    if (ret < 0) {
 347        goto fail;
 348    }
 349
 350    /* update the L1 entry */
 351    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 352    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 353    ret = qcow2_write_l1_entry(bs, l1_index);
 354    if (ret < 0) {
 355        goto fail;
 356    }
 357
 358    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 359    return 0;
 360
 361fail:
 362    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 363    if (l2_slice != NULL) {
 364        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 365    }
 366    s->l1_table[l1_index] = old_l2_offset;
 367    if (l2_offset > 0) {
 368        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 369                            QCOW2_DISCARD_ALWAYS);
 370    }
 371    return ret;
 372}
 373
 374/*
 375 * Checks how many clusters in a given L2 slice are contiguous in the image
 376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 377 * to the first cluster, the search is stopped and the cluster is not counted
 378 * as contiguous. (This allows it, for example, to stop at the first compressed
 379 * cluster which may require a different handling)
 380 */
 381static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
 382        int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
 383{
 384    int i;
 385    QCow2ClusterType first_cluster_type;
 386    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 387    uint64_t first_entry = be64_to_cpu(l2_slice[0]);
 388    uint64_t offset = first_entry & mask;
 389
 390    first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
 391    if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
 392        return 0;
 393    }
 394
 395    /* must be allocated */
 396    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 397           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 398
 399    for (i = 0; i < nb_clusters; i++) {
 400        uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
 401        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 402            break;
 403        }
 404    }
 405
 406        return i;
 407}
 408
 409/*
 410 * Checks how many consecutive unallocated clusters in a given L2
 411 * slice have the same cluster type.
 412 */
 413static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
 414                                                 int nb_clusters,
 415                                                 uint64_t *l2_slice,
 416                                                 QCow2ClusterType wanted_type)
 417{
 418    int i;
 419
 420    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 421           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 422    for (i = 0; i < nb_clusters; i++) {
 423        uint64_t entry = be64_to_cpu(l2_slice[i]);
 424        QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
 425
 426        if (type != wanted_type) {
 427            break;
 428        }
 429    }
 430
 431    return i;
 432}
 433
 434static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 435                                            uint64_t src_cluster_offset,
 436                                            unsigned offset_in_cluster,
 437                                            QEMUIOVector *qiov)
 438{
 439    int ret;
 440
 441    if (qiov->size == 0) {
 442        return 0;
 443    }
 444
 445    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 446
 447    if (!bs->drv) {
 448        return -ENOMEDIUM;
 449    }
 450
 451    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 452     * interface.  This avoids double I/O throttling and request tracking,
 453     * which can lead to deadlock when block layer copy-on-read is enabled.
 454     */
 455    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 456                                  qiov->size, qiov, 0);
 457    if (ret < 0) {
 458        return ret;
 459    }
 460
 461    return 0;
 462}
 463
 464static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
 465                                                uint64_t src_cluster_offset,
 466                                                uint64_t cluster_offset,
 467                                                unsigned offset_in_cluster,
 468                                                uint8_t *buffer,
 469                                                unsigned bytes)
 470{
 471    if (bytes && bs->encrypted) {
 472        BDRVQcow2State *s = bs->opaque;
 473        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 474        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 475        assert(s->crypto);
 476        if (qcow2_co_encrypt(bs,
 477                start_of_cluster(s, cluster_offset + offset_in_cluster),
 478                src_cluster_offset + offset_in_cluster,
 479                buffer, bytes) < 0) {
 480            return false;
 481        }
 482    }
 483    return true;
 484}
 485
 486static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 487                                             uint64_t cluster_offset,
 488                                             unsigned offset_in_cluster,
 489                                             QEMUIOVector *qiov)
 490{
 491    BDRVQcow2State *s = bs->opaque;
 492    int ret;
 493
 494    if (qiov->size == 0) {
 495        return 0;
 496    }
 497
 498    ret = qcow2_pre_write_overlap_check(bs, 0,
 499            cluster_offset + offset_in_cluster, qiov->size, true);
 500    if (ret < 0) {
 501        return ret;
 502    }
 503
 504    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 505    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 506                          qiov->size, qiov, 0);
 507    if (ret < 0) {
 508        return ret;
 509    }
 510
 511    return 0;
 512}
 513
 514
 515/*
 516 * get_cluster_offset
 517 *
 518 * For a given offset of the virtual disk, find the cluster type and offset in
 519 * the qcow2 file. The offset is stored in *cluster_offset.
 520 *
 521 * On entry, *bytes is the maximum number of contiguous bytes starting at
 522 * offset that we are interested in.
 523 *
 524 * On exit, *bytes is the number of bytes starting at offset that have the same
 525 * cluster type and (if applicable) are stored contiguously in the image file.
 526 * Compressed clusters are always returned one by one.
 527 *
 528 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 529 * cases.
 530 */
 531int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 532                             unsigned int *bytes, uint64_t *cluster_offset)
 533{
 534    BDRVQcow2State *s = bs->opaque;
 535    unsigned int l2_index;
 536    uint64_t l1_index, l2_offset, *l2_slice;
 537    int c;
 538    unsigned int offset_in_cluster;
 539    uint64_t bytes_available, bytes_needed, nb_clusters;
 540    QCow2ClusterType type;
 541    int ret;
 542
 543    offset_in_cluster = offset_into_cluster(s, offset);
 544    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 545
 546    /* compute how many bytes there are between the start of the cluster
 547     * containing offset and the end of the l2 slice that contains
 548     * the entry pointing to it */
 549    bytes_available =
 550        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 551        << s->cluster_bits;
 552
 553    if (bytes_needed > bytes_available) {
 554        bytes_needed = bytes_available;
 555    }
 556
 557    *cluster_offset = 0;
 558
 559    /* seek to the l2 offset in the l1 table */
 560
 561    l1_index = offset_to_l1_index(s, offset);
 562    if (l1_index >= s->l1_size) {
 563        type = QCOW2_CLUSTER_UNALLOCATED;
 564        goto out;
 565    }
 566
 567    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 568    if (!l2_offset) {
 569        type = QCOW2_CLUSTER_UNALLOCATED;
 570        goto out;
 571    }
 572
 573    if (offset_into_cluster(s, l2_offset)) {
 574        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 575                                " unaligned (L1 index: %#" PRIx64 ")",
 576                                l2_offset, l1_index);
 577        return -EIO;
 578    }
 579
 580    /* load the l2 slice in memory */
 581
 582    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 583    if (ret < 0) {
 584        return ret;
 585    }
 586
 587    /* find the cluster offset for the given disk offset */
 588
 589    l2_index = offset_to_l2_slice_index(s, offset);
 590    *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 591
 592    nb_clusters = size_to_clusters(s, bytes_needed);
 593    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 594     * integers; the minimum cluster size is 512, so this assertion is always
 595     * true */
 596    assert(nb_clusters <= INT_MAX);
 597
 598    type = qcow2_get_cluster_type(bs, *cluster_offset);
 599    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 600                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 601        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 602                                " in pre-v3 image (L2 offset: %#" PRIx64
 603                                ", L2 index: %#x)", l2_offset, l2_index);
 604        ret = -EIO;
 605        goto fail;
 606    }
 607    switch (type) {
 608    case QCOW2_CLUSTER_COMPRESSED:
 609        if (has_data_file(bs)) {
 610            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 611                                    "entry found in image with external data "
 612                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 613                                    "%#x)", l2_offset, l2_index);
 614            ret = -EIO;
 615            goto fail;
 616        }
 617        /* Compressed clusters can only be processed one by one */
 618        c = 1;
 619        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 620        break;
 621    case QCOW2_CLUSTER_ZERO_PLAIN:
 622    case QCOW2_CLUSTER_UNALLOCATED:
 623        /* how many empty clusters ? */
 624        c = count_contiguous_clusters_unallocated(bs, nb_clusters,
 625                                                  &l2_slice[l2_index], type);
 626        *cluster_offset = 0;
 627        break;
 628    case QCOW2_CLUSTER_ZERO_ALLOC:
 629    case QCOW2_CLUSTER_NORMAL:
 630        /* how many allocated clusters ? */
 631        c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
 632                                      &l2_slice[l2_index], QCOW_OFLAG_ZERO);
 633        *cluster_offset &= L2E_OFFSET_MASK;
 634        if (offset_into_cluster(s, *cluster_offset)) {
 635            qcow2_signal_corruption(bs, true, -1, -1,
 636                                    "Cluster allocation offset %#"
 637                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 638                                    ", L2 index: %#x)", *cluster_offset,
 639                                    l2_offset, l2_index);
 640            ret = -EIO;
 641            goto fail;
 642        }
 643        if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
 644        {
 645            qcow2_signal_corruption(bs, true, -1, -1,
 646                                    "External data file host cluster offset %#"
 647                                    PRIx64 " does not match guest cluster "
 648                                    "offset: %#" PRIx64
 649                                    ", L2 index: %#x)", *cluster_offset,
 650                                    offset - offset_in_cluster, l2_index);
 651            ret = -EIO;
 652            goto fail;
 653        }
 654        break;
 655    default:
 656        abort();
 657    }
 658
 659    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 660
 661    bytes_available = (int64_t)c * s->cluster_size;
 662
 663out:
 664    if (bytes_available > bytes_needed) {
 665        bytes_available = bytes_needed;
 666    }
 667
 668    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 669     * subtracting offset_in_cluster will therefore definitely yield something
 670     * not exceeding UINT_MAX */
 671    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 672    *bytes = bytes_available - offset_in_cluster;
 673
 674    return type;
 675
 676fail:
 677    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 678    return ret;
 679}
 680
 681/*
 682 * get_cluster_table
 683 *
 684 * for a given disk offset, load (and allocate if needed)
 685 * the appropriate slice of its l2 table.
 686 *
 687 * the cluster index in the l2 slice is given to the caller.
 688 *
 689 * Returns 0 on success, -errno in failure case
 690 */
 691static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 692                             uint64_t **new_l2_slice,
 693                             int *new_l2_index)
 694{
 695    BDRVQcow2State *s = bs->opaque;
 696    unsigned int l2_index;
 697    uint64_t l1_index, l2_offset;
 698    uint64_t *l2_slice = NULL;
 699    int ret;
 700
 701    /* seek to the l2 offset in the l1 table */
 702
 703    l1_index = offset_to_l1_index(s, offset);
 704    if (l1_index >= s->l1_size) {
 705        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 706        if (ret < 0) {
 707            return ret;
 708        }
 709    }
 710
 711    assert(l1_index < s->l1_size);
 712    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 713    if (offset_into_cluster(s, l2_offset)) {
 714        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 715                                " unaligned (L1 index: %#" PRIx64 ")",
 716                                l2_offset, l1_index);
 717        return -EIO;
 718    }
 719
 720    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 721        /* First allocate a new L2 table (and do COW if needed) */
 722        ret = l2_allocate(bs, l1_index);
 723        if (ret < 0) {
 724            return ret;
 725        }
 726
 727        /* Then decrease the refcount of the old table */
 728        if (l2_offset) {
 729            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 730                                QCOW2_DISCARD_OTHER);
 731        }
 732
 733        /* Get the offset of the newly-allocated l2 table */
 734        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 735        assert(offset_into_cluster(s, l2_offset) == 0);
 736    }
 737
 738    /* load the l2 slice in memory */
 739    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 740    if (ret < 0) {
 741        return ret;
 742    }
 743
 744    /* find the cluster offset for the given disk offset */
 745
 746    l2_index = offset_to_l2_slice_index(s, offset);
 747
 748    *new_l2_slice = l2_slice;
 749    *new_l2_index = l2_index;
 750
 751    return 0;
 752}
 753
 754/*
 755 * alloc_compressed_cluster_offset
 756 *
 757 * For a given offset on the virtual disk, allocate a new compressed cluster
 758 * and put the host offset of the cluster into *host_offset. If a cluster is
 759 * already allocated at the offset, return an error.
 760 *
 761 * Return 0 on success and -errno in error cases
 762 */
 763int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 764                                          uint64_t offset,
 765                                          int compressed_size,
 766                                          uint64_t *host_offset)
 767{
 768    BDRVQcow2State *s = bs->opaque;
 769    int l2_index, ret;
 770    uint64_t *l2_slice;
 771    int64_t cluster_offset;
 772    int nb_csectors;
 773
 774    if (has_data_file(bs)) {
 775        return 0;
 776    }
 777
 778    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 779    if (ret < 0) {
 780        return ret;
 781    }
 782
 783    /* Compression can't overwrite anything. Fail if the cluster was already
 784     * allocated. */
 785    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 786    if (cluster_offset & L2E_OFFSET_MASK) {
 787        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 788        return -EIO;
 789    }
 790
 791    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 792    if (cluster_offset < 0) {
 793        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 794        return cluster_offset;
 795    }
 796
 797    nb_csectors =
 798        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 799        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 800
 801    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 802                      ((uint64_t)nb_csectors << s->csize_shift);
 803
 804    /* update L2 table */
 805
 806    /* compressed clusters never have the copied flag */
 807
 808    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 809    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 810    l2_slice[l2_index] = cpu_to_be64(cluster_offset);
 811    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 812
 813    *host_offset = cluster_offset & s->cluster_offset_mask;
 814    return 0;
 815}
 816
 817static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 818{
 819    BDRVQcow2State *s = bs->opaque;
 820    Qcow2COWRegion *start = &m->cow_start;
 821    Qcow2COWRegion *end = &m->cow_end;
 822    unsigned buffer_size;
 823    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 824    bool merge_reads;
 825    uint8_t *start_buffer, *end_buffer;
 826    QEMUIOVector qiov;
 827    int ret;
 828
 829    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 830    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 831    assert(start->offset + start->nb_bytes <= end->offset);
 832    assert(!m->data_qiov || m->data_qiov->size == data_bytes);
 833
 834    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 835        return 0;
 836    }
 837
 838    /* If we have to read both the start and end COW regions and the
 839     * middle region is not too large then perform just one read
 840     * operation */
 841    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 842    if (merge_reads) {
 843        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 844    } else {
 845        /* If we have to do two reads, add some padding in the middle
 846         * if necessary to make sure that the end region is optimally
 847         * aligned. */
 848        size_t align = bdrv_opt_mem_align(bs);
 849        assert(align > 0 && align <= UINT_MAX);
 850        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 851               UINT_MAX - end->nb_bytes);
 852        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 853    }
 854
 855    /* Reserve a buffer large enough to store all the data that we're
 856     * going to read */
 857    start_buffer = qemu_try_blockalign(bs, buffer_size);
 858    if (start_buffer == NULL) {
 859        return -ENOMEM;
 860    }
 861    /* The part of the buffer where the end region is located */
 862    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 863
 864    qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
 865
 866    qemu_co_mutex_unlock(&s->lock);
 867    /* First we read the existing data from both COW regions. We
 868     * either read the whole region in one go, or the start and end
 869     * regions separately. */
 870    if (merge_reads) {
 871        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 872        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 873    } else {
 874        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 875        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 876        if (ret < 0) {
 877            goto fail;
 878        }
 879
 880        qemu_iovec_reset(&qiov);
 881        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 882        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 883    }
 884    if (ret < 0) {
 885        goto fail;
 886    }
 887
 888    /* Encrypt the data if necessary before writing it */
 889    if (bs->encrypted) {
 890        if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 891                                    start->offset, start_buffer,
 892                                    start->nb_bytes) ||
 893            !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 894                                    end->offset, end_buffer, end->nb_bytes)) {
 895            ret = -EIO;
 896            goto fail;
 897        }
 898    }
 899
 900    /* And now we can write everything. If we have the guest data we
 901     * can write everything in one single operation */
 902    if (m->data_qiov) {
 903        qemu_iovec_reset(&qiov);
 904        if (start->nb_bytes) {
 905            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 906        }
 907        qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
 908        if (end->nb_bytes) {
 909            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 910        }
 911        /* NOTE: we have a write_aio blkdebug event here followed by
 912         * a cow_write one in do_perform_cow_write(), but there's only
 913         * one single I/O operation */
 914        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 915        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 916    } else {
 917        /* If there's no guest data then write both COW regions separately */
 918        qemu_iovec_reset(&qiov);
 919        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 920        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 921        if (ret < 0) {
 922            goto fail;
 923        }
 924
 925        qemu_iovec_reset(&qiov);
 926        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 927        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 928    }
 929
 930fail:
 931    qemu_co_mutex_lock(&s->lock);
 932
 933    /*
 934     * Before we update the L2 table to actually point to the new cluster, we
 935     * need to be sure that the refcounts have been increased and COW was
 936     * handled.
 937     */
 938    if (ret == 0) {
 939        qcow2_cache_depends_on_flush(s->l2_table_cache);
 940    }
 941
 942    qemu_vfree(start_buffer);
 943    qemu_iovec_destroy(&qiov);
 944    return ret;
 945}
 946
 947int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 948{
 949    BDRVQcow2State *s = bs->opaque;
 950    int i, j = 0, l2_index, ret;
 951    uint64_t *old_cluster, *l2_slice;
 952    uint64_t cluster_offset = m->alloc_offset;
 953
 954    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 955    assert(m->nb_clusters > 0);
 956
 957    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 958    if (old_cluster == NULL) {
 959        ret = -ENOMEM;
 960        goto err;
 961    }
 962
 963    /* copy content of unmodified sectors */
 964    ret = perform_cow(bs, m);
 965    if (ret < 0) {
 966        goto err;
 967    }
 968
 969    /* Update L2 table. */
 970    if (s->use_lazy_refcounts) {
 971        qcow2_mark_dirty(bs);
 972    }
 973    if (qcow2_need_accurate_refcounts(s)) {
 974        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 975                                   s->refcount_block_cache);
 976    }
 977
 978    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
 979    if (ret < 0) {
 980        goto err;
 981    }
 982    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 983
 984    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
 985    for (i = 0; i < m->nb_clusters; i++) {
 986        /* if two concurrent writes happen to the same unallocated cluster
 987         * each write allocates separate cluster and writes data concurrently.
 988         * The first one to complete updates l2 table with pointer to its
 989         * cluster the second one has to do RMW (which is done above by
 990         * perform_cow()), update l2 table with its cluster pointer and free
 991         * old cluster. This is what this loop does */
 992        if (l2_slice[l2_index + i] != 0) {
 993            old_cluster[j++] = l2_slice[l2_index + i];
 994        }
 995
 996        l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
 997                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 998     }
 999
1000
1001    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1002
1003    /*
1004     * If this was a COW, we need to decrease the refcount of the old cluster.
1005     *
1006     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1007     * clusters), the next write will reuse them anyway.
1008     */
1009    if (!m->keep_old_clusters && j != 0) {
1010        for (i = 0; i < j; i++) {
1011            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1012                                    QCOW2_DISCARD_NEVER);
1013        }
1014    }
1015
1016    ret = 0;
1017err:
1018    g_free(old_cluster);
1019    return ret;
1020 }
1021
1022/**
1023 * Frees the allocated clusters because the request failed and they won't
1024 * actually be linked.
1025 */
1026void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1027{
1028    BDRVQcow2State *s = bs->opaque;
1029    qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1030                        QCOW2_DISCARD_NEVER);
1031}
1032
1033/*
1034 * Returns the number of contiguous clusters that can be used for an allocating
1035 * write, but require COW to be performed (this includes yet unallocated space,
1036 * which must copy from the backing file)
1037 */
1038static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1039    uint64_t *l2_slice, int l2_index)
1040{
1041    int i;
1042
1043    for (i = 0; i < nb_clusters; i++) {
1044        uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1045        QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1046
1047        switch(cluster_type) {
1048        case QCOW2_CLUSTER_NORMAL:
1049            if (l2_entry & QCOW_OFLAG_COPIED) {
1050                goto out;
1051            }
1052            break;
1053        case QCOW2_CLUSTER_UNALLOCATED:
1054        case QCOW2_CLUSTER_COMPRESSED:
1055        case QCOW2_CLUSTER_ZERO_PLAIN:
1056        case QCOW2_CLUSTER_ZERO_ALLOC:
1057            break;
1058        default:
1059            abort();
1060        }
1061    }
1062
1063out:
1064    assert(i <= nb_clusters);
1065    return i;
1066}
1067
1068/*
1069 * Check if there already is an AIO write request in flight which allocates
1070 * the same cluster. In this case we need to wait until the previous
1071 * request has completed and updated the L2 table accordingly.
1072 *
1073 * Returns:
1074 *   0       if there was no dependency. *cur_bytes indicates the number of
1075 *           bytes from guest_offset that can be read before the next
1076 *           dependency must be processed (or the request is complete)
1077 *
1078 *   -EAGAIN if we had to wait for another request, previously gathered
1079 *           information on cluster allocation may be invalid now. The caller
1080 *           must start over anyway, so consider *cur_bytes undefined.
1081 */
1082static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1083    uint64_t *cur_bytes, QCowL2Meta **m)
1084{
1085    BDRVQcow2State *s = bs->opaque;
1086    QCowL2Meta *old_alloc;
1087    uint64_t bytes = *cur_bytes;
1088
1089    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1090
1091        uint64_t start = guest_offset;
1092        uint64_t end = start + bytes;
1093        uint64_t old_start = l2meta_cow_start(old_alloc);
1094        uint64_t old_end = l2meta_cow_end(old_alloc);
1095
1096        if (end <= old_start || start >= old_end) {
1097            /* No intersection */
1098        } else {
1099            if (start < old_start) {
1100                /* Stop at the start of a running allocation */
1101                bytes = old_start - start;
1102            } else {
1103                bytes = 0;
1104            }
1105
1106            /* Stop if already an l2meta exists. After yielding, it wouldn't
1107             * be valid any more, so we'd have to clean up the old L2Metas
1108             * and deal with requests depending on them before starting to
1109             * gather new ones. Not worth the trouble. */
1110            if (bytes == 0 && *m) {
1111                *cur_bytes = 0;
1112                return 0;
1113            }
1114
1115            if (bytes == 0) {
1116                /* Wait for the dependency to complete. We need to recheck
1117                 * the free/allocated clusters when we continue. */
1118                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1119                return -EAGAIN;
1120            }
1121        }
1122    }
1123
1124    /* Make sure that existing clusters and new allocations are only used up to
1125     * the next dependency if we shortened the request above */
1126    *cur_bytes = bytes;
1127
1128    return 0;
1129}
1130
1131/*
1132 * Checks how many already allocated clusters that don't require a copy on
1133 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1134 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1135 * offset are counted.
1136 *
1137 * Note that guest_offset may not be cluster aligned. In this case, the
1138 * returned *host_offset points to exact byte referenced by guest_offset and
1139 * therefore isn't cluster aligned as well.
1140 *
1141 * Returns:
1142 *   0:     if no allocated clusters are available at the given offset.
1143 *          *bytes is normally unchanged. It is set to 0 if the cluster
1144 *          is allocated and doesn't need COW, but doesn't have the right
1145 *          physical offset.
1146 *
1147 *   1:     if allocated clusters that don't require a COW are available at
1148 *          the requested offset. *bytes may have decreased and describes
1149 *          the length of the area that can be written to.
1150 *
1151 *  -errno: in error cases
1152 */
1153static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1154    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1155{
1156    BDRVQcow2State *s = bs->opaque;
1157    int l2_index;
1158    uint64_t cluster_offset;
1159    uint64_t *l2_slice;
1160    uint64_t nb_clusters;
1161    unsigned int keep_clusters;
1162    int ret;
1163
1164    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1165                              *bytes);
1166
1167    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1168                                      == offset_into_cluster(s, *host_offset));
1169
1170    /*
1171     * Calculate the number of clusters to look for. We stop at L2 slice
1172     * boundaries to keep things simple.
1173     */
1174    nb_clusters =
1175        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1176
1177    l2_index = offset_to_l2_slice_index(s, guest_offset);
1178    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1179    assert(nb_clusters <= INT_MAX);
1180
1181    /* Find L2 entry for the first involved cluster */
1182    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1183    if (ret < 0) {
1184        return ret;
1185    }
1186
1187    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1188
1189    /* Check how many clusters are already allocated and don't need COW */
1190    if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1191        && (cluster_offset & QCOW_OFLAG_COPIED))
1192    {
1193        /* If a specific host_offset is required, check it */
1194        bool offset_matches =
1195            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1196
1197        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1198            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1199                                    "%#llx unaligned (guest offset: %#" PRIx64
1200                                    ")", cluster_offset & L2E_OFFSET_MASK,
1201                                    guest_offset);
1202            ret = -EIO;
1203            goto out;
1204        }
1205
1206        if (*host_offset != INV_OFFSET && !offset_matches) {
1207            *bytes = 0;
1208            ret = 0;
1209            goto out;
1210        }
1211
1212        /* We keep all QCOW_OFLAG_COPIED clusters */
1213        keep_clusters =
1214            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1215                                      &l2_slice[l2_index],
1216                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1217        assert(keep_clusters <= nb_clusters);
1218
1219        *bytes = MIN(*bytes,
1220                 keep_clusters * s->cluster_size
1221                 - offset_into_cluster(s, guest_offset));
1222
1223        ret = 1;
1224    } else {
1225        ret = 0;
1226    }
1227
1228    /* Cleanup */
1229out:
1230    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1231
1232    /* Only return a host offset if we actually made progress. Otherwise we
1233     * would make requirements for handle_alloc() that it can't fulfill */
1234    if (ret > 0) {
1235        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1236                     + offset_into_cluster(s, guest_offset);
1237    }
1238
1239    return ret;
1240}
1241
1242/*
1243 * Allocates new clusters for the given guest_offset.
1244 *
1245 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1246 * contain the number of clusters that have been allocated and are contiguous
1247 * in the image file.
1248 *
1249 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1250 * at which the new clusters must start. *nb_clusters can be 0 on return in
1251 * this case if the cluster at host_offset is already in use. If *host_offset
1252 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1253 *
1254 * *host_offset is updated to contain the offset into the image file at which
1255 * the first allocated cluster starts.
1256 *
1257 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1258 * function has been waiting for another request and the allocation must be
1259 * restarted, but the whole request should not be failed.
1260 */
1261static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1262                                   uint64_t *host_offset, uint64_t *nb_clusters)
1263{
1264    BDRVQcow2State *s = bs->opaque;
1265
1266    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1267                                         *host_offset, *nb_clusters);
1268
1269    if (has_data_file(bs)) {
1270        assert(*host_offset == INV_OFFSET ||
1271               *host_offset == start_of_cluster(s, guest_offset));
1272        *host_offset = start_of_cluster(s, guest_offset);
1273        return 0;
1274    }
1275
1276    /* Allocate new clusters */
1277    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1278    if (*host_offset == INV_OFFSET) {
1279        int64_t cluster_offset =
1280            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1281        if (cluster_offset < 0) {
1282            return cluster_offset;
1283        }
1284        *host_offset = cluster_offset;
1285        return 0;
1286    } else {
1287        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1288        if (ret < 0) {
1289            return ret;
1290        }
1291        *nb_clusters = ret;
1292        return 0;
1293    }
1294}
1295
1296/*
1297 * Allocates new clusters for an area that either is yet unallocated or needs a
1298 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1299 * allocated if the new allocation can match the specified host offset.
1300 *
1301 * Note that guest_offset may not be cluster aligned. In this case, the
1302 * returned *host_offset points to exact byte referenced by guest_offset and
1303 * therefore isn't cluster aligned as well.
1304 *
1305 * Returns:
1306 *   0:     if no clusters could be allocated. *bytes is set to 0,
1307 *          *host_offset is left unchanged.
1308 *
1309 *   1:     if new clusters were allocated. *bytes may be decreased if the
1310 *          new allocation doesn't cover all of the requested area.
1311 *          *host_offset is updated to contain the host offset of the first
1312 *          newly allocated cluster.
1313 *
1314 *  -errno: in error cases
1315 */
1316static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1317    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1318{
1319    BDRVQcow2State *s = bs->opaque;
1320    int l2_index;
1321    uint64_t *l2_slice;
1322    uint64_t entry;
1323    uint64_t nb_clusters;
1324    int ret;
1325    bool keep_old_clusters = false;
1326
1327    uint64_t alloc_cluster_offset = INV_OFFSET;
1328
1329    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1330                             *bytes);
1331    assert(*bytes > 0);
1332
1333    /*
1334     * Calculate the number of clusters to look for. We stop at L2 slice
1335     * boundaries to keep things simple.
1336     */
1337    nb_clusters =
1338        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1339
1340    l2_index = offset_to_l2_slice_index(s, guest_offset);
1341    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1342    assert(nb_clusters <= INT_MAX);
1343
1344    /* Limit total allocation byte count to INT_MAX */
1345    nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1346
1347    /* Find L2 entry for the first involved cluster */
1348    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1349    if (ret < 0) {
1350        return ret;
1351    }
1352
1353    entry = be64_to_cpu(l2_slice[l2_index]);
1354
1355    /* For the moment, overwrite compressed clusters one by one */
1356    if (entry & QCOW_OFLAG_COMPRESSED) {
1357        nb_clusters = 1;
1358    } else {
1359        nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1360    }
1361
1362    /* This function is only called when there were no non-COW clusters, so if
1363     * we can't find any unallocated or COW clusters either, something is
1364     * wrong with our code. */
1365    assert(nb_clusters > 0);
1366
1367    if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1368        (entry & QCOW_OFLAG_COPIED) &&
1369        (*host_offset == INV_OFFSET ||
1370         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1371    {
1372        int preallocated_nb_clusters;
1373
1374        if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1375            qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1376                                    "cluster offset %#llx unaligned (guest "
1377                                    "offset: %#" PRIx64 ")",
1378                                    entry & L2E_OFFSET_MASK, guest_offset);
1379            ret = -EIO;
1380            goto fail;
1381        }
1382
1383        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1384         * would be fine, too, but count_cow_clusters() above has limited
1385         * nb_clusters already to a range of COW clusters */
1386        preallocated_nb_clusters =
1387            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1388                                      &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1389        assert(preallocated_nb_clusters > 0);
1390
1391        nb_clusters = preallocated_nb_clusters;
1392        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1393
1394        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1395         * should not free them. */
1396        keep_old_clusters = true;
1397    }
1398
1399    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1400
1401    if (alloc_cluster_offset == INV_OFFSET) {
1402        /* Allocate, if necessary at a given offset in the image file */
1403        alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1404                               start_of_cluster(s, *host_offset);
1405        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1406                                      &nb_clusters);
1407        if (ret < 0) {
1408            goto fail;
1409        }
1410
1411        /* Can't extend contiguous allocation */
1412        if (nb_clusters == 0) {
1413            *bytes = 0;
1414            return 0;
1415        }
1416
1417        assert(alloc_cluster_offset != INV_OFFSET);
1418    }
1419
1420    /*
1421     * Save info needed for meta data update.
1422     *
1423     * requested_bytes: Number of bytes from the start of the first
1424     * newly allocated cluster to the end of the (possibly shortened
1425     * before) write request.
1426     *
1427     * avail_bytes: Number of bytes from the start of the first
1428     * newly allocated to the end of the last newly allocated cluster.
1429     *
1430     * nb_bytes: The number of bytes from the start of the first
1431     * newly allocated cluster to the end of the area that the write
1432     * request actually writes to (excluding COW at the end)
1433     */
1434    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1435    int avail_bytes = nb_clusters << s->cluster_bits;
1436    int nb_bytes = MIN(requested_bytes, avail_bytes);
1437    QCowL2Meta *old_m = *m;
1438
1439    *m = g_malloc0(sizeof(**m));
1440
1441    **m = (QCowL2Meta) {
1442        .next           = old_m,
1443
1444        .alloc_offset   = alloc_cluster_offset,
1445        .offset         = start_of_cluster(s, guest_offset),
1446        .nb_clusters    = nb_clusters,
1447
1448        .keep_old_clusters  = keep_old_clusters,
1449
1450        .cow_start = {
1451            .offset     = 0,
1452            .nb_bytes   = offset_into_cluster(s, guest_offset),
1453        },
1454        .cow_end = {
1455            .offset     = nb_bytes,
1456            .nb_bytes   = avail_bytes - nb_bytes,
1457        },
1458    };
1459    qemu_co_queue_init(&(*m)->dependent_requests);
1460    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1461
1462    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1463    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1464    assert(*bytes != 0);
1465
1466    return 1;
1467
1468fail:
1469    if (*m && (*m)->nb_clusters > 0) {
1470        QLIST_REMOVE(*m, next_in_flight);
1471    }
1472    return ret;
1473}
1474
1475/*
1476 * alloc_cluster_offset
1477 *
1478 * For a given offset on the virtual disk, find the cluster offset in qcow2
1479 * file. If the offset is not found, allocate a new cluster.
1480 *
1481 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1482 * other fields in m are meaningless.
1483 *
1484 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1485 * contiguous clusters that have been allocated. In this case, the other
1486 * fields of m are valid and contain information about the first allocated
1487 * cluster.
1488 *
1489 * If the request conflicts with another write request in flight, the coroutine
1490 * is queued and will be reentered when the dependency has completed.
1491 *
1492 * Return 0 on success and -errno in error cases
1493 */
1494int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1495                               unsigned int *bytes, uint64_t *host_offset,
1496                               QCowL2Meta **m)
1497{
1498    BDRVQcow2State *s = bs->opaque;
1499    uint64_t start, remaining;
1500    uint64_t cluster_offset;
1501    uint64_t cur_bytes;
1502    int ret;
1503
1504    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1505
1506again:
1507    start = offset;
1508    remaining = *bytes;
1509    cluster_offset = INV_OFFSET;
1510    *host_offset = INV_OFFSET;
1511    cur_bytes = 0;
1512    *m = NULL;
1513
1514    while (true) {
1515
1516        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1517            *host_offset = start_of_cluster(s, cluster_offset);
1518        }
1519
1520        assert(remaining >= cur_bytes);
1521
1522        start           += cur_bytes;
1523        remaining       -= cur_bytes;
1524
1525        if (cluster_offset != INV_OFFSET) {
1526            cluster_offset += cur_bytes;
1527        }
1528
1529        if (remaining == 0) {
1530            break;
1531        }
1532
1533        cur_bytes = remaining;
1534
1535        /*
1536         * Now start gathering as many contiguous clusters as possible:
1537         *
1538         * 1. Check for overlaps with in-flight allocations
1539         *
1540         *      a) Overlap not in the first cluster -> shorten this request and
1541         *         let the caller handle the rest in its next loop iteration.
1542         *
1543         *      b) Real overlaps of two requests. Yield and restart the search
1544         *         for contiguous clusters (the situation could have changed
1545         *         while we were sleeping)
1546         *
1547         *      c) TODO: Request starts in the same cluster as the in-flight
1548         *         allocation ends. Shorten the COW of the in-fight allocation,
1549         *         set cluster_offset to write to the same cluster and set up
1550         *         the right synchronisation between the in-flight request and
1551         *         the new one.
1552         */
1553        ret = handle_dependencies(bs, start, &cur_bytes, m);
1554        if (ret == -EAGAIN) {
1555            /* Currently handle_dependencies() doesn't yield if we already had
1556             * an allocation. If it did, we would have to clean up the L2Meta
1557             * structs before starting over. */
1558            assert(*m == NULL);
1559            goto again;
1560        } else if (ret < 0) {
1561            return ret;
1562        } else if (cur_bytes == 0) {
1563            break;
1564        } else {
1565            /* handle_dependencies() may have decreased cur_bytes (shortened
1566             * the allocations below) so that the next dependency is processed
1567             * correctly during the next loop iteration. */
1568        }
1569
1570        /*
1571         * 2. Count contiguous COPIED clusters.
1572         */
1573        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1574        if (ret < 0) {
1575            return ret;
1576        } else if (ret) {
1577            continue;
1578        } else if (cur_bytes == 0) {
1579            break;
1580        }
1581
1582        /*
1583         * 3. If the request still hasn't completed, allocate new clusters,
1584         *    considering any cluster_offset of steps 1c or 2.
1585         */
1586        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1587        if (ret < 0) {
1588            return ret;
1589        } else if (ret) {
1590            continue;
1591        } else {
1592            assert(cur_bytes == 0);
1593            break;
1594        }
1595    }
1596
1597    *bytes -= remaining;
1598    assert(*bytes > 0);
1599    assert(*host_offset != INV_OFFSET);
1600
1601    return 0;
1602}
1603
1604/*
1605 * This discards as many clusters of nb_clusters as possible at once (i.e.
1606 * all clusters in the same L2 slice) and returns the number of discarded
1607 * clusters.
1608 */
1609static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1610                               uint64_t nb_clusters,
1611                               enum qcow2_discard_type type, bool full_discard)
1612{
1613    BDRVQcow2State *s = bs->opaque;
1614    uint64_t *l2_slice;
1615    int l2_index;
1616    int ret;
1617    int i;
1618
1619    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1620    if (ret < 0) {
1621        return ret;
1622    }
1623
1624    /* Limit nb_clusters to one L2 slice */
1625    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1626    assert(nb_clusters <= INT_MAX);
1627
1628    for (i = 0; i < nb_clusters; i++) {
1629        uint64_t old_l2_entry;
1630
1631        old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1632
1633        /*
1634         * If full_discard is false, make sure that a discarded area reads back
1635         * as zeroes for v3 images (we cannot do it for v2 without actually
1636         * writing a zero-filled buffer). We can skip the operation if the
1637         * cluster is already marked as zero, or if it's unallocated and we
1638         * don't have a backing file.
1639         *
1640         * TODO We might want to use bdrv_block_status(bs) here, but we're
1641         * holding s->lock, so that doesn't work today.
1642         *
1643         * If full_discard is true, the sector should not read back as zeroes,
1644         * but rather fall through to the backing file.
1645         */
1646        switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1647        case QCOW2_CLUSTER_UNALLOCATED:
1648            if (full_discard || !bs->backing) {
1649                continue;
1650            }
1651            break;
1652
1653        case QCOW2_CLUSTER_ZERO_PLAIN:
1654            if (!full_discard) {
1655                continue;
1656            }
1657            break;
1658
1659        case QCOW2_CLUSTER_ZERO_ALLOC:
1660        case QCOW2_CLUSTER_NORMAL:
1661        case QCOW2_CLUSTER_COMPRESSED:
1662            break;
1663
1664        default:
1665            abort();
1666        }
1667
1668        /* First remove L2 entries */
1669        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1670        if (!full_discard && s->qcow_version >= 3) {
1671            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1672        } else {
1673            l2_slice[l2_index + i] = cpu_to_be64(0);
1674        }
1675
1676        /* Then decrease the refcount */
1677        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1678    }
1679
1680    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1681
1682    return nb_clusters;
1683}
1684
1685int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1686                          uint64_t bytes, enum qcow2_discard_type type,
1687                          bool full_discard)
1688{
1689    BDRVQcow2State *s = bs->opaque;
1690    uint64_t end_offset = offset + bytes;
1691    uint64_t nb_clusters;
1692    int64_t cleared;
1693    int ret;
1694
1695    /* Caller must pass aligned values, except at image end */
1696    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1697    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1698           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1699
1700    nb_clusters = size_to_clusters(s, bytes);
1701
1702    s->cache_discards = true;
1703
1704    /* Each L2 slice is handled by its own loop iteration */
1705    while (nb_clusters > 0) {
1706        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1707                                      full_discard);
1708        if (cleared < 0) {
1709            ret = cleared;
1710            goto fail;
1711        }
1712
1713        nb_clusters -= cleared;
1714        offset += (cleared * s->cluster_size);
1715    }
1716
1717    ret = 0;
1718fail:
1719    s->cache_discards = false;
1720    qcow2_process_discards(bs, ret);
1721
1722    return ret;
1723}
1724
1725/*
1726 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1727 * all clusters in the same L2 slice) and returns the number of zeroed
1728 * clusters.
1729 */
1730static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1731                            uint64_t nb_clusters, int flags)
1732{
1733    BDRVQcow2State *s = bs->opaque;
1734    uint64_t *l2_slice;
1735    int l2_index;
1736    int ret;
1737    int i;
1738    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1739
1740    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1741    if (ret < 0) {
1742        return ret;
1743    }
1744
1745    /* Limit nb_clusters to one L2 slice */
1746    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1747    assert(nb_clusters <= INT_MAX);
1748
1749    for (i = 0; i < nb_clusters; i++) {
1750        uint64_t old_offset;
1751        QCow2ClusterType cluster_type;
1752
1753        old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1754
1755        /*
1756         * Minimize L2 changes if the cluster already reads back as
1757         * zeroes with correct allocation.
1758         */
1759        cluster_type = qcow2_get_cluster_type(bs, old_offset);
1760        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1761            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1762            continue;
1763        }
1764
1765        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1766        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1767            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1768            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1769        } else {
1770            l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1771        }
1772    }
1773
1774    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1775
1776    return nb_clusters;
1777}
1778
1779int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1780                          uint64_t bytes, int flags)
1781{
1782    BDRVQcow2State *s = bs->opaque;
1783    uint64_t end_offset = offset + bytes;
1784    uint64_t nb_clusters;
1785    int64_t cleared;
1786    int ret;
1787
1788    /* If we have to stay in sync with an external data file, zero out
1789     * s->data_file first. */
1790    if (data_file_is_raw(bs)) {
1791        assert(has_data_file(bs));
1792        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1793        if (ret < 0) {
1794            return ret;
1795        }
1796    }
1797
1798    /* Caller must pass aligned values, except at image end */
1799    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1800    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1801           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1802
1803    /* The zero flag is only supported by version 3 and newer */
1804    if (s->qcow_version < 3) {
1805        return -ENOTSUP;
1806    }
1807
1808    /* Each L2 slice is handled by its own loop iteration */
1809    nb_clusters = size_to_clusters(s, bytes);
1810
1811    s->cache_discards = true;
1812
1813    while (nb_clusters > 0) {
1814        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1815        if (cleared < 0) {
1816            ret = cleared;
1817            goto fail;
1818        }
1819
1820        nb_clusters -= cleared;
1821        offset += (cleared * s->cluster_size);
1822    }
1823
1824    ret = 0;
1825fail:
1826    s->cache_discards = false;
1827    qcow2_process_discards(bs, ret);
1828
1829    return ret;
1830}
1831
1832/*
1833 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1834 * non-backed non-pre-allocated zero clusters).
1835 *
1836 * l1_entries and *visited_l1_entries are used to keep track of progress for
1837 * status_cb(). l1_entries contains the total number of L1 entries and
1838 * *visited_l1_entries counts all visited L1 entries.
1839 */
1840static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1841                                      int l1_size, int64_t *visited_l1_entries,
1842                                      int64_t l1_entries,
1843                                      BlockDriverAmendStatusCB *status_cb,
1844                                      void *cb_opaque)
1845{
1846    BDRVQcow2State *s = bs->opaque;
1847    bool is_active_l1 = (l1_table == s->l1_table);
1848    uint64_t *l2_slice = NULL;
1849    unsigned slice, slice_size2, n_slices;
1850    int ret;
1851    int i, j;
1852
1853    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1854    n_slices = s->cluster_size / slice_size2;
1855
1856    if (!is_active_l1) {
1857        /* inactive L2 tables require a buffer to be stored in when loading
1858         * them from disk */
1859        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1860        if (l2_slice == NULL) {
1861            return -ENOMEM;
1862        }
1863    }
1864
1865    for (i = 0; i < l1_size; i++) {
1866        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1867        uint64_t l2_refcount;
1868
1869        if (!l2_offset) {
1870            /* unallocated */
1871            (*visited_l1_entries)++;
1872            if (status_cb) {
1873                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1874            }
1875            continue;
1876        }
1877
1878        if (offset_into_cluster(s, l2_offset)) {
1879            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1880                                    PRIx64 " unaligned (L1 index: %#x)",
1881                                    l2_offset, i);
1882            ret = -EIO;
1883            goto fail;
1884        }
1885
1886        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1887                                 &l2_refcount);
1888        if (ret < 0) {
1889            goto fail;
1890        }
1891
1892        for (slice = 0; slice < n_slices; slice++) {
1893            uint64_t slice_offset = l2_offset + slice * slice_size2;
1894            bool l2_dirty = false;
1895            if (is_active_l1) {
1896                /* get active L2 tables from cache */
1897                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1898                                      (void **)&l2_slice);
1899            } else {
1900                /* load inactive L2 tables from disk */
1901                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1902            }
1903            if (ret < 0) {
1904                goto fail;
1905            }
1906
1907            for (j = 0; j < s->l2_slice_size; j++) {
1908                uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1909                int64_t offset = l2_entry & L2E_OFFSET_MASK;
1910                QCow2ClusterType cluster_type =
1911                    qcow2_get_cluster_type(bs, l2_entry);
1912
1913                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1914                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1915                    continue;
1916                }
1917
1918                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1919                    if (!bs->backing) {
1920                        /* not backed; therefore we can simply deallocate the
1921                         * cluster */
1922                        l2_slice[j] = 0;
1923                        l2_dirty = true;
1924                        continue;
1925                    }
1926
1927                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
1928                    if (offset < 0) {
1929                        ret = offset;
1930                        goto fail;
1931                    }
1932
1933                    if (l2_refcount > 1) {
1934                        /* For shared L2 tables, set the refcount accordingly
1935                         * (it is already 1 and needs to be l2_refcount) */
1936                        ret = qcow2_update_cluster_refcount(
1937                            bs, offset >> s->cluster_bits,
1938                            refcount_diff(1, l2_refcount), false,
1939                            QCOW2_DISCARD_OTHER);
1940                        if (ret < 0) {
1941                            qcow2_free_clusters(bs, offset, s->cluster_size,
1942                                                QCOW2_DISCARD_OTHER);
1943                            goto fail;
1944                        }
1945                    }
1946                }
1947
1948                if (offset_into_cluster(s, offset)) {
1949                    int l2_index = slice * s->l2_slice_size + j;
1950                    qcow2_signal_corruption(
1951                        bs, true, -1, -1,
1952                        "Cluster allocation offset "
1953                        "%#" PRIx64 " unaligned (L2 offset: %#"
1954                        PRIx64 ", L2 index: %#x)", offset,
1955                        l2_offset, l2_index);
1956                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1957                        qcow2_free_clusters(bs, offset, s->cluster_size,
1958                                            QCOW2_DISCARD_ALWAYS);
1959                    }
1960                    ret = -EIO;
1961                    goto fail;
1962                }
1963
1964                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1965                                                    s->cluster_size, true);
1966                if (ret < 0) {
1967                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1968                        qcow2_free_clusters(bs, offset, s->cluster_size,
1969                                            QCOW2_DISCARD_ALWAYS);
1970                    }
1971                    goto fail;
1972                }
1973
1974                ret = bdrv_pwrite_zeroes(s->data_file, offset,
1975                                         s->cluster_size, 0);
1976                if (ret < 0) {
1977                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1978                        qcow2_free_clusters(bs, offset, s->cluster_size,
1979                                            QCOW2_DISCARD_ALWAYS);
1980                    }
1981                    goto fail;
1982                }
1983
1984                if (l2_refcount == 1) {
1985                    l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1986                } else {
1987                    l2_slice[j] = cpu_to_be64(offset);
1988                }
1989                l2_dirty = true;
1990            }
1991
1992            if (is_active_l1) {
1993                if (l2_dirty) {
1994                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1995                    qcow2_cache_depends_on_flush(s->l2_table_cache);
1996                }
1997                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1998            } else {
1999                if (l2_dirty) {
2000                    ret = qcow2_pre_write_overlap_check(
2001                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2002                        slice_offset, slice_size2, false);
2003                    if (ret < 0) {
2004                        goto fail;
2005                    }
2006
2007                    ret = bdrv_pwrite(bs->file, slice_offset,
2008                                      l2_slice, slice_size2);
2009                    if (ret < 0) {
2010                        goto fail;
2011                    }
2012                }
2013            }
2014        }
2015
2016        (*visited_l1_entries)++;
2017        if (status_cb) {
2018            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2019        }
2020    }
2021
2022    ret = 0;
2023
2024fail:
2025    if (l2_slice) {
2026        if (!is_active_l1) {
2027            qemu_vfree(l2_slice);
2028        } else {
2029            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2030        }
2031    }
2032    return ret;
2033}
2034
2035/*
2036 * For backed images, expands all zero clusters on the image. For non-backed
2037 * images, deallocates all non-pre-allocated zero clusters (and claims the
2038 * allocation for pre-allocated ones). This is important for downgrading to a
2039 * qcow2 version which doesn't yet support metadata zero clusters.
2040 */
2041int qcow2_expand_zero_clusters(BlockDriverState *bs,
2042                               BlockDriverAmendStatusCB *status_cb,
2043                               void *cb_opaque)
2044{
2045    BDRVQcow2State *s = bs->opaque;
2046    uint64_t *l1_table = NULL;
2047    int64_t l1_entries = 0, visited_l1_entries = 0;
2048    int ret;
2049    int i, j;
2050
2051    if (status_cb) {
2052        l1_entries = s->l1_size;
2053        for (i = 0; i < s->nb_snapshots; i++) {
2054            l1_entries += s->snapshots[i].l1_size;
2055        }
2056    }
2057
2058    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2059                                     &visited_l1_entries, l1_entries,
2060                                     status_cb, cb_opaque);
2061    if (ret < 0) {
2062        goto fail;
2063    }
2064
2065    /* Inactive L1 tables may point to active L2 tables - therefore it is
2066     * necessary to flush the L2 table cache before trying to access the L2
2067     * tables pointed to by inactive L1 entries (else we might try to expand
2068     * zero clusters that have already been expanded); furthermore, it is also
2069     * necessary to empty the L2 table cache, since it may contain tables which
2070     * are now going to be modified directly on disk, bypassing the cache.
2071     * qcow2_cache_empty() does both for us. */
2072    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2073    if (ret < 0) {
2074        goto fail;
2075    }
2076
2077    for (i = 0; i < s->nb_snapshots; i++) {
2078        int l1_size2;
2079        uint64_t *new_l1_table;
2080        Error *local_err = NULL;
2081
2082        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2083                                   s->snapshots[i].l1_size, sizeof(uint64_t),
2084                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2085                                   &local_err);
2086        if (ret < 0) {
2087            error_report_err(local_err);
2088            goto fail;
2089        }
2090
2091        l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2092        new_l1_table = g_try_realloc(l1_table, l1_size2);
2093
2094        if (!new_l1_table) {
2095            ret = -ENOMEM;
2096            goto fail;
2097        }
2098
2099        l1_table = new_l1_table;
2100
2101        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2102                         l1_table, l1_size2);
2103        if (ret < 0) {
2104            goto fail;
2105        }
2106
2107        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2108            be64_to_cpus(&l1_table[j]);
2109        }
2110
2111        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2112                                         &visited_l1_entries, l1_entries,
2113                                         status_cb, cb_opaque);
2114        if (ret < 0) {
2115            goto fail;
2116        }
2117    }
2118
2119    ret = 0;
2120
2121fail:
2122    g_free(l1_table);
2123    return ret;
2124}
2125