qemu/block/qed-cluster.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format Cluster functions
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qed.h"
  17
  18/**
  19 * Count the number of contiguous data clusters
  20 *
  21 * @s:              QED state
  22 * @table:          L2 table
  23 * @index:          First cluster index
  24 * @n:              Maximum number of clusters
  25 * @offset:         Set to first cluster offset
  26 *
  27 * This function scans tables for contiguous clusters.  A contiguous run of
  28 * clusters may be allocated, unallocated, or zero.
  29 */
  30static unsigned int qed_count_contiguous_clusters(BDRVQEDState *s,
  31                                                  QEDTable *table,
  32                                                  unsigned int index,
  33                                                  unsigned int n,
  34                                                  uint64_t *offset)
  35{
  36    unsigned int end = MIN(index + n, s->table_nelems);
  37    uint64_t last = table->offsets[index];
  38    unsigned int i;
  39
  40    *offset = last;
  41
  42    for (i = index + 1; i < end; i++) {
  43        if (qed_offset_is_unalloc_cluster(last)) {
  44            /* Counting unallocated clusters */
  45            if (!qed_offset_is_unalloc_cluster(table->offsets[i])) {
  46                break;
  47            }
  48        } else if (qed_offset_is_zero_cluster(last)) {
  49            /* Counting zero clusters */
  50            if (!qed_offset_is_zero_cluster(table->offsets[i])) {
  51                break;
  52            }
  53        } else {
  54            /* Counting allocated clusters */
  55            if (table->offsets[i] != last + s->header.cluster_size) {
  56                break;
  57            }
  58            last = table->offsets[i];
  59        }
  60    }
  61    return i - index;
  62}
  63
  64/**
  65 * Find the offset of a data cluster
  66 *
  67 * @s:          QED state
  68 * @request:    L2 cache entry
  69 * @pos:        Byte position in device
  70 * @len:        Number of bytes (may be shortened on return)
  71 * @img_offset: Contains offset in the image file on success
  72 *
  73 * This function translates a position in the block device to an offset in the
  74 * image file. The translated offset or unallocated range in the image file is
  75 * reported back in *img_offset and *len.
  76 *
  77 * If the L2 table exists, request->l2_table points to the L2 table cache entry
  78 * and the caller must free the reference when they are finished.  The cache
  79 * entry is exposed in this way to avoid callers having to read the L2 table
  80 * again later during request processing.  If request->l2_table is non-NULL it
  81 * will be unreferenced before taking on the new cache entry.
  82 *
  83 * On success QED_CLUSTER_FOUND is returned and img_offset/len are a contiguous
  84 * range in the image file.
  85 *
  86 * On failure QED_CLUSTER_L2 or QED_CLUSTER_L1 is returned for missing L2 or L1
  87 * table offset, respectively. len is number of contiguous unallocated bytes.
  88 *
  89 * Called with table_lock held.
  90 */
  91int coroutine_fn qed_find_cluster(BDRVQEDState *s, QEDRequest *request,
  92                                  uint64_t pos, size_t *len,
  93                                  uint64_t *img_offset)
  94{
  95    uint64_t l2_offset;
  96    uint64_t offset = 0;
  97    unsigned int index;
  98    unsigned int n;
  99    int ret;
 100
 101    /* Limit length to L2 boundary.  Requests are broken up at the L2 boundary
 102     * so that a request acts on one L2 table at a time.
 103     */
 104    *len = MIN(*len, (((pos >> s->l1_shift) + 1) << s->l1_shift) - pos);
 105
 106    l2_offset = s->l1_table->offsets[qed_l1_index(s, pos)];
 107    if (qed_offset_is_unalloc_cluster(l2_offset)) {
 108        *img_offset = 0;
 109        return QED_CLUSTER_L1;
 110    }
 111    if (!qed_check_table_offset(s, l2_offset)) {
 112        *img_offset = *len = 0;
 113        return -EINVAL;
 114    }
 115
 116    ret = qed_read_l2_table(s, request, l2_offset);
 117    if (ret) {
 118        goto out;
 119    }
 120
 121    index = qed_l2_index(s, pos);
 122    n = qed_bytes_to_clusters(s, qed_offset_into_cluster(s, pos) + *len);
 123    n = qed_count_contiguous_clusters(s, request->l2_table->table,
 124                                      index, n, &offset);
 125
 126    if (qed_offset_is_unalloc_cluster(offset)) {
 127        ret = QED_CLUSTER_L2;
 128    } else if (qed_offset_is_zero_cluster(offset)) {
 129        ret = QED_CLUSTER_ZERO;
 130    } else if (qed_check_cluster_offset(s, offset)) {
 131        ret = QED_CLUSTER_FOUND;
 132    } else {
 133        ret = -EINVAL;
 134    }
 135
 136    *len = MIN(*len,
 137               n * s->header.cluster_size - qed_offset_into_cluster(s, pos));
 138
 139out:
 140    *img_offset = offset;
 141    return ret;
 142}
 143