1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85#include "qemu/osdep.h"
86#include <math.h>
87#include "qemu/bitops.h"
88#include "fpu/softfloat.h"
89
90
91
92
93
94
95
96
97#include "fpu/softfloat-macros.h"
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129#define GEN_INPUT_FLUSH__NOCHECK(name, soft_t) \
130 static inline void name(soft_t *a, float_status *s) \
131 { \
132 if (unlikely(soft_t ## _is_denormal(*a))) { \
133 *a = soft_t ## _set_sign(soft_t ## _zero, \
134 soft_t ## _is_neg(*a)); \
135 s->float_exception_flags |= float_flag_input_denormal; \
136 } \
137 }
138
139GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
140GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
141#undef GEN_INPUT_FLUSH__NOCHECK
142
143#define GEN_INPUT_FLUSH1(name, soft_t) \
144 static inline void name(soft_t *a, float_status *s) \
145 { \
146 if (likely(!s->flush_inputs_to_zero)) { \
147 return; \
148 } \
149 soft_t ## _input_flush__nocheck(a, s); \
150 }
151
152GEN_INPUT_FLUSH1(float32_input_flush1, float32)
153GEN_INPUT_FLUSH1(float64_input_flush1, float64)
154#undef GEN_INPUT_FLUSH1
155
156#define GEN_INPUT_FLUSH2(name, soft_t) \
157 static inline void name(soft_t *a, soft_t *b, float_status *s) \
158 { \
159 if (likely(!s->flush_inputs_to_zero)) { \
160 return; \
161 } \
162 soft_t ## _input_flush__nocheck(a, s); \
163 soft_t ## _input_flush__nocheck(b, s); \
164 }
165
166GEN_INPUT_FLUSH2(float32_input_flush2, float32)
167GEN_INPUT_FLUSH2(float64_input_flush2, float64)
168#undef GEN_INPUT_FLUSH2
169
170#define GEN_INPUT_FLUSH3(name, soft_t) \
171 static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
172 { \
173 if (likely(!s->flush_inputs_to_zero)) { \
174 return; \
175 } \
176 soft_t ## _input_flush__nocheck(a, s); \
177 soft_t ## _input_flush__nocheck(b, s); \
178 soft_t ## _input_flush__nocheck(c, s); \
179 }
180
181GEN_INPUT_FLUSH3(float32_input_flush3, float32)
182GEN_INPUT_FLUSH3(float64_input_flush3, float64)
183#undef GEN_INPUT_FLUSH3
184
185
186
187
188
189
190#if defined(__x86_64__)
191# define QEMU_HARDFLOAT_1F32_USE_FP 0
192# define QEMU_HARDFLOAT_1F64_USE_FP 1
193# define QEMU_HARDFLOAT_2F32_USE_FP 0
194# define QEMU_HARDFLOAT_2F64_USE_FP 1
195# define QEMU_HARDFLOAT_3F32_USE_FP 0
196# define QEMU_HARDFLOAT_3F64_USE_FP 1
197#else
198# define QEMU_HARDFLOAT_1F32_USE_FP 0
199# define QEMU_HARDFLOAT_1F64_USE_FP 0
200# define QEMU_HARDFLOAT_2F32_USE_FP 0
201# define QEMU_HARDFLOAT_2F64_USE_FP 0
202# define QEMU_HARDFLOAT_3F32_USE_FP 0
203# define QEMU_HARDFLOAT_3F64_USE_FP 0
204#endif
205
206
207
208
209
210
211
212#if defined(__x86_64__) || defined(__aarch64__)
213# define QEMU_HARDFLOAT_USE_ISINF 1
214#else
215# define QEMU_HARDFLOAT_USE_ISINF 0
216#endif
217
218
219
220
221
222
223#if defined(TARGET_PPC) || defined(__FAST_MATH__)
224# if defined(__FAST_MATH__)
225# warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
226 IEEE implementation
227# endif
228# define QEMU_NO_HARDFLOAT 1
229# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
230#else
231# define QEMU_NO_HARDFLOAT 0
232# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
233#endif
234
235static inline bool can_use_fpu(const float_status *s)
236{
237 if (QEMU_NO_HARDFLOAT) {
238 return false;
239 }
240 return likely(s->float_exception_flags & float_flag_inexact &&
241 s->float_rounding_mode == float_round_nearest_even);
242}
243
244
245
246
247
248
249
250
251
252
253
254
255
256typedef union {
257 float32 s;
258 float h;
259} union_float32;
260
261typedef union {
262 float64 s;
263 double h;
264} union_float64;
265
266typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
267typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);
268
269typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
270typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
271typedef float (*hard_f32_op2_fn)(float a, float b);
272typedef double (*hard_f64_op2_fn)(double a, double b);
273
274
275static inline bool f32_is_zon2(union_float32 a, union_float32 b)
276{
277 if (QEMU_HARDFLOAT_2F32_USE_FP) {
278
279
280
281
282 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
283 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
284 }
285 return float32_is_zero_or_normal(a.s) &&
286 float32_is_zero_or_normal(b.s);
287}
288
289static inline bool f64_is_zon2(union_float64 a, union_float64 b)
290{
291 if (QEMU_HARDFLOAT_2F64_USE_FP) {
292 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
293 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
294 }
295 return float64_is_zero_or_normal(a.s) &&
296 float64_is_zero_or_normal(b.s);
297}
298
299
300static inline
301bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
302{
303 if (QEMU_HARDFLOAT_3F32_USE_FP) {
304 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
305 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
306 (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
307 }
308 return float32_is_zero_or_normal(a.s) &&
309 float32_is_zero_or_normal(b.s) &&
310 float32_is_zero_or_normal(c.s);
311}
312
313static inline
314bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
315{
316 if (QEMU_HARDFLOAT_3F64_USE_FP) {
317 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
318 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
319 (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
320 }
321 return float64_is_zero_or_normal(a.s) &&
322 float64_is_zero_or_normal(b.s) &&
323 float64_is_zero_or_normal(c.s);
324}
325
326static inline bool f32_is_inf(union_float32 a)
327{
328 if (QEMU_HARDFLOAT_USE_ISINF) {
329 return isinf(a.h);
330 }
331 return float32_is_infinity(a.s);
332}
333
334static inline bool f64_is_inf(union_float64 a)
335{
336 if (QEMU_HARDFLOAT_USE_ISINF) {
337 return isinf(a.h);
338 }
339 return float64_is_infinity(a.s);
340}
341
342
343static inline float32
344float32_gen2(float32 xa, float32 xb, float_status *s,
345 hard_f32_op2_fn hard, soft_f32_op2_fn soft,
346 f32_check_fn pre, f32_check_fn post,
347 f32_check_fn fast_test, soft_f32_op2_fn fast_op)
348{
349 union_float32 ua, ub, ur;
350
351 ua.s = xa;
352 ub.s = xb;
353
354 if (unlikely(!can_use_fpu(s))) {
355 goto soft;
356 }
357
358 float32_input_flush2(&ua.s, &ub.s, s);
359 if (unlikely(!pre(ua, ub))) {
360 goto soft;
361 }
362 if (fast_test && fast_test(ua, ub)) {
363 return fast_op(ua.s, ub.s, s);
364 }
365
366 ur.h = hard(ua.h, ub.h);
367 if (unlikely(f32_is_inf(ur))) {
368 s->float_exception_flags |= float_flag_overflow;
369 } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
370 if (post == NULL || post(ua, ub)) {
371 goto soft;
372 }
373 }
374 return ur.s;
375
376 soft:
377 return soft(ua.s, ub.s, s);
378}
379
380static inline float64
381float64_gen2(float64 xa, float64 xb, float_status *s,
382 hard_f64_op2_fn hard, soft_f64_op2_fn soft,
383 f64_check_fn pre, f64_check_fn post,
384 f64_check_fn fast_test, soft_f64_op2_fn fast_op)
385{
386 union_float64 ua, ub, ur;
387
388 ua.s = xa;
389 ub.s = xb;
390
391 if (unlikely(!can_use_fpu(s))) {
392 goto soft;
393 }
394
395 float64_input_flush2(&ua.s, &ub.s, s);
396 if (unlikely(!pre(ua, ub))) {
397 goto soft;
398 }
399 if (fast_test && fast_test(ua, ub)) {
400 return fast_op(ua.s, ub.s, s);
401 }
402
403 ur.h = hard(ua.h, ub.h);
404 if (unlikely(f64_is_inf(ur))) {
405 s->float_exception_flags |= float_flag_overflow;
406 } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
407 if (post == NULL || post(ua, ub)) {
408 goto soft;
409 }
410 }
411 return ur.s;
412
413 soft:
414 return soft(ua.s, ub.s, s);
415}
416
417
418
419
420
421static inline uint32_t extractFloat16Frac(float16 a)
422{
423 return float16_val(a) & 0x3ff;
424}
425
426
427
428
429
430static inline int extractFloat16Exp(float16 a)
431{
432 return (float16_val(a) >> 10) & 0x1f;
433}
434
435
436
437
438
439static inline uint32_t extractFloat32Frac(float32 a)
440{
441 return float32_val(a) & 0x007FFFFF;
442}
443
444
445
446
447
448static inline int extractFloat32Exp(float32 a)
449{
450 return (float32_val(a) >> 23) & 0xFF;
451}
452
453
454
455
456
457static inline flag extractFloat32Sign(float32 a)
458{
459 return float32_val(a) >> 31;
460}
461
462
463
464
465
466static inline uint64_t extractFloat64Frac(float64 a)
467{
468 return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
469}
470
471
472
473
474
475static inline int extractFloat64Exp(float64 a)
476{
477 return (float64_val(a) >> 52) & 0x7FF;
478}
479
480
481
482
483
484static inline flag extractFloat64Sign(float64 a)
485{
486 return float64_val(a) >> 63;
487}
488
489
490
491
492
493
494typedef enum __attribute__ ((__packed__)) {
495 float_class_unclassified,
496 float_class_zero,
497 float_class_normal,
498 float_class_inf,
499 float_class_qnan,
500 float_class_snan,
501} FloatClass;
502
503
504static inline __attribute__((unused)) bool is_nan(FloatClass c)
505{
506 return unlikely(c >= float_class_qnan);
507}
508
509static inline __attribute__((unused)) bool is_snan(FloatClass c)
510{
511 return c == float_class_snan;
512}
513
514static inline __attribute__((unused)) bool is_qnan(FloatClass c)
515{
516 return c == float_class_qnan;
517}
518
519
520
521
522
523
524
525
526
527
528
529
530typedef struct {
531 uint64_t frac;
532 int32_t exp;
533 FloatClass cls;
534 bool sign;
535} FloatParts;
536
537#define DECOMPOSED_BINARY_POINT (64 - 2)
538#define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT)
539#define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1)
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554typedef struct {
555 int exp_size;
556 int exp_bias;
557 int exp_max;
558 int frac_size;
559 int frac_shift;
560 uint64_t frac_lsb;
561 uint64_t frac_lsbm1;
562 uint64_t round_mask;
563 uint64_t roundeven_mask;
564 bool arm_althp;
565} FloatFmt;
566
567
568#define FLOAT_PARAMS(E, F) \
569 .exp_size = E, \
570 .exp_bias = ((1 << E) - 1) >> 1, \
571 .exp_max = (1 << E) - 1, \
572 .frac_size = F, \
573 .frac_shift = DECOMPOSED_BINARY_POINT - F, \
574 .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \
575 .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \
576 .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \
577 .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1
578
579static const FloatFmt float16_params = {
580 FLOAT_PARAMS(5, 10)
581};
582
583static const FloatFmt float16_params_ahp = {
584 FLOAT_PARAMS(5, 10),
585 .arm_althp = true
586};
587
588static const FloatFmt float32_params = {
589 FLOAT_PARAMS(8, 23)
590};
591
592static const FloatFmt float64_params = {
593 FLOAT_PARAMS(11, 52)
594};
595
596
597static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
598{
599 const int sign_pos = fmt.frac_size + fmt.exp_size;
600
601 return (FloatParts) {
602 .cls = float_class_unclassified,
603 .sign = extract64(raw, sign_pos, 1),
604 .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
605 .frac = extract64(raw, 0, fmt.frac_size),
606 };
607}
608
609static inline FloatParts float16_unpack_raw(float16 f)
610{
611 return unpack_raw(float16_params, f);
612}
613
614static inline FloatParts float32_unpack_raw(float32 f)
615{
616 return unpack_raw(float32_params, f);
617}
618
619static inline FloatParts float64_unpack_raw(float64 f)
620{
621 return unpack_raw(float64_params, f);
622}
623
624
625static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
626{
627 const int sign_pos = fmt.frac_size + fmt.exp_size;
628 uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
629 return deposit64(ret, sign_pos, 1, p.sign);
630}
631
632static inline float16 float16_pack_raw(FloatParts p)
633{
634 return make_float16(pack_raw(float16_params, p));
635}
636
637static inline float32 float32_pack_raw(FloatParts p)
638{
639 return make_float32(pack_raw(float32_params, p));
640}
641
642static inline float64 float64_pack_raw(FloatParts p)
643{
644 return make_float64(pack_raw(float64_params, p));
645}
646
647
648
649
650
651
652
653
654
655#include "softfloat-specialize.h"
656
657
658static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
659 float_status *status)
660{
661 if (part.exp == parm->exp_max && !parm->arm_althp) {
662 if (part.frac == 0) {
663 part.cls = float_class_inf;
664 } else {
665 part.frac <<= parm->frac_shift;
666 part.cls = (parts_is_snan_frac(part.frac, status)
667 ? float_class_snan : float_class_qnan);
668 }
669 } else if (part.exp == 0) {
670 if (likely(part.frac == 0)) {
671 part.cls = float_class_zero;
672 } else if (status->flush_inputs_to_zero) {
673 float_raise(float_flag_input_denormal, status);
674 part.cls = float_class_zero;
675 part.frac = 0;
676 } else {
677 int shift = clz64(part.frac) - 1;
678 part.cls = float_class_normal;
679 part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
680 part.frac <<= shift;
681 }
682 } else {
683 part.cls = float_class_normal;
684 part.exp -= parm->exp_bias;
685 part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
686 }
687 return part;
688}
689
690
691
692
693
694
695
696static FloatParts round_canonical(FloatParts p, float_status *s,
697 const FloatFmt *parm)
698{
699 const uint64_t frac_lsb = parm->frac_lsb;
700 const uint64_t frac_lsbm1 = parm->frac_lsbm1;
701 const uint64_t round_mask = parm->round_mask;
702 const uint64_t roundeven_mask = parm->roundeven_mask;
703 const int exp_max = parm->exp_max;
704 const int frac_shift = parm->frac_shift;
705 uint64_t frac, inc;
706 int exp, flags = 0;
707 bool overflow_norm;
708
709 frac = p.frac;
710 exp = p.exp;
711
712 switch (p.cls) {
713 case float_class_normal:
714 switch (s->float_rounding_mode) {
715 case float_round_nearest_even:
716 overflow_norm = false;
717 inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
718 break;
719 case float_round_ties_away:
720 overflow_norm = false;
721 inc = frac_lsbm1;
722 break;
723 case float_round_to_zero:
724 overflow_norm = true;
725 inc = 0;
726 break;
727 case float_round_up:
728 inc = p.sign ? 0 : round_mask;
729 overflow_norm = p.sign;
730 break;
731 case float_round_down:
732 inc = p.sign ? round_mask : 0;
733 overflow_norm = !p.sign;
734 break;
735 case float_round_to_odd:
736 overflow_norm = true;
737 inc = frac & frac_lsb ? 0 : round_mask;
738 break;
739 default:
740 g_assert_not_reached();
741 }
742
743 exp += parm->exp_bias;
744 if (likely(exp > 0)) {
745 if (frac & round_mask) {
746 flags |= float_flag_inexact;
747 frac += inc;
748 if (frac & DECOMPOSED_OVERFLOW_BIT) {
749 frac >>= 1;
750 exp++;
751 }
752 }
753 frac >>= frac_shift;
754
755 if (parm->arm_althp) {
756
757 if (unlikely(exp > exp_max)) {
758
759 flags = float_flag_invalid;
760 exp = exp_max;
761 frac = -1;
762 }
763 } else if (unlikely(exp >= exp_max)) {
764 flags |= float_flag_overflow | float_flag_inexact;
765 if (overflow_norm) {
766 exp = exp_max - 1;
767 frac = -1;
768 } else {
769 p.cls = float_class_inf;
770 goto do_inf;
771 }
772 }
773 } else if (s->flush_to_zero) {
774 flags |= float_flag_output_denormal;
775 p.cls = float_class_zero;
776 goto do_zero;
777 } else {
778 bool is_tiny = (s->float_detect_tininess
779 == float_tininess_before_rounding)
780 || (exp < 0)
781 || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
782
783 shift64RightJamming(frac, 1 - exp, &frac);
784 if (frac & round_mask) {
785
786 switch (s->float_rounding_mode) {
787 case float_round_nearest_even:
788 inc = ((frac & roundeven_mask) != frac_lsbm1
789 ? frac_lsbm1 : 0);
790 break;
791 case float_round_to_odd:
792 inc = frac & frac_lsb ? 0 : round_mask;
793 break;
794 }
795 flags |= float_flag_inexact;
796 frac += inc;
797 }
798
799 exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
800 frac >>= frac_shift;
801
802 if (is_tiny && (flags & float_flag_inexact)) {
803 flags |= float_flag_underflow;
804 }
805 if (exp == 0 && frac == 0) {
806 p.cls = float_class_zero;
807 }
808 }
809 break;
810
811 case float_class_zero:
812 do_zero:
813 exp = 0;
814 frac = 0;
815 break;
816
817 case float_class_inf:
818 do_inf:
819 assert(!parm->arm_althp);
820 exp = exp_max;
821 frac = 0;
822 break;
823
824 case float_class_qnan:
825 case float_class_snan:
826 assert(!parm->arm_althp);
827 exp = exp_max;
828 frac >>= parm->frac_shift;
829 break;
830
831 default:
832 g_assert_not_reached();
833 }
834
835 float_raise(flags, s);
836 p.exp = exp;
837 p.frac = frac;
838 return p;
839}
840
841
842static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
843 const FloatFmt *params)
844{
845 return sf_canonicalize(float16_unpack_raw(f), params, s);
846}
847
848static FloatParts float16_unpack_canonical(float16 f, float_status *s)
849{
850 return float16a_unpack_canonical(f, s, &float16_params);
851}
852
853static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
854 const FloatFmt *params)
855{
856 return float16_pack_raw(round_canonical(p, s, params));
857}
858
859static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
860{
861 return float16a_round_pack_canonical(p, s, &float16_params);
862}
863
864static FloatParts float32_unpack_canonical(float32 f, float_status *s)
865{
866 return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
867}
868
869static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
870{
871 return float32_pack_raw(round_canonical(p, s, &float32_params));
872}
873
874static FloatParts float64_unpack_canonical(float64 f, float_status *s)
875{
876 return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
877}
878
879static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
880{
881 return float64_pack_raw(round_canonical(p, s, &float64_params));
882}
883
884static FloatParts return_nan(FloatParts a, float_status *s)
885{
886 switch (a.cls) {
887 case float_class_snan:
888 s->float_exception_flags |= float_flag_invalid;
889 a = parts_silence_nan(a, s);
890
891 case float_class_qnan:
892 if (s->default_nan_mode) {
893 return parts_default_nan(s);
894 }
895 break;
896
897 default:
898 g_assert_not_reached();
899 }
900 return a;
901}
902
903static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
904{
905 if (is_snan(a.cls) || is_snan(b.cls)) {
906 s->float_exception_flags |= float_flag_invalid;
907 }
908
909 if (s->default_nan_mode) {
910 return parts_default_nan(s);
911 } else {
912 if (pickNaN(a.cls, b.cls,
913 a.frac > b.frac ||
914 (a.frac == b.frac && a.sign < b.sign))) {
915 a = b;
916 }
917 if (is_snan(a.cls)) {
918 return parts_silence_nan(a, s);
919 }
920 }
921 return a;
922}
923
924static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
925 bool inf_zero, float_status *s)
926{
927 int which;
928
929 if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
930 s->float_exception_flags |= float_flag_invalid;
931 }
932
933 which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
934
935 if (s->default_nan_mode) {
936
937
938
939 which = 3;
940 }
941
942 switch (which) {
943 case 0:
944 break;
945 case 1:
946 a = b;
947 break;
948 case 2:
949 a = c;
950 break;
951 case 3:
952 return parts_default_nan(s);
953 default:
954 g_assert_not_reached();
955 }
956
957 if (is_snan(a.cls)) {
958 return parts_silence_nan(a, s);
959 }
960 return a;
961}
962
963
964
965
966
967
968
969
970static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
971 float_status *s)
972{
973 bool a_sign = a.sign;
974 bool b_sign = b.sign ^ subtract;
975
976 if (a_sign != b_sign) {
977
978
979 if (a.cls == float_class_normal && b.cls == float_class_normal) {
980 if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
981 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
982 a.frac = a.frac - b.frac;
983 } else {
984 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
985 a.frac = b.frac - a.frac;
986 a.exp = b.exp;
987 a_sign ^= 1;
988 }
989
990 if (a.frac == 0) {
991 a.cls = float_class_zero;
992 a.sign = s->float_rounding_mode == float_round_down;
993 } else {
994 int shift = clz64(a.frac) - 1;
995 a.frac = a.frac << shift;
996 a.exp = a.exp - shift;
997 a.sign = a_sign;
998 }
999 return a;
1000 }
1001 if (is_nan(a.cls) || is_nan(b.cls)) {
1002 return pick_nan(a, b, s);
1003 }
1004 if (a.cls == float_class_inf) {
1005 if (b.cls == float_class_inf) {
1006 float_raise(float_flag_invalid, s);
1007 return parts_default_nan(s);
1008 }
1009 return a;
1010 }
1011 if (a.cls == float_class_zero && b.cls == float_class_zero) {
1012 a.sign = s->float_rounding_mode == float_round_down;
1013 return a;
1014 }
1015 if (a.cls == float_class_zero || b.cls == float_class_inf) {
1016 b.sign = a_sign ^ 1;
1017 return b;
1018 }
1019 if (b.cls == float_class_zero) {
1020 return a;
1021 }
1022 } else {
1023
1024 if (a.cls == float_class_normal && b.cls == float_class_normal) {
1025 if (a.exp > b.exp) {
1026 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
1027 } else if (a.exp < b.exp) {
1028 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
1029 a.exp = b.exp;
1030 }
1031 a.frac += b.frac;
1032 if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
1033 shift64RightJamming(a.frac, 1, &a.frac);
1034 a.exp += 1;
1035 }
1036 return a;
1037 }
1038 if (is_nan(a.cls) || is_nan(b.cls)) {
1039 return pick_nan(a, b, s);
1040 }
1041 if (a.cls == float_class_inf || b.cls == float_class_zero) {
1042 return a;
1043 }
1044 if (b.cls == float_class_inf || a.cls == float_class_zero) {
1045 b.sign = b_sign;
1046 return b;
1047 }
1048 }
1049 g_assert_not_reached();
1050}
1051
1052
1053
1054
1055
1056
1057
1058float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
1059{
1060 FloatParts pa = float16_unpack_canonical(a, status);
1061 FloatParts pb = float16_unpack_canonical(b, status);
1062 FloatParts pr = addsub_floats(pa, pb, false, status);
1063
1064 return float16_round_pack_canonical(pr, status);
1065}
1066
1067float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
1068{
1069 FloatParts pa = float16_unpack_canonical(a, status);
1070 FloatParts pb = float16_unpack_canonical(b, status);
1071 FloatParts pr = addsub_floats(pa, pb, true, status);
1072
1073 return float16_round_pack_canonical(pr, status);
1074}
1075
1076static float32 QEMU_SOFTFLOAT_ATTR
1077soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status)
1078{
1079 FloatParts pa = float32_unpack_canonical(a, status);
1080 FloatParts pb = float32_unpack_canonical(b, status);
1081 FloatParts pr = addsub_floats(pa, pb, subtract, status);
1082
1083 return float32_round_pack_canonical(pr, status);
1084}
1085
1086static inline float32 soft_f32_add(float32 a, float32 b, float_status *status)
1087{
1088 return soft_f32_addsub(a, b, false, status);
1089}
1090
1091static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status)
1092{
1093 return soft_f32_addsub(a, b, true, status);
1094}
1095
1096static float64 QEMU_SOFTFLOAT_ATTR
1097soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status)
1098{
1099 FloatParts pa = float64_unpack_canonical(a, status);
1100 FloatParts pb = float64_unpack_canonical(b, status);
1101 FloatParts pr = addsub_floats(pa, pb, subtract, status);
1102
1103 return float64_round_pack_canonical(pr, status);
1104}
1105
1106static inline float64 soft_f64_add(float64 a, float64 b, float_status *status)
1107{
1108 return soft_f64_addsub(a, b, false, status);
1109}
1110
1111static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status)
1112{
1113 return soft_f64_addsub(a, b, true, status);
1114}
1115
1116static float hard_f32_add(float a, float b)
1117{
1118 return a + b;
1119}
1120
1121static float hard_f32_sub(float a, float b)
1122{
1123 return a - b;
1124}
1125
1126static double hard_f64_add(double a, double b)
1127{
1128 return a + b;
1129}
1130
1131static double hard_f64_sub(double a, double b)
1132{
1133 return a - b;
1134}
1135
1136static bool f32_addsub_post(union_float32 a, union_float32 b)
1137{
1138 if (QEMU_HARDFLOAT_2F32_USE_FP) {
1139 return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
1140 }
1141 return !(float32_is_zero(a.s) && float32_is_zero(b.s));
1142}
1143
1144static bool f64_addsub_post(union_float64 a, union_float64 b)
1145{
1146 if (QEMU_HARDFLOAT_2F64_USE_FP) {
1147 return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
1148 } else {
1149 return !(float64_is_zero(a.s) && float64_is_zero(b.s));
1150 }
1151}
1152
1153static float32 float32_addsub(float32 a, float32 b, float_status *s,
1154 hard_f32_op2_fn hard, soft_f32_op2_fn soft)
1155{
1156 return float32_gen2(a, b, s, hard, soft,
1157 f32_is_zon2, f32_addsub_post, NULL, NULL);
1158}
1159
1160static float64 float64_addsub(float64 a, float64 b, float_status *s,
1161 hard_f64_op2_fn hard, soft_f64_op2_fn soft)
1162{
1163 return float64_gen2(a, b, s, hard, soft,
1164 f64_is_zon2, f64_addsub_post, NULL, NULL);
1165}
1166
1167float32 QEMU_FLATTEN
1168float32_add(float32 a, float32 b, float_status *s)
1169{
1170 return float32_addsub(a, b, s, hard_f32_add, soft_f32_add);
1171}
1172
1173float32 QEMU_FLATTEN
1174float32_sub(float32 a, float32 b, float_status *s)
1175{
1176 return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub);
1177}
1178
1179float64 QEMU_FLATTEN
1180float64_add(float64 a, float64 b, float_status *s)
1181{
1182 return float64_addsub(a, b, s, hard_f64_add, soft_f64_add);
1183}
1184
1185float64 QEMU_FLATTEN
1186float64_sub(float64 a, float64 b, float_status *s)
1187{
1188 return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub);
1189}
1190
1191
1192
1193
1194
1195
1196
1197static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
1198{
1199 bool sign = a.sign ^ b.sign;
1200
1201 if (a.cls == float_class_normal && b.cls == float_class_normal) {
1202 uint64_t hi, lo;
1203 int exp = a.exp + b.exp;
1204
1205 mul64To128(a.frac, b.frac, &hi, &lo);
1206 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
1207 if (lo & DECOMPOSED_OVERFLOW_BIT) {
1208 shift64RightJamming(lo, 1, &lo);
1209 exp += 1;
1210 }
1211
1212
1213 a.exp = exp;
1214 a.sign = sign;
1215 a.frac = lo;
1216 return a;
1217 }
1218
1219 if (is_nan(a.cls) || is_nan(b.cls)) {
1220 return pick_nan(a, b, s);
1221 }
1222
1223 if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
1224 (a.cls == float_class_zero && b.cls == float_class_inf)) {
1225 s->float_exception_flags |= float_flag_invalid;
1226 return parts_default_nan(s);
1227 }
1228
1229 if (a.cls == float_class_inf || a.cls == float_class_zero) {
1230 a.sign = sign;
1231 return a;
1232 }
1233 if (b.cls == float_class_inf || b.cls == float_class_zero) {
1234 b.sign = sign;
1235 return b;
1236 }
1237 g_assert_not_reached();
1238}
1239
1240float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
1241{
1242 FloatParts pa = float16_unpack_canonical(a, status);
1243 FloatParts pb = float16_unpack_canonical(b, status);
1244 FloatParts pr = mul_floats(pa, pb, status);
1245
1246 return float16_round_pack_canonical(pr, status);
1247}
1248
1249static float32 QEMU_SOFTFLOAT_ATTR
1250soft_f32_mul(float32 a, float32 b, float_status *status)
1251{
1252 FloatParts pa = float32_unpack_canonical(a, status);
1253 FloatParts pb = float32_unpack_canonical(b, status);
1254 FloatParts pr = mul_floats(pa, pb, status);
1255
1256 return float32_round_pack_canonical(pr, status);
1257}
1258
1259static float64 QEMU_SOFTFLOAT_ATTR
1260soft_f64_mul(float64 a, float64 b, float_status *status)
1261{
1262 FloatParts pa = float64_unpack_canonical(a, status);
1263 FloatParts pb = float64_unpack_canonical(b, status);
1264 FloatParts pr = mul_floats(pa, pb, status);
1265
1266 return float64_round_pack_canonical(pr, status);
1267}
1268
1269static float hard_f32_mul(float a, float b)
1270{
1271 return a * b;
1272}
1273
1274static double hard_f64_mul(double a, double b)
1275{
1276 return a * b;
1277}
1278
1279static bool f32_mul_fast_test(union_float32 a, union_float32 b)
1280{
1281 return float32_is_zero(a.s) || float32_is_zero(b.s);
1282}
1283
1284static bool f64_mul_fast_test(union_float64 a, union_float64 b)
1285{
1286 return float64_is_zero(a.s) || float64_is_zero(b.s);
1287}
1288
1289static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s)
1290{
1291 bool signbit = float32_is_neg(a) ^ float32_is_neg(b);
1292
1293 return float32_set_sign(float32_zero, signbit);
1294}
1295
1296static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s)
1297{
1298 bool signbit = float64_is_neg(a) ^ float64_is_neg(b);
1299
1300 return float64_set_sign(float64_zero, signbit);
1301}
1302
1303float32 QEMU_FLATTEN
1304float32_mul(float32 a, float32 b, float_status *s)
1305{
1306 return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul,
1307 f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op);
1308}
1309
1310float64 QEMU_FLATTEN
1311float64_mul(float64 a, float64 b, float_status *s)
1312{
1313 return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul,
1314 f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op);
1315}
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
1330 int flags, float_status *s)
1331{
1332 bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
1333 ((1 << float_class_inf) | (1 << float_class_zero));
1334 bool p_sign;
1335 bool sign_flip = flags & float_muladd_negate_result;
1336 FloatClass p_class;
1337 uint64_t hi, lo;
1338 int p_exp;
1339
1340
1341
1342
1343
1344
1345 if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
1346 return pick_nan_muladd(a, b, c, inf_zero, s);
1347 }
1348
1349 if (inf_zero) {
1350 s->float_exception_flags |= float_flag_invalid;
1351 return parts_default_nan(s);
1352 }
1353
1354 if (flags & float_muladd_negate_c) {
1355 c.sign ^= 1;
1356 }
1357
1358 p_sign = a.sign ^ b.sign;
1359
1360 if (flags & float_muladd_negate_product) {
1361 p_sign ^= 1;
1362 }
1363
1364 if (a.cls == float_class_inf || b.cls == float_class_inf) {
1365 p_class = float_class_inf;
1366 } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
1367 p_class = float_class_zero;
1368 } else {
1369 p_class = float_class_normal;
1370 }
1371
1372 if (c.cls == float_class_inf) {
1373 if (p_class == float_class_inf && p_sign != c.sign) {
1374 s->float_exception_flags |= float_flag_invalid;
1375 return parts_default_nan(s);
1376 } else {
1377 a.cls = float_class_inf;
1378 a.sign = c.sign ^ sign_flip;
1379 return a;
1380 }
1381 }
1382
1383 if (p_class == float_class_inf) {
1384 a.cls = float_class_inf;
1385 a.sign = p_sign ^ sign_flip;
1386 return a;
1387 }
1388
1389 if (p_class == float_class_zero) {
1390 if (c.cls == float_class_zero) {
1391 if (p_sign != c.sign) {
1392 p_sign = s->float_rounding_mode == float_round_down;
1393 }
1394 c.sign = p_sign;
1395 } else if (flags & float_muladd_halve_result) {
1396 c.exp -= 1;
1397 }
1398 c.sign ^= sign_flip;
1399 return c;
1400 }
1401
1402
1403 assert(a.cls == float_class_normal &&
1404 b.cls == float_class_normal);
1405
1406 p_exp = a.exp + b.exp;
1407
1408
1409
1410
1411 mul64To128(a.frac, b.frac, &hi, &lo);
1412
1413
1414
1415 if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
1416 shift128RightJamming(hi, lo, 1, &hi, &lo);
1417 p_exp += 1;
1418 }
1419
1420
1421 if (c.cls == float_class_zero) {
1422
1423 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
1424 } else {
1425 int exp_diff = p_exp - c.exp;
1426 if (p_sign == c.sign) {
1427
1428 if (exp_diff <= 0) {
1429 shift128RightJamming(hi, lo,
1430 DECOMPOSED_BINARY_POINT - exp_diff,
1431 &hi, &lo);
1432 lo += c.frac;
1433 p_exp = c.exp;
1434 } else {
1435 uint64_t c_hi, c_lo;
1436
1437 c_hi = c.frac >> 2;
1438 c_lo = 0;
1439 shift128RightJamming(c_hi, c_lo,
1440 exp_diff,
1441 &c_hi, &c_lo);
1442 add128(hi, lo, c_hi, c_lo, &hi, &lo);
1443
1444 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
1445 }
1446
1447 if (lo & DECOMPOSED_OVERFLOW_BIT) {
1448 shift64RightJamming(lo, 1, &lo);
1449 p_exp += 1;
1450 }
1451
1452 } else {
1453
1454 uint64_t c_hi, c_lo;
1455
1456 c_hi = c.frac >> 2;
1457 c_lo = 0;
1458
1459 if (exp_diff <= 0) {
1460 shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
1461 if (exp_diff == 0
1462 &&
1463 (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
1464 sub128(hi, lo, c_hi, c_lo, &hi, &lo);
1465 } else {
1466 sub128(c_hi, c_lo, hi, lo, &hi, &lo);
1467 p_sign ^= 1;
1468 p_exp = c.exp;
1469 }
1470 } else {
1471 shift128RightJamming(c_hi, c_lo,
1472 exp_diff,
1473 &c_hi, &c_lo);
1474 sub128(hi, lo, c_hi, c_lo, &hi, &lo);
1475 }
1476
1477 if (hi == 0 && lo == 0) {
1478 a.cls = float_class_zero;
1479 a.sign = s->float_rounding_mode == float_round_down;
1480 a.sign ^= sign_flip;
1481 return a;
1482 } else {
1483 int shift;
1484 if (hi != 0) {
1485 shift = clz64(hi);
1486 } else {
1487 shift = clz64(lo) + 64;
1488 }
1489
1490
1491
1492
1493
1494
1495 shift -= 1;
1496 if (shift >= 64) {
1497 lo = lo << (shift - 64);
1498 } else {
1499 hi = (hi << shift) | (lo >> (64 - shift));
1500 lo = hi | ((lo << shift) != 0);
1501 }
1502 p_exp -= shift - 2;
1503 }
1504 }
1505 }
1506
1507 if (flags & float_muladd_halve_result) {
1508 p_exp -= 1;
1509 }
1510
1511
1512 a.cls = float_class_normal;
1513 a.sign = p_sign ^ sign_flip;
1514 a.exp = p_exp;
1515 a.frac = lo;
1516
1517 return a;
1518}
1519
1520float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
1521 int flags, float_status *status)
1522{
1523 FloatParts pa = float16_unpack_canonical(a, status);
1524 FloatParts pb = float16_unpack_canonical(b, status);
1525 FloatParts pc = float16_unpack_canonical(c, status);
1526 FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
1527
1528 return float16_round_pack_canonical(pr, status);
1529}
1530
1531static float32 QEMU_SOFTFLOAT_ATTR
1532soft_f32_muladd(float32 a, float32 b, float32 c, int flags,
1533 float_status *status)
1534{
1535 FloatParts pa = float32_unpack_canonical(a, status);
1536 FloatParts pb = float32_unpack_canonical(b, status);
1537 FloatParts pc = float32_unpack_canonical(c, status);
1538 FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
1539
1540 return float32_round_pack_canonical(pr, status);
1541}
1542
1543static float64 QEMU_SOFTFLOAT_ATTR
1544soft_f64_muladd(float64 a, float64 b, float64 c, int flags,
1545 float_status *status)
1546{
1547 FloatParts pa = float64_unpack_canonical(a, status);
1548 FloatParts pb = float64_unpack_canonical(b, status);
1549 FloatParts pc = float64_unpack_canonical(c, status);
1550 FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
1551
1552 return float64_round_pack_canonical(pr, status);
1553}
1554
1555static bool force_soft_fma;
1556
1557float32 QEMU_FLATTEN
1558float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s)
1559{
1560 union_float32 ua, ub, uc, ur;
1561
1562 ua.s = xa;
1563 ub.s = xb;
1564 uc.s = xc;
1565
1566 if (unlikely(!can_use_fpu(s))) {
1567 goto soft;
1568 }
1569 if (unlikely(flags & float_muladd_halve_result)) {
1570 goto soft;
1571 }
1572
1573 float32_input_flush3(&ua.s, &ub.s, &uc.s, s);
1574 if (unlikely(!f32_is_zon3(ua, ub, uc))) {
1575 goto soft;
1576 }
1577
1578 if (unlikely(force_soft_fma)) {
1579 goto soft;
1580 }
1581
1582
1583
1584
1585
1586 if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) {
1587 union_float32 up;
1588 bool prod_sign;
1589
1590 prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s);
1591 prod_sign ^= !!(flags & float_muladd_negate_product);
1592 up.s = float32_set_sign(float32_zero, prod_sign);
1593
1594 if (flags & float_muladd_negate_c) {
1595 uc.h = -uc.h;
1596 }
1597 ur.h = up.h + uc.h;
1598 } else {
1599 union_float32 ua_orig = ua;
1600 union_float32 uc_orig = uc;
1601
1602 if (flags & float_muladd_negate_product) {
1603 ua.h = -ua.h;
1604 }
1605 if (flags & float_muladd_negate_c) {
1606 uc.h = -uc.h;
1607 }
1608
1609 ur.h = fmaf(ua.h, ub.h, uc.h);
1610
1611 if (unlikely(f32_is_inf(ur))) {
1612 s->float_exception_flags |= float_flag_overflow;
1613 } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
1614 ua = ua_orig;
1615 uc = uc_orig;
1616 goto soft;
1617 }
1618 }
1619 if (flags & float_muladd_negate_result) {
1620 return float32_chs(ur.s);
1621 }
1622 return ur.s;
1623
1624 soft:
1625 return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s);
1626}
1627
1628float64 QEMU_FLATTEN
1629float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s)
1630{
1631 union_float64 ua, ub, uc, ur;
1632
1633 ua.s = xa;
1634 ub.s = xb;
1635 uc.s = xc;
1636
1637 if (unlikely(!can_use_fpu(s))) {
1638 goto soft;
1639 }
1640 if (unlikely(flags & float_muladd_halve_result)) {
1641 goto soft;
1642 }
1643
1644 float64_input_flush3(&ua.s, &ub.s, &uc.s, s);
1645 if (unlikely(!f64_is_zon3(ua, ub, uc))) {
1646 goto soft;
1647 }
1648
1649 if (unlikely(force_soft_fma)) {
1650 goto soft;
1651 }
1652
1653
1654
1655
1656
1657 if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) {
1658 union_float64 up;
1659 bool prod_sign;
1660
1661 prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s);
1662 prod_sign ^= !!(flags & float_muladd_negate_product);
1663 up.s = float64_set_sign(float64_zero, prod_sign);
1664
1665 if (flags & float_muladd_negate_c) {
1666 uc.h = -uc.h;
1667 }
1668 ur.h = up.h + uc.h;
1669 } else {
1670 union_float64 ua_orig = ua;
1671 union_float64 uc_orig = uc;
1672
1673 if (flags & float_muladd_negate_product) {
1674 ua.h = -ua.h;
1675 }
1676 if (flags & float_muladd_negate_c) {
1677 uc.h = -uc.h;
1678 }
1679
1680 ur.h = fma(ua.h, ub.h, uc.h);
1681
1682 if (unlikely(f64_is_inf(ur))) {
1683 s->float_exception_flags |= float_flag_overflow;
1684 } else if (unlikely(fabs(ur.h) <= FLT_MIN)) {
1685 ua = ua_orig;
1686 uc = uc_orig;
1687 goto soft;
1688 }
1689 }
1690 if (flags & float_muladd_negate_result) {
1691 return float64_chs(ur.s);
1692 }
1693 return ur.s;
1694
1695 soft:
1696 return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s);
1697}
1698
1699
1700
1701
1702
1703
1704
1705static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
1706{
1707 bool sign = a.sign ^ b.sign;
1708
1709 if (a.cls == float_class_normal && b.cls == float_class_normal) {
1710 uint64_t n0, n1, q, r;
1711 int exp = a.exp - b.exp;
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726 if (a.frac < b.frac) {
1727 exp -= 1;
1728 shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
1729 } else {
1730 shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
1731 }
1732 q = udiv_qrnnd(&r, n1, n0, b.frac << 1);
1733
1734
1735
1736
1737
1738
1739
1740
1741 a.frac = q | (r != 0);
1742 a.sign = sign;
1743 a.exp = exp;
1744 return a;
1745 }
1746
1747 if (is_nan(a.cls) || is_nan(b.cls)) {
1748 return pick_nan(a, b, s);
1749 }
1750
1751 if (a.cls == b.cls
1752 &&
1753 (a.cls == float_class_inf || a.cls == float_class_zero)) {
1754 s->float_exception_flags |= float_flag_invalid;
1755 return parts_default_nan(s);
1756 }
1757
1758 if (a.cls == float_class_inf || a.cls == float_class_zero) {
1759 a.sign = sign;
1760 return a;
1761 }
1762
1763 if (b.cls == float_class_zero) {
1764 s->float_exception_flags |= float_flag_divbyzero;
1765 a.cls = float_class_inf;
1766 a.sign = sign;
1767 return a;
1768 }
1769
1770 if (b.cls == float_class_inf) {
1771 a.cls = float_class_zero;
1772 a.sign = sign;
1773 return a;
1774 }
1775 g_assert_not_reached();
1776}
1777
1778float16 float16_div(float16 a, float16 b, float_status *status)
1779{
1780 FloatParts pa = float16_unpack_canonical(a, status);
1781 FloatParts pb = float16_unpack_canonical(b, status);
1782 FloatParts pr = div_floats(pa, pb, status);
1783
1784 return float16_round_pack_canonical(pr, status);
1785}
1786
1787static float32 QEMU_SOFTFLOAT_ATTR
1788soft_f32_div(float32 a, float32 b, float_status *status)
1789{
1790 FloatParts pa = float32_unpack_canonical(a, status);
1791 FloatParts pb = float32_unpack_canonical(b, status);
1792 FloatParts pr = div_floats(pa, pb, status);
1793
1794 return float32_round_pack_canonical(pr, status);
1795}
1796
1797static float64 QEMU_SOFTFLOAT_ATTR
1798soft_f64_div(float64 a, float64 b, float_status *status)
1799{
1800 FloatParts pa = float64_unpack_canonical(a, status);
1801 FloatParts pb = float64_unpack_canonical(b, status);
1802 FloatParts pr = div_floats(pa, pb, status);
1803
1804 return float64_round_pack_canonical(pr, status);
1805}
1806
1807static float hard_f32_div(float a, float b)
1808{
1809 return a / b;
1810}
1811
1812static double hard_f64_div(double a, double b)
1813{
1814 return a / b;
1815}
1816
1817static bool f32_div_pre(union_float32 a, union_float32 b)
1818{
1819 if (QEMU_HARDFLOAT_2F32_USE_FP) {
1820 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
1821 fpclassify(b.h) == FP_NORMAL;
1822 }
1823 return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s);
1824}
1825
1826static bool f64_div_pre(union_float64 a, union_float64 b)
1827{
1828 if (QEMU_HARDFLOAT_2F64_USE_FP) {
1829 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
1830 fpclassify(b.h) == FP_NORMAL;
1831 }
1832 return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s);
1833}
1834
1835static bool f32_div_post(union_float32 a, union_float32 b)
1836{
1837 if (QEMU_HARDFLOAT_2F32_USE_FP) {
1838 return fpclassify(a.h) != FP_ZERO;
1839 }
1840 return !float32_is_zero(a.s);
1841}
1842
1843static bool f64_div_post(union_float64 a, union_float64 b)
1844{
1845 if (QEMU_HARDFLOAT_2F64_USE_FP) {
1846 return fpclassify(a.h) != FP_ZERO;
1847 }
1848 return !float64_is_zero(a.s);
1849}
1850
1851float32 QEMU_FLATTEN
1852float32_div(float32 a, float32 b, float_status *s)
1853{
1854 return float32_gen2(a, b, s, hard_f32_div, soft_f32_div,
1855 f32_div_pre, f32_div_post, NULL, NULL);
1856}
1857
1858float64 QEMU_FLATTEN
1859float64_div(float64 a, float64 b, float_status *s)
1860{
1861 return float64_gen2(a, b, s, hard_f64_div, soft_f64_div,
1862 f64_div_pre, f64_div_post, NULL, NULL);
1863}
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
1877 float_status *s)
1878{
1879 if (dstf->arm_althp) {
1880 switch (a.cls) {
1881 case float_class_qnan:
1882 case float_class_snan:
1883
1884
1885
1886 s->float_exception_flags |= float_flag_invalid;
1887 a.cls = float_class_zero;
1888 a.frac = 0;
1889 a.exp = 0;
1890 break;
1891
1892 case float_class_inf:
1893
1894
1895
1896 s->float_exception_flags |= float_flag_invalid;
1897 a.cls = float_class_normal;
1898 a.exp = dstf->exp_max;
1899 a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
1900 break;
1901
1902 default:
1903 break;
1904 }
1905 } else if (is_nan(a.cls)) {
1906 if (is_snan(a.cls)) {
1907 s->float_exception_flags |= float_flag_invalid;
1908 a = parts_silence_nan(a, s);
1909 }
1910 if (s->default_nan_mode) {
1911 return parts_default_nan(s);
1912 }
1913 }
1914 return a;
1915}
1916
1917float32 float16_to_float32(float16 a, bool ieee, float_status *s)
1918{
1919 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
1920 FloatParts p = float16a_unpack_canonical(a, s, fmt16);
1921 FloatParts pr = float_to_float(p, &float32_params, s);
1922 return float32_round_pack_canonical(pr, s);
1923}
1924
1925float64 float16_to_float64(float16 a, bool ieee, float_status *s)
1926{
1927 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
1928 FloatParts p = float16a_unpack_canonical(a, s, fmt16);
1929 FloatParts pr = float_to_float(p, &float64_params, s);
1930 return float64_round_pack_canonical(pr, s);
1931}
1932
1933float16 float32_to_float16(float32 a, bool ieee, float_status *s)
1934{
1935 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
1936 FloatParts p = float32_unpack_canonical(a, s);
1937 FloatParts pr = float_to_float(p, fmt16, s);
1938 return float16a_round_pack_canonical(pr, s, fmt16);
1939}
1940
1941float64 float32_to_float64(float32 a, float_status *s)
1942{
1943 FloatParts p = float32_unpack_canonical(a, s);
1944 FloatParts pr = float_to_float(p, &float64_params, s);
1945 return float64_round_pack_canonical(pr, s);
1946}
1947
1948float16 float64_to_float16(float64 a, bool ieee, float_status *s)
1949{
1950 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
1951 FloatParts p = float64_unpack_canonical(a, s);
1952 FloatParts pr = float_to_float(p, fmt16, s);
1953 return float16a_round_pack_canonical(pr, s, fmt16);
1954}
1955
1956float32 float64_to_float32(float64 a, float_status *s)
1957{
1958 FloatParts p = float64_unpack_canonical(a, s);
1959 FloatParts pr = float_to_float(p, &float32_params, s);
1960 return float32_round_pack_canonical(pr, s);
1961}
1962
1963
1964
1965
1966
1967
1968
1969
1970static FloatParts round_to_int(FloatParts a, int rmode,
1971 int scale, float_status *s)
1972{
1973 switch (a.cls) {
1974 case float_class_qnan:
1975 case float_class_snan:
1976 return return_nan(a, s);
1977
1978 case float_class_zero:
1979 case float_class_inf:
1980
1981 break;
1982
1983 case float_class_normal:
1984 scale = MIN(MAX(scale, -0x10000), 0x10000);
1985 a.exp += scale;
1986
1987 if (a.exp >= DECOMPOSED_BINARY_POINT) {
1988
1989 break;
1990 }
1991 if (a.exp < 0) {
1992 bool one;
1993
1994 s->float_exception_flags |= float_flag_inexact;
1995 switch (rmode) {
1996 case float_round_nearest_even:
1997 one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
1998 break;
1999 case float_round_ties_away:
2000 one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
2001 break;
2002 case float_round_to_zero:
2003 one = false;
2004 break;
2005 case float_round_up:
2006 one = !a.sign;
2007 break;
2008 case float_round_down:
2009 one = a.sign;
2010 break;
2011 case float_round_to_odd:
2012 one = true;
2013 break;
2014 default:
2015 g_assert_not_reached();
2016 }
2017
2018 if (one) {
2019 a.frac = DECOMPOSED_IMPLICIT_BIT;
2020 a.exp = 0;
2021 } else {
2022 a.cls = float_class_zero;
2023 }
2024 } else {
2025 uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
2026 uint64_t frac_lsbm1 = frac_lsb >> 1;
2027 uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
2028 uint64_t rnd_mask = rnd_even_mask >> 1;
2029 uint64_t inc;
2030
2031 switch (rmode) {
2032 case float_round_nearest_even:
2033 inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
2034 break;
2035 case float_round_ties_away:
2036 inc = frac_lsbm1;
2037 break;
2038 case float_round_to_zero:
2039 inc = 0;
2040 break;
2041 case float_round_up:
2042 inc = a.sign ? 0 : rnd_mask;
2043 break;
2044 case float_round_down:
2045 inc = a.sign ? rnd_mask : 0;
2046 break;
2047 case float_round_to_odd:
2048 inc = a.frac & frac_lsb ? 0 : rnd_mask;
2049 break;
2050 default:
2051 g_assert_not_reached();
2052 }
2053
2054 if (a.frac & rnd_mask) {
2055 s->float_exception_flags |= float_flag_inexact;
2056 a.frac += inc;
2057 a.frac &= ~rnd_mask;
2058 if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
2059 a.frac >>= 1;
2060 a.exp++;
2061 }
2062 }
2063 }
2064 break;
2065 default:
2066 g_assert_not_reached();
2067 }
2068 return a;
2069}
2070
2071float16 float16_round_to_int(float16 a, float_status *s)
2072{
2073 FloatParts pa = float16_unpack_canonical(a, s);
2074 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2075 return float16_round_pack_canonical(pr, s);
2076}
2077
2078float32 float32_round_to_int(float32 a, float_status *s)
2079{
2080 FloatParts pa = float32_unpack_canonical(a, s);
2081 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2082 return float32_round_pack_canonical(pr, s);
2083}
2084
2085float64 float64_round_to_int(float64 a, float_status *s)
2086{
2087 FloatParts pa = float64_unpack_canonical(a, s);
2088 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2089 return float64_round_pack_canonical(pr, s);
2090}
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
2104 int64_t min, int64_t max,
2105 float_status *s)
2106{
2107 uint64_t r;
2108 int orig_flags = get_float_exception_flags(s);
2109 FloatParts p = round_to_int(in, rmode, scale, s);
2110
2111 switch (p.cls) {
2112 case float_class_snan:
2113 case float_class_qnan:
2114 s->float_exception_flags = orig_flags | float_flag_invalid;
2115 return max;
2116 case float_class_inf:
2117 s->float_exception_flags = orig_flags | float_flag_invalid;
2118 return p.sign ? min : max;
2119 case float_class_zero:
2120 return 0;
2121 case float_class_normal:
2122 if (p.exp < DECOMPOSED_BINARY_POINT) {
2123 r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
2124 } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
2125 r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
2126 } else {
2127 r = UINT64_MAX;
2128 }
2129 if (p.sign) {
2130 if (r <= -(uint64_t) min) {
2131 return -r;
2132 } else {
2133 s->float_exception_flags = orig_flags | float_flag_invalid;
2134 return min;
2135 }
2136 } else {
2137 if (r <= max) {
2138 return r;
2139 } else {
2140 s->float_exception_flags = orig_flags | float_flag_invalid;
2141 return max;
2142 }
2143 }
2144 default:
2145 g_assert_not_reached();
2146 }
2147}
2148
2149int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
2150 float_status *s)
2151{
2152 return round_to_int_and_pack(float16_unpack_canonical(a, s),
2153 rmode, scale, INT16_MIN, INT16_MAX, s);
2154}
2155
2156int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
2157 float_status *s)
2158{
2159 return round_to_int_and_pack(float16_unpack_canonical(a, s),
2160 rmode, scale, INT32_MIN, INT32_MAX, s);
2161}
2162
2163int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
2164 float_status *s)
2165{
2166 return round_to_int_and_pack(float16_unpack_canonical(a, s),
2167 rmode, scale, INT64_MIN, INT64_MAX, s);
2168}
2169
2170int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
2171 float_status *s)
2172{
2173 return round_to_int_and_pack(float32_unpack_canonical(a, s),
2174 rmode, scale, INT16_MIN, INT16_MAX, s);
2175}
2176
2177int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
2178 float_status *s)
2179{
2180 return round_to_int_and_pack(float32_unpack_canonical(a, s),
2181 rmode, scale, INT32_MIN, INT32_MAX, s);
2182}
2183
2184int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
2185 float_status *s)
2186{
2187 return round_to_int_and_pack(float32_unpack_canonical(a, s),
2188 rmode, scale, INT64_MIN, INT64_MAX, s);
2189}
2190
2191int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
2192 float_status *s)
2193{
2194 return round_to_int_and_pack(float64_unpack_canonical(a, s),
2195 rmode, scale, INT16_MIN, INT16_MAX, s);
2196}
2197
2198int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
2199 float_status *s)
2200{
2201 return round_to_int_and_pack(float64_unpack_canonical(a, s),
2202 rmode, scale, INT32_MIN, INT32_MAX, s);
2203}
2204
2205int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
2206 float_status *s)
2207{
2208 return round_to_int_and_pack(float64_unpack_canonical(a, s),
2209 rmode, scale, INT64_MIN, INT64_MAX, s);
2210}
2211
2212int16_t float16_to_int16(float16 a, float_status *s)
2213{
2214 return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
2215}
2216
2217int32_t float16_to_int32(float16 a, float_status *s)
2218{
2219 return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
2220}
2221
2222int64_t float16_to_int64(float16 a, float_status *s)
2223{
2224 return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
2225}
2226
2227int16_t float32_to_int16(float32 a, float_status *s)
2228{
2229 return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
2230}
2231
2232int32_t float32_to_int32(float32 a, float_status *s)
2233{
2234 return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
2235}
2236
2237int64_t float32_to_int64(float32 a, float_status *s)
2238{
2239 return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
2240}
2241
2242int16_t float64_to_int16(float64 a, float_status *s)
2243{
2244 return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
2245}
2246
2247int32_t float64_to_int32(float64 a, float_status *s)
2248{
2249 return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
2250}
2251
2252int64_t float64_to_int64(float64 a, float_status *s)
2253{
2254 return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
2255}
2256
2257int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
2258{
2259 return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
2260}
2261
2262int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
2263{
2264 return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
2265}
2266
2267int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
2268{
2269 return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
2270}
2271
2272int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
2273{
2274 return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
2275}
2276
2277int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
2278{
2279 return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
2280}
2281
2282int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
2283{
2284 return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
2285}
2286
2287int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
2288{
2289 return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
2290}
2291
2292int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
2293{
2294 return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
2295}
2296
2297int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
2298{
2299 return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
2300}
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
2316 uint64_t max, float_status *s)
2317{
2318 int orig_flags = get_float_exception_flags(s);
2319 FloatParts p = round_to_int(in, rmode, scale, s);
2320 uint64_t r;
2321
2322 switch (p.cls) {
2323 case float_class_snan:
2324 case float_class_qnan:
2325 s->float_exception_flags = orig_flags | float_flag_invalid;
2326 return max;
2327 case float_class_inf:
2328 s->float_exception_flags = orig_flags | float_flag_invalid;
2329 return p.sign ? 0 : max;
2330 case float_class_zero:
2331 return 0;
2332 case float_class_normal:
2333 if (p.sign) {
2334 s->float_exception_flags = orig_flags | float_flag_invalid;
2335 return 0;
2336 }
2337
2338 if (p.exp < DECOMPOSED_BINARY_POINT) {
2339 r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
2340 } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
2341 r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
2342 } else {
2343 s->float_exception_flags = orig_flags | float_flag_invalid;
2344 return max;
2345 }
2346
2347
2348
2349
2350
2351 if (r > max) {
2352 s->float_exception_flags = orig_flags | float_flag_invalid;
2353 return max;
2354 }
2355 return r;
2356 default:
2357 g_assert_not_reached();
2358 }
2359}
2360
2361uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
2362 float_status *s)
2363{
2364 return round_to_uint_and_pack(float16_unpack_canonical(a, s),
2365 rmode, scale, UINT16_MAX, s);
2366}
2367
2368uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
2369 float_status *s)
2370{
2371 return round_to_uint_and_pack(float16_unpack_canonical(a, s),
2372 rmode, scale, UINT32_MAX, s);
2373}
2374
2375uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
2376 float_status *s)
2377{
2378 return round_to_uint_and_pack(float16_unpack_canonical(a, s),
2379 rmode, scale, UINT64_MAX, s);
2380}
2381
2382uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
2383 float_status *s)
2384{
2385 return round_to_uint_and_pack(float32_unpack_canonical(a, s),
2386 rmode, scale, UINT16_MAX, s);
2387}
2388
2389uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
2390 float_status *s)
2391{
2392 return round_to_uint_and_pack(float32_unpack_canonical(a, s),
2393 rmode, scale, UINT32_MAX, s);
2394}
2395
2396uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
2397 float_status *s)
2398{
2399 return round_to_uint_and_pack(float32_unpack_canonical(a, s),
2400 rmode, scale, UINT64_MAX, s);
2401}
2402
2403uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
2404 float_status *s)
2405{
2406 return round_to_uint_and_pack(float64_unpack_canonical(a, s),
2407 rmode, scale, UINT16_MAX, s);
2408}
2409
2410uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
2411 float_status *s)
2412{
2413 return round_to_uint_and_pack(float64_unpack_canonical(a, s),
2414 rmode, scale, UINT32_MAX, s);
2415}
2416
2417uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
2418 float_status *s)
2419{
2420 return round_to_uint_and_pack(float64_unpack_canonical(a, s),
2421 rmode, scale, UINT64_MAX, s);
2422}
2423
2424uint16_t float16_to_uint16(float16 a, float_status *s)
2425{
2426 return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
2427}
2428
2429uint32_t float16_to_uint32(float16 a, float_status *s)
2430{
2431 return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
2432}
2433
2434uint64_t float16_to_uint64(float16 a, float_status *s)
2435{
2436 return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
2437}
2438
2439uint16_t float32_to_uint16(float32 a, float_status *s)
2440{
2441 return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
2442}
2443
2444uint32_t float32_to_uint32(float32 a, float_status *s)
2445{
2446 return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
2447}
2448
2449uint64_t float32_to_uint64(float32 a, float_status *s)
2450{
2451 return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
2452}
2453
2454uint16_t float64_to_uint16(float64 a, float_status *s)
2455{
2456 return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
2457}
2458
2459uint32_t float64_to_uint32(float64 a, float_status *s)
2460{
2461 return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
2462}
2463
2464uint64_t float64_to_uint64(float64 a, float_status *s)
2465{
2466 return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
2467}
2468
2469uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
2470{
2471 return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
2472}
2473
2474uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
2475{
2476 return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
2477}
2478
2479uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
2480{
2481 return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
2482}
2483
2484uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
2485{
2486 return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
2487}
2488
2489uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
2490{
2491 return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
2492}
2493
2494uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
2495{
2496 return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
2497}
2498
2499uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
2500{
2501 return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
2502}
2503
2504uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
2505{
2506 return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
2507}
2508
2509uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
2510{
2511 return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
2512}
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522static FloatParts int_to_float(int64_t a, int scale, float_status *status)
2523{
2524 FloatParts r = { .sign = false };
2525
2526 if (a == 0) {
2527 r.cls = float_class_zero;
2528 } else {
2529 uint64_t f = a;
2530 int shift;
2531
2532 r.cls = float_class_normal;
2533 if (a < 0) {
2534 f = -f;
2535 r.sign = true;
2536 }
2537 shift = clz64(f) - 1;
2538 scale = MIN(MAX(scale, -0x10000), 0x10000);
2539
2540 r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
2541 r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
2542 }
2543
2544 return r;
2545}
2546
2547float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
2548{
2549 FloatParts pa = int_to_float(a, scale, status);
2550 return float16_round_pack_canonical(pa, status);
2551}
2552
2553float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
2554{
2555 return int64_to_float16_scalbn(a, scale, status);
2556}
2557
2558float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
2559{
2560 return int64_to_float16_scalbn(a, scale, status);
2561}
2562
2563float16 int64_to_float16(int64_t a, float_status *status)
2564{
2565 return int64_to_float16_scalbn(a, 0, status);
2566}
2567
2568float16 int32_to_float16(int32_t a, float_status *status)
2569{
2570 return int64_to_float16_scalbn(a, 0, status);
2571}
2572
2573float16 int16_to_float16(int16_t a, float_status *status)
2574{
2575 return int64_to_float16_scalbn(a, 0, status);
2576}
2577
2578float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
2579{
2580 FloatParts pa = int_to_float(a, scale, status);
2581 return float32_round_pack_canonical(pa, status);
2582}
2583
2584float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
2585{
2586 return int64_to_float32_scalbn(a, scale, status);
2587}
2588
2589float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
2590{
2591 return int64_to_float32_scalbn(a, scale, status);
2592}
2593
2594float32 int64_to_float32(int64_t a, float_status *status)
2595{
2596 return int64_to_float32_scalbn(a, 0, status);
2597}
2598
2599float32 int32_to_float32(int32_t a, float_status *status)
2600{
2601 return int64_to_float32_scalbn(a, 0, status);
2602}
2603
2604float32 int16_to_float32(int16_t a, float_status *status)
2605{
2606 return int64_to_float32_scalbn(a, 0, status);
2607}
2608
2609float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
2610{
2611 FloatParts pa = int_to_float(a, scale, status);
2612 return float64_round_pack_canonical(pa, status);
2613}
2614
2615float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
2616{
2617 return int64_to_float64_scalbn(a, scale, status);
2618}
2619
2620float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
2621{
2622 return int64_to_float64_scalbn(a, scale, status);
2623}
2624
2625float64 int64_to_float64(int64_t a, float_status *status)
2626{
2627 return int64_to_float64_scalbn(a, 0, status);
2628}
2629
2630float64 int32_to_float64(int32_t a, float_status *status)
2631{
2632 return int64_to_float64_scalbn(a, 0, status);
2633}
2634
2635float64 int16_to_float64(int16_t a, float_status *status)
2636{
2637 return int64_to_float64_scalbn(a, 0, status);
2638}
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
2650{
2651 FloatParts r = { .sign = false };
2652
2653 if (a == 0) {
2654 r.cls = float_class_zero;
2655 } else {
2656 scale = MIN(MAX(scale, -0x10000), 0x10000);
2657 r.cls = float_class_normal;
2658 if ((int64_t)a < 0) {
2659 r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
2660 shift64RightJamming(a, 1, &a);
2661 r.frac = a;
2662 } else {
2663 int shift = clz64(a) - 1;
2664 r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
2665 r.frac = a << shift;
2666 }
2667 }
2668
2669 return r;
2670}
2671
2672float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
2673{
2674 FloatParts pa = uint_to_float(a, scale, status);
2675 return float16_round_pack_canonical(pa, status);
2676}
2677
2678float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
2679{
2680 return uint64_to_float16_scalbn(a, scale, status);
2681}
2682
2683float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
2684{
2685 return uint64_to_float16_scalbn(a, scale, status);
2686}
2687
2688float16 uint64_to_float16(uint64_t a, float_status *status)
2689{
2690 return uint64_to_float16_scalbn(a, 0, status);
2691}
2692
2693float16 uint32_to_float16(uint32_t a, float_status *status)
2694{
2695 return uint64_to_float16_scalbn(a, 0, status);
2696}
2697
2698float16 uint16_to_float16(uint16_t a, float_status *status)
2699{
2700 return uint64_to_float16_scalbn(a, 0, status);
2701}
2702
2703float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
2704{
2705 FloatParts pa = uint_to_float(a, scale, status);
2706 return float32_round_pack_canonical(pa, status);
2707}
2708
2709float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
2710{
2711 return uint64_to_float32_scalbn(a, scale, status);
2712}
2713
2714float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
2715{
2716 return uint64_to_float32_scalbn(a, scale, status);
2717}
2718
2719float32 uint64_to_float32(uint64_t a, float_status *status)
2720{
2721 return uint64_to_float32_scalbn(a, 0, status);
2722}
2723
2724float32 uint32_to_float32(uint32_t a, float_status *status)
2725{
2726 return uint64_to_float32_scalbn(a, 0, status);
2727}
2728
2729float32 uint16_to_float32(uint16_t a, float_status *status)
2730{
2731 return uint64_to_float32_scalbn(a, 0, status);
2732}
2733
2734float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
2735{
2736 FloatParts pa = uint_to_float(a, scale, status);
2737 return float64_round_pack_canonical(pa, status);
2738}
2739
2740float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
2741{
2742 return uint64_to_float64_scalbn(a, scale, status);
2743}
2744
2745float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
2746{
2747 return uint64_to_float64_scalbn(a, scale, status);
2748}
2749
2750float64 uint64_to_float64(uint64_t a, float_status *status)
2751{
2752 return uint64_to_float64_scalbn(a, 0, status);
2753}
2754
2755float64 uint32_to_float64(uint32_t a, float_status *status)
2756{
2757 return uint64_to_float64_scalbn(a, 0, status);
2758}
2759
2760float64 uint16_to_float64(uint16_t a, float_status *status)
2761{
2762 return uint64_to_float64_scalbn(a, 0, status);
2763}
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
2782 bool ieee, bool ismag, float_status *s)
2783{
2784 if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
2785 if (ieee) {
2786
2787
2788
2789
2790
2791 if (is_snan(a.cls) || is_snan(b.cls)) {
2792 return pick_nan(a, b, s);
2793 } else if (is_nan(a.cls) && !is_nan(b.cls)) {
2794 return b;
2795 } else if (is_nan(b.cls) && !is_nan(a.cls)) {
2796 return a;
2797 }
2798 }
2799 return pick_nan(a, b, s);
2800 } else {
2801 int a_exp, b_exp;
2802
2803 switch (a.cls) {
2804 case float_class_normal:
2805 a_exp = a.exp;
2806 break;
2807 case float_class_inf:
2808 a_exp = INT_MAX;
2809 break;
2810 case float_class_zero:
2811 a_exp = INT_MIN;
2812 break;
2813 default:
2814 g_assert_not_reached();
2815 break;
2816 }
2817 switch (b.cls) {
2818 case float_class_normal:
2819 b_exp = b.exp;
2820 break;
2821 case float_class_inf:
2822 b_exp = INT_MAX;
2823 break;
2824 case float_class_zero:
2825 b_exp = INT_MIN;
2826 break;
2827 default:
2828 g_assert_not_reached();
2829 break;
2830 }
2831
2832 if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
2833 bool a_less = a_exp < b_exp;
2834 if (a_exp == b_exp) {
2835 a_less = a.frac < b.frac;
2836 }
2837 return a_less ^ ismin ? b : a;
2838 }
2839
2840 if (a.sign == b.sign) {
2841 bool a_less = a_exp < b_exp;
2842 if (a_exp == b_exp) {
2843 a_less = a.frac < b.frac;
2844 }
2845 return a.sign ^ a_less ^ ismin ? b : a;
2846 } else {
2847 return a.sign ^ ismin ? b : a;
2848 }
2849 }
2850}
2851
2852#define MINMAX(sz, name, ismin, isiee, ismag) \
2853float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \
2854 float_status *s) \
2855{ \
2856 FloatParts pa = float ## sz ## _unpack_canonical(a, s); \
2857 FloatParts pb = float ## sz ## _unpack_canonical(b, s); \
2858 FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \
2859 \
2860 return float ## sz ## _round_pack_canonical(pr, s); \
2861}
2862
2863MINMAX(16, min, true, false, false)
2864MINMAX(16, minnum, true, true, false)
2865MINMAX(16, minnummag, true, true, true)
2866MINMAX(16, max, false, false, false)
2867MINMAX(16, maxnum, false, true, false)
2868MINMAX(16, maxnummag, false, true, true)
2869
2870MINMAX(32, min, true, false, false)
2871MINMAX(32, minnum, true, true, false)
2872MINMAX(32, minnummag, true, true, true)
2873MINMAX(32, max, false, false, false)
2874MINMAX(32, maxnum, false, true, false)
2875MINMAX(32, maxnummag, false, true, true)
2876
2877MINMAX(64, min, true, false, false)
2878MINMAX(64, minnum, true, true, false)
2879MINMAX(64, minnummag, true, true, true)
2880MINMAX(64, max, false, false, false)
2881MINMAX(64, maxnum, false, true, false)
2882MINMAX(64, maxnummag, false, true, true)
2883
2884#undef MINMAX
2885
2886
2887static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
2888 float_status *s)
2889{
2890 if (is_nan(a.cls) || is_nan(b.cls)) {
2891 if (!is_quiet ||
2892 a.cls == float_class_snan ||
2893 b.cls == float_class_snan) {
2894 s->float_exception_flags |= float_flag_invalid;
2895 }
2896 return float_relation_unordered;
2897 }
2898
2899 if (a.cls == float_class_zero) {
2900 if (b.cls == float_class_zero) {
2901 return float_relation_equal;
2902 }
2903 return b.sign ? float_relation_greater : float_relation_less;
2904 } else if (b.cls == float_class_zero) {
2905 return a.sign ? float_relation_less : float_relation_greater;
2906 }
2907
2908
2909
2910
2911 if (a.cls == float_class_inf) {
2912 if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
2913 return float_relation_equal;
2914 }
2915 return a.sign ? float_relation_less : float_relation_greater;
2916 } else if (b.cls == float_class_inf) {
2917 return b.sign ? float_relation_greater : float_relation_less;
2918 }
2919
2920 if (a.sign != b.sign) {
2921 return a.sign ? float_relation_less : float_relation_greater;
2922 }
2923
2924 if (a.exp == b.exp) {
2925 if (a.frac == b.frac) {
2926 return float_relation_equal;
2927 }
2928 if (a.sign) {
2929 return a.frac > b.frac ?
2930 float_relation_less : float_relation_greater;
2931 } else {
2932 return a.frac > b.frac ?
2933 float_relation_greater : float_relation_less;
2934 }
2935 } else {
2936 if (a.sign) {
2937 return a.exp > b.exp ? float_relation_less : float_relation_greater;
2938 } else {
2939 return a.exp > b.exp ? float_relation_greater : float_relation_less;
2940 }
2941 }
2942}
2943
2944#define COMPARE(name, attr, sz) \
2945static int attr \
2946name(float ## sz a, float ## sz b, bool is_quiet, float_status *s) \
2947{ \
2948 FloatParts pa = float ## sz ## _unpack_canonical(a, s); \
2949 FloatParts pb = float ## sz ## _unpack_canonical(b, s); \
2950 return compare_floats(pa, pb, is_quiet, s); \
2951}
2952
2953COMPARE(soft_f16_compare, QEMU_FLATTEN, 16)
2954COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32)
2955COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64)
2956
2957#undef COMPARE
2958
2959int float16_compare(float16 a, float16 b, float_status *s)
2960{
2961 return soft_f16_compare(a, b, false, s);
2962}
2963
2964int float16_compare_quiet(float16 a, float16 b, float_status *s)
2965{
2966 return soft_f16_compare(a, b, true, s);
2967}
2968
2969static int QEMU_FLATTEN
2970f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s)
2971{
2972 union_float32 ua, ub;
2973
2974 ua.s = xa;
2975 ub.s = xb;
2976
2977 if (QEMU_NO_HARDFLOAT) {
2978 goto soft;
2979 }
2980
2981 float32_input_flush2(&ua.s, &ub.s, s);
2982 if (isgreaterequal(ua.h, ub.h)) {
2983 if (isgreater(ua.h, ub.h)) {
2984 return float_relation_greater;
2985 }
2986 return float_relation_equal;
2987 }
2988 if (likely(isless(ua.h, ub.h))) {
2989 return float_relation_less;
2990 }
2991
2992
2993
2994 soft:
2995 return soft_f32_compare(ua.s, ub.s, is_quiet, s);
2996}
2997
2998int float32_compare(float32 a, float32 b, float_status *s)
2999{
3000 return f32_compare(a, b, false, s);
3001}
3002
3003int float32_compare_quiet(float32 a, float32 b, float_status *s)
3004{
3005 return f32_compare(a, b, true, s);
3006}
3007
3008static int QEMU_FLATTEN
3009f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s)
3010{
3011 union_float64 ua, ub;
3012
3013 ua.s = xa;
3014 ub.s = xb;
3015
3016 if (QEMU_NO_HARDFLOAT) {
3017 goto soft;
3018 }
3019
3020 float64_input_flush2(&ua.s, &ub.s, s);
3021 if (isgreaterequal(ua.h, ub.h)) {
3022 if (isgreater(ua.h, ub.h)) {
3023 return float_relation_greater;
3024 }
3025 return float_relation_equal;
3026 }
3027 if (likely(isless(ua.h, ub.h))) {
3028 return float_relation_less;
3029 }
3030
3031
3032
3033 soft:
3034 return soft_f64_compare(ua.s, ub.s, is_quiet, s);
3035}
3036
3037int float64_compare(float64 a, float64 b, float_status *s)
3038{
3039 return f64_compare(a, b, false, s);
3040}
3041
3042int float64_compare_quiet(float64 a, float64 b, float_status *s)
3043{
3044 return f64_compare(a, b, true, s);
3045}
3046
3047
3048static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
3049{
3050 if (unlikely(is_nan(a.cls))) {
3051 return return_nan(a, s);
3052 }
3053 if (a.cls == float_class_normal) {
3054
3055
3056
3057
3058
3059 n = MIN(MAX(n, -0x10000), 0x10000);
3060 a.exp += n;
3061 }
3062 return a;
3063}
3064
3065float16 float16_scalbn(float16 a, int n, float_status *status)
3066{
3067 FloatParts pa = float16_unpack_canonical(a, status);
3068 FloatParts pr = scalbn_decomposed(pa, n, status);
3069 return float16_round_pack_canonical(pr, status);
3070}
3071
3072float32 float32_scalbn(float32 a, int n, float_status *status)
3073{
3074 FloatParts pa = float32_unpack_canonical(a, status);
3075 FloatParts pr = scalbn_decomposed(pa, n, status);
3076 return float32_round_pack_canonical(pr, status);
3077}
3078
3079float64 float64_scalbn(float64 a, int n, float_status *status)
3080{
3081 FloatParts pa = float64_unpack_canonical(a, status);
3082 FloatParts pr = scalbn_decomposed(pa, n, status);
3083 return float64_round_pack_canonical(pr, status);
3084}
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
3099{
3100 uint64_t a_frac, r_frac, s_frac;
3101 int bit, last_bit;
3102
3103 if (is_nan(a.cls)) {
3104 return return_nan(a, s);
3105 }
3106 if (a.cls == float_class_zero) {
3107 return a;
3108 }
3109 if (a.sign) {
3110 s->float_exception_flags |= float_flag_invalid;
3111 return parts_default_nan(s);
3112 }
3113 if (a.cls == float_class_inf) {
3114 return a;
3115 }
3116
3117 assert(a.cls == float_class_normal);
3118
3119
3120
3121
3122
3123
3124 a_frac = a.frac;
3125 if (!(a.exp & 1)) {
3126 a_frac >>= 1;
3127 }
3128 a.exp >>= 1;
3129
3130
3131 r_frac = 0;
3132 s_frac = 0;
3133
3134
3135
3136
3137
3138 bit = DECOMPOSED_BINARY_POINT - 1;
3139 last_bit = MAX(p->frac_shift - 4, 0);
3140 do {
3141 uint64_t q = 1ULL << bit;
3142 uint64_t t_frac = s_frac + q;
3143 if (t_frac <= a_frac) {
3144 s_frac = t_frac + q;
3145 a_frac -= t_frac;
3146 r_frac += q;
3147 }
3148 a_frac <<= 1;
3149 } while (--bit >= last_bit);
3150
3151
3152
3153
3154 a.frac = (r_frac << 1) + (a_frac != 0);
3155
3156 return a;
3157}
3158
3159float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
3160{
3161 FloatParts pa = float16_unpack_canonical(a, status);
3162 FloatParts pr = sqrt_float(pa, status, &float16_params);
3163 return float16_round_pack_canonical(pr, status);
3164}
3165
3166static float32 QEMU_SOFTFLOAT_ATTR
3167soft_f32_sqrt(float32 a, float_status *status)
3168{
3169 FloatParts pa = float32_unpack_canonical(a, status);
3170 FloatParts pr = sqrt_float(pa, status, &float32_params);
3171 return float32_round_pack_canonical(pr, status);
3172}
3173
3174static float64 QEMU_SOFTFLOAT_ATTR
3175soft_f64_sqrt(float64 a, float_status *status)
3176{
3177 FloatParts pa = float64_unpack_canonical(a, status);
3178 FloatParts pr = sqrt_float(pa, status, &float64_params);
3179 return float64_round_pack_canonical(pr, status);
3180}
3181
3182float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s)
3183{
3184 union_float32 ua, ur;
3185
3186 ua.s = xa;
3187 if (unlikely(!can_use_fpu(s))) {
3188 goto soft;
3189 }
3190
3191 float32_input_flush1(&ua.s, s);
3192 if (QEMU_HARDFLOAT_1F32_USE_FP) {
3193 if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
3194 fpclassify(ua.h) == FP_ZERO) ||
3195 signbit(ua.h))) {
3196 goto soft;
3197 }
3198 } else if (unlikely(!float32_is_zero_or_normal(ua.s) ||
3199 float32_is_neg(ua.s))) {
3200 goto soft;
3201 }
3202 ur.h = sqrtf(ua.h);
3203 return ur.s;
3204
3205 soft:
3206 return soft_f32_sqrt(ua.s, s);
3207}
3208
3209float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s)
3210{
3211 union_float64 ua, ur;
3212
3213 ua.s = xa;
3214 if (unlikely(!can_use_fpu(s))) {
3215 goto soft;
3216 }
3217
3218 float64_input_flush1(&ua.s, s);
3219 if (QEMU_HARDFLOAT_1F64_USE_FP) {
3220 if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
3221 fpclassify(ua.h) == FP_ZERO) ||
3222 signbit(ua.h))) {
3223 goto soft;
3224 }
3225 } else if (unlikely(!float64_is_zero_or_normal(ua.s) ||
3226 float64_is_neg(ua.s))) {
3227 goto soft;
3228 }
3229 ur.h = sqrt(ua.h);
3230 return ur.s;
3231
3232 soft:
3233 return soft_f64_sqrt(ua.s, s);
3234}
3235
3236
3237
3238
3239
3240float16 float16_default_nan(float_status *status)
3241{
3242 FloatParts p = parts_default_nan(status);
3243 p.frac >>= float16_params.frac_shift;
3244 return float16_pack_raw(p);
3245}
3246
3247float32 float32_default_nan(float_status *status)
3248{
3249 FloatParts p = parts_default_nan(status);
3250 p.frac >>= float32_params.frac_shift;
3251 return float32_pack_raw(p);
3252}
3253
3254float64 float64_default_nan(float_status *status)
3255{
3256 FloatParts p = parts_default_nan(status);
3257 p.frac >>= float64_params.frac_shift;
3258 return float64_pack_raw(p);
3259}
3260
3261float128 float128_default_nan(float_status *status)
3262{
3263 FloatParts p = parts_default_nan(status);
3264 float128 r;
3265
3266
3267
3268
3269
3270 r.low = -(p.frac & 1);
3271 r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
3272 r.high |= LIT64(0x7FFF000000000000);
3273 r.high |= (uint64_t)p.sign << 63;
3274
3275 return r;
3276}
3277
3278
3279
3280
3281
3282float16 float16_silence_nan(float16 a, float_status *status)
3283{
3284 FloatParts p = float16_unpack_raw(a);
3285 p.frac <<= float16_params.frac_shift;
3286 p = parts_silence_nan(p, status);
3287 p.frac >>= float16_params.frac_shift;
3288 return float16_pack_raw(p);
3289}
3290
3291float32 float32_silence_nan(float32 a, float_status *status)
3292{
3293 FloatParts p = float32_unpack_raw(a);
3294 p.frac <<= float32_params.frac_shift;
3295 p = parts_silence_nan(p, status);
3296 p.frac >>= float32_params.frac_shift;
3297 return float32_pack_raw(p);
3298}
3299
3300float64 float64_silence_nan(float64 a, float_status *status)
3301{
3302 FloatParts p = float64_unpack_raw(a);
3303 p.frac <<= float64_params.frac_shift;
3304 p = parts_silence_nan(p, status);
3305 p.frac >>= float64_params.frac_shift;
3306 return float64_pack_raw(p);
3307}
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
3321{
3322 int8_t roundingMode;
3323 flag roundNearestEven;
3324 int8_t roundIncrement, roundBits;
3325 int32_t z;
3326
3327 roundingMode = status->float_rounding_mode;
3328 roundNearestEven = ( roundingMode == float_round_nearest_even );
3329 switch (roundingMode) {
3330 case float_round_nearest_even:
3331 case float_round_ties_away:
3332 roundIncrement = 0x40;
3333 break;
3334 case float_round_to_zero:
3335 roundIncrement = 0;
3336 break;
3337 case float_round_up:
3338 roundIncrement = zSign ? 0 : 0x7f;
3339 break;
3340 case float_round_down:
3341 roundIncrement = zSign ? 0x7f : 0;
3342 break;
3343 case float_round_to_odd:
3344 roundIncrement = absZ & 0x80 ? 0 : 0x7f;
3345 break;
3346 default:
3347 abort();
3348 }
3349 roundBits = absZ & 0x7F;
3350 absZ = ( absZ + roundIncrement )>>7;
3351 absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
3352 z = absZ;
3353 if ( zSign ) z = - z;
3354 if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
3355 float_raise(float_flag_invalid, status);
3356 return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
3357 }
3358 if (roundBits) {
3359 status->float_exception_flags |= float_flag_inexact;
3360 }
3361 return z;
3362
3363}
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
3378 float_status *status)
3379{
3380 int8_t roundingMode;
3381 flag roundNearestEven, increment;
3382 int64_t z;
3383
3384 roundingMode = status->float_rounding_mode;
3385 roundNearestEven = ( roundingMode == float_round_nearest_even );
3386 switch (roundingMode) {
3387 case float_round_nearest_even:
3388 case float_round_ties_away:
3389 increment = ((int64_t) absZ1 < 0);
3390 break;
3391 case float_round_to_zero:
3392 increment = 0;
3393 break;
3394 case float_round_up:
3395 increment = !zSign && absZ1;
3396 break;
3397 case float_round_down:
3398 increment = zSign && absZ1;
3399 break;
3400 case float_round_to_odd:
3401 increment = !(absZ0 & 1) && absZ1;
3402 break;
3403 default:
3404 abort();
3405 }
3406 if ( increment ) {
3407 ++absZ0;
3408 if ( absZ0 == 0 ) goto overflow;
3409 absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
3410 }
3411 z = absZ0;
3412 if ( zSign ) z = - z;
3413 if ( z && ( ( z < 0 ) ^ zSign ) ) {
3414 overflow:
3415 float_raise(float_flag_invalid, status);
3416 return
3417 zSign ? (int64_t) LIT64( 0x8000000000000000 )
3418 : LIT64( 0x7FFFFFFFFFFFFFFF );
3419 }
3420 if (absZ1) {
3421 status->float_exception_flags |= float_flag_inexact;
3422 }
3423 return z;
3424
3425}
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
3438 uint64_t absZ1, float_status *status)
3439{
3440 int8_t roundingMode;
3441 flag roundNearestEven, increment;
3442
3443 roundingMode = status->float_rounding_mode;
3444 roundNearestEven = (roundingMode == float_round_nearest_even);
3445 switch (roundingMode) {
3446 case float_round_nearest_even:
3447 case float_round_ties_away:
3448 increment = ((int64_t)absZ1 < 0);
3449 break;
3450 case float_round_to_zero:
3451 increment = 0;
3452 break;
3453 case float_round_up:
3454 increment = !zSign && absZ1;
3455 break;
3456 case float_round_down:
3457 increment = zSign && absZ1;
3458 break;
3459 case float_round_to_odd:
3460 increment = !(absZ0 & 1) && absZ1;
3461 break;
3462 default:
3463 abort();
3464 }
3465 if (increment) {
3466 ++absZ0;
3467 if (absZ0 == 0) {
3468 float_raise(float_flag_invalid, status);
3469 return LIT64(0xFFFFFFFFFFFFFFFF);
3470 }
3471 absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
3472 }
3473
3474 if (zSign && absZ0) {
3475 float_raise(float_flag_invalid, status);
3476 return 0;
3477 }
3478
3479 if (absZ1) {
3480 status->float_exception_flags |= float_flag_inexact;
3481 }
3482 return absZ0;
3483}
3484
3485
3486
3487
3488
3489float32 float32_squash_input_denormal(float32 a, float_status *status)
3490{
3491 if (status->flush_inputs_to_zero) {
3492 if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
3493 float_raise(float_flag_input_denormal, status);
3494 return make_float32(float32_val(a) & 0x80000000);
3495 }
3496 }
3497 return a;
3498}
3499
3500
3501
3502
3503
3504
3505
3506
3507static void
3508 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
3509{
3510 int8_t shiftCount;
3511
3512 shiftCount = clz32(aSig) - 8;
3513 *zSigPtr = aSig<<shiftCount;
3514 *zExpPtr = 1 - shiftCount;
3515
3516}
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3541 float_status *status)
3542{
3543 int8_t roundingMode;
3544 flag roundNearestEven;
3545 int8_t roundIncrement, roundBits;
3546 flag isTiny;
3547
3548 roundingMode = status->float_rounding_mode;
3549 roundNearestEven = ( roundingMode == float_round_nearest_even );
3550 switch (roundingMode) {
3551 case float_round_nearest_even:
3552 case float_round_ties_away:
3553 roundIncrement = 0x40;
3554 break;
3555 case float_round_to_zero:
3556 roundIncrement = 0;
3557 break;
3558 case float_round_up:
3559 roundIncrement = zSign ? 0 : 0x7f;
3560 break;
3561 case float_round_down:
3562 roundIncrement = zSign ? 0x7f : 0;
3563 break;
3564 case float_round_to_odd:
3565 roundIncrement = zSig & 0x80 ? 0 : 0x7f;
3566 break;
3567 default:
3568 abort();
3569 break;
3570 }
3571 roundBits = zSig & 0x7F;
3572 if ( 0xFD <= (uint16_t) zExp ) {
3573 if ( ( 0xFD < zExp )
3574 || ( ( zExp == 0xFD )
3575 && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
3576 ) {
3577 bool overflow_to_inf = roundingMode != float_round_to_odd &&
3578 roundIncrement != 0;
3579 float_raise(float_flag_overflow | float_flag_inexact, status);
3580 return packFloat32(zSign, 0xFF, -!overflow_to_inf);
3581 }
3582 if ( zExp < 0 ) {
3583 if (status->flush_to_zero) {
3584 float_raise(float_flag_output_denormal, status);
3585 return packFloat32(zSign, 0, 0);
3586 }
3587 isTiny =
3588 (status->float_detect_tininess
3589 == float_tininess_before_rounding)
3590 || ( zExp < -1 )
3591 || ( zSig + roundIncrement < 0x80000000 );
3592 shift32RightJamming( zSig, - zExp, &zSig );
3593 zExp = 0;
3594 roundBits = zSig & 0x7F;
3595 if (isTiny && roundBits) {
3596 float_raise(float_flag_underflow, status);
3597 }
3598 if (roundingMode == float_round_to_odd) {
3599
3600
3601
3602
3603 roundIncrement = zSig & 0x80 ? 0 : 0x7f;
3604 }
3605 }
3606 }
3607 if (roundBits) {
3608 status->float_exception_flags |= float_flag_inexact;
3609 }
3610 zSig = ( zSig + roundIncrement )>>7;
3611 zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
3612 if ( zSig == 0 ) zExp = 0;
3613 return packFloat32( zSign, zExp, zSig );
3614
3615}
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626static float32
3627 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3628 float_status *status)
3629{
3630 int8_t shiftCount;
3631
3632 shiftCount = clz32(zSig) - 1;
3633 return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
3634 status);
3635
3636}
3637
3638
3639
3640
3641
3642float64 float64_squash_input_denormal(float64 a, float_status *status)
3643{
3644 if (status->flush_inputs_to_zero) {
3645 if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
3646 float_raise(float_flag_input_denormal, status);
3647 return make_float64(float64_val(a) & (1ULL << 63));
3648 }
3649 }
3650 return a;
3651}
3652
3653
3654
3655
3656
3657
3658
3659
3660static void
3661 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
3662{
3663 int8_t shiftCount;
3664
3665 shiftCount = clz64(aSig) - 11;
3666 *zSigPtr = aSig<<shiftCount;
3667 *zExpPtr = 1 - shiftCount;
3668
3669}
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
3683{
3684
3685 return make_float64(
3686 ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
3687
3688}
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3713 float_status *status)
3714{
3715 int8_t roundingMode;
3716 flag roundNearestEven;
3717 int roundIncrement, roundBits;
3718 flag isTiny;
3719
3720 roundingMode = status->float_rounding_mode;
3721 roundNearestEven = ( roundingMode == float_round_nearest_even );
3722 switch (roundingMode) {
3723 case float_round_nearest_even:
3724 case float_round_ties_away:
3725 roundIncrement = 0x200;
3726 break;
3727 case float_round_to_zero:
3728 roundIncrement = 0;
3729 break;
3730 case float_round_up:
3731 roundIncrement = zSign ? 0 : 0x3ff;
3732 break;
3733 case float_round_down:
3734 roundIncrement = zSign ? 0x3ff : 0;
3735 break;
3736 case float_round_to_odd:
3737 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
3738 break;
3739 default:
3740 abort();
3741 }
3742 roundBits = zSig & 0x3FF;
3743 if ( 0x7FD <= (uint16_t) zExp ) {
3744 if ( ( 0x7FD < zExp )
3745 || ( ( zExp == 0x7FD )
3746 && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
3747 ) {
3748 bool overflow_to_inf = roundingMode != float_round_to_odd &&
3749 roundIncrement != 0;
3750 float_raise(float_flag_overflow | float_flag_inexact, status);
3751 return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
3752 }
3753 if ( zExp < 0 ) {
3754 if (status->flush_to_zero) {
3755 float_raise(float_flag_output_denormal, status);
3756 return packFloat64(zSign, 0, 0);
3757 }
3758 isTiny =
3759 (status->float_detect_tininess
3760 == float_tininess_before_rounding)
3761 || ( zExp < -1 )
3762 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
3763 shift64RightJamming( zSig, - zExp, &zSig );
3764 zExp = 0;
3765 roundBits = zSig & 0x3FF;
3766 if (isTiny && roundBits) {
3767 float_raise(float_flag_underflow, status);
3768 }
3769 if (roundingMode == float_round_to_odd) {
3770
3771
3772
3773
3774 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
3775 }
3776 }
3777 }
3778 if (roundBits) {
3779 status->float_exception_flags |= float_flag_inexact;
3780 }
3781 zSig = ( zSig + roundIncrement )>>10;
3782 zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
3783 if ( zSig == 0 ) zExp = 0;
3784 return packFloat64( zSign, zExp, zSig );
3785
3786}
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797static float64
3798 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3799 float_status *status)
3800{
3801 int8_t shiftCount;
3802
3803 shiftCount = clz64(zSig) - 1;
3804 return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
3805 status);
3806
3807}
3808
3809
3810
3811
3812
3813
3814
3815
3816void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
3817 uint64_t *zSigPtr)
3818{
3819 int8_t shiftCount;
3820
3821 shiftCount = clz64(aSig);
3822 *zSigPtr = aSig<<shiftCount;
3823 *zExpPtr = 1 - shiftCount;
3824}
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
3851 int32_t zExp, uint64_t zSig0, uint64_t zSig1,
3852 float_status *status)
3853{
3854 int8_t roundingMode;
3855 flag roundNearestEven, increment, isTiny;
3856 int64_t roundIncrement, roundMask, roundBits;
3857
3858 roundingMode = status->float_rounding_mode;
3859 roundNearestEven = ( roundingMode == float_round_nearest_even );
3860 if ( roundingPrecision == 80 ) goto precision80;
3861 if ( roundingPrecision == 64 ) {
3862 roundIncrement = LIT64( 0x0000000000000400 );
3863 roundMask = LIT64( 0x00000000000007FF );
3864 }
3865 else if ( roundingPrecision == 32 ) {
3866 roundIncrement = LIT64( 0x0000008000000000 );
3867 roundMask = LIT64( 0x000000FFFFFFFFFF );
3868 }
3869 else {
3870 goto precision80;
3871 }
3872 zSig0 |= ( zSig1 != 0 );
3873 switch (roundingMode) {
3874 case float_round_nearest_even:
3875 case float_round_ties_away:
3876 break;
3877 case float_round_to_zero:
3878 roundIncrement = 0;
3879 break;
3880 case float_round_up:
3881 roundIncrement = zSign ? 0 : roundMask;
3882 break;
3883 case float_round_down:
3884 roundIncrement = zSign ? roundMask : 0;
3885 break;
3886 default:
3887 abort();
3888 }
3889 roundBits = zSig0 & roundMask;
3890 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
3891 if ( ( 0x7FFE < zExp )
3892 || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
3893 ) {
3894 goto overflow;
3895 }
3896 if ( zExp <= 0 ) {
3897 if (status->flush_to_zero) {
3898 float_raise(float_flag_output_denormal, status);
3899 return packFloatx80(zSign, 0, 0);
3900 }
3901 isTiny =
3902 (status->float_detect_tininess
3903 == float_tininess_before_rounding)
3904 || ( zExp < 0 )
3905 || ( zSig0 <= zSig0 + roundIncrement );
3906 shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
3907 zExp = 0;
3908 roundBits = zSig0 & roundMask;
3909 if (isTiny && roundBits) {
3910 float_raise(float_flag_underflow, status);
3911 }
3912 if (roundBits) {
3913 status->float_exception_flags |= float_flag_inexact;
3914 }
3915 zSig0 += roundIncrement;
3916 if ( (int64_t) zSig0 < 0 ) zExp = 1;
3917 roundIncrement = roundMask + 1;
3918 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
3919 roundMask |= roundIncrement;
3920 }
3921 zSig0 &= ~ roundMask;
3922 return packFloatx80( zSign, zExp, zSig0 );
3923 }
3924 }
3925 if (roundBits) {
3926 status->float_exception_flags |= float_flag_inexact;
3927 }
3928 zSig0 += roundIncrement;
3929 if ( zSig0 < roundIncrement ) {
3930 ++zExp;
3931 zSig0 = LIT64( 0x8000000000000000 );
3932 }
3933 roundIncrement = roundMask + 1;
3934 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
3935 roundMask |= roundIncrement;
3936 }
3937 zSig0 &= ~ roundMask;
3938 if ( zSig0 == 0 ) zExp = 0;
3939 return packFloatx80( zSign, zExp, zSig0 );
3940 precision80:
3941 switch (roundingMode) {
3942 case float_round_nearest_even:
3943 case float_round_ties_away:
3944 increment = ((int64_t)zSig1 < 0);
3945 break;
3946 case float_round_to_zero:
3947 increment = 0;
3948 break;
3949 case float_round_up:
3950 increment = !zSign && zSig1;
3951 break;
3952 case float_round_down:
3953 increment = zSign && zSig1;
3954 break;
3955 default:
3956 abort();
3957 }
3958 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
3959 if ( ( 0x7FFE < zExp )
3960 || ( ( zExp == 0x7FFE )
3961 && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
3962 && increment
3963 )
3964 ) {
3965 roundMask = 0;
3966 overflow:
3967 float_raise(float_flag_overflow | float_flag_inexact, status);
3968 if ( ( roundingMode == float_round_to_zero )
3969 || ( zSign && ( roundingMode == float_round_up ) )
3970 || ( ! zSign && ( roundingMode == float_round_down ) )
3971 ) {
3972 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
3973 }
3974 return packFloatx80(zSign,
3975 floatx80_infinity_high,
3976 floatx80_infinity_low);
3977 }
3978 if ( zExp <= 0 ) {
3979 isTiny =
3980 (status->float_detect_tininess
3981 == float_tininess_before_rounding)
3982 || ( zExp < 0 )
3983 || ! increment
3984 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
3985 shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
3986 zExp = 0;
3987 if (isTiny && zSig1) {
3988 float_raise(float_flag_underflow, status);
3989 }
3990 if (zSig1) {
3991 status->float_exception_flags |= float_flag_inexact;
3992 }
3993 switch (roundingMode) {
3994 case float_round_nearest_even:
3995 case float_round_ties_away:
3996 increment = ((int64_t)zSig1 < 0);
3997 break;
3998 case float_round_to_zero:
3999 increment = 0;
4000 break;
4001 case float_round_up:
4002 increment = !zSign && zSig1;
4003 break;
4004 case float_round_down:
4005 increment = zSign && zSig1;
4006 break;
4007 default:
4008 abort();
4009 }
4010 if ( increment ) {
4011 ++zSig0;
4012 zSig0 &=
4013 ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
4014 if ( (int64_t) zSig0 < 0 ) zExp = 1;
4015 }
4016 return packFloatx80( zSign, zExp, zSig0 );
4017 }
4018 }
4019 if (zSig1) {
4020 status->float_exception_flags |= float_flag_inexact;
4021 }
4022 if ( increment ) {
4023 ++zSig0;
4024 if ( zSig0 == 0 ) {
4025 ++zExp;
4026 zSig0 = LIT64( 0x8000000000000000 );
4027 }
4028 else {
4029 zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
4030 }
4031 }
4032 else {
4033 if ( zSig0 == 0 ) zExp = 0;
4034 }
4035 return packFloatx80( zSign, zExp, zSig0 );
4036
4037}
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
4049 flag zSign, int32_t zExp,
4050 uint64_t zSig0, uint64_t zSig1,
4051 float_status *status)
4052{
4053 int8_t shiftCount;
4054
4055 if ( zSig0 == 0 ) {
4056 zSig0 = zSig1;
4057 zSig1 = 0;
4058 zExp -= 64;
4059 }
4060 shiftCount = clz64(zSig0);
4061 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
4062 zExp -= shiftCount;
4063 return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
4064 zSig0, zSig1, status);
4065
4066}
4067
4068
4069
4070
4071
4072
4073static inline uint64_t extractFloat128Frac1( float128 a )
4074{
4075
4076 return a.low;
4077
4078}
4079
4080
4081
4082
4083
4084
4085static inline uint64_t extractFloat128Frac0( float128 a )
4086{
4087
4088 return a.high & LIT64( 0x0000FFFFFFFFFFFF );
4089
4090}
4091
4092
4093
4094
4095
4096
4097static inline int32_t extractFloat128Exp( float128 a )
4098{
4099
4100 return ( a.high>>48 ) & 0x7FFF;
4101
4102}
4103
4104
4105
4106
4107
4108static inline flag extractFloat128Sign( float128 a )
4109{
4110
4111 return a.high>>63;
4112
4113}
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125static void
4126 normalizeFloat128Subnormal(
4127 uint64_t aSig0,
4128 uint64_t aSig1,
4129 int32_t *zExpPtr,
4130 uint64_t *zSig0Ptr,
4131 uint64_t *zSig1Ptr
4132 )
4133{
4134 int8_t shiftCount;
4135
4136 if ( aSig0 == 0 ) {
4137 shiftCount = clz64(aSig1) - 15;
4138 if ( shiftCount < 0 ) {
4139 *zSig0Ptr = aSig1>>( - shiftCount );
4140 *zSig1Ptr = aSig1<<( shiftCount & 63 );
4141 }
4142 else {
4143 *zSig0Ptr = aSig1<<shiftCount;
4144 *zSig1Ptr = 0;
4145 }
4146 *zExpPtr = - shiftCount - 63;
4147 }
4148 else {
4149 shiftCount = clz64(aSig0) - 15;
4150 shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
4151 *zExpPtr = 1 - shiftCount;
4152 }
4153
4154}
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169static inline float128
4170 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
4171{
4172 float128 z;
4173
4174 z.low = zSig1;
4175 z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
4176 return z;
4177
4178}
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
4202 uint64_t zSig0, uint64_t zSig1,
4203 uint64_t zSig2, float_status *status)
4204{
4205 int8_t roundingMode;
4206 flag roundNearestEven, increment, isTiny;
4207
4208 roundingMode = status->float_rounding_mode;
4209 roundNearestEven = ( roundingMode == float_round_nearest_even );
4210 switch (roundingMode) {
4211 case float_round_nearest_even:
4212 case float_round_ties_away:
4213 increment = ((int64_t)zSig2 < 0);
4214 break;
4215 case float_round_to_zero:
4216 increment = 0;
4217 break;
4218 case float_round_up:
4219 increment = !zSign && zSig2;
4220 break;
4221 case float_round_down:
4222 increment = zSign && zSig2;
4223 break;
4224 case float_round_to_odd:
4225 increment = !(zSig1 & 0x1) && zSig2;
4226 break;
4227 default:
4228 abort();
4229 }
4230 if ( 0x7FFD <= (uint32_t) zExp ) {
4231 if ( ( 0x7FFD < zExp )
4232 || ( ( zExp == 0x7FFD )
4233 && eq128(
4234 LIT64( 0x0001FFFFFFFFFFFF ),
4235 LIT64( 0xFFFFFFFFFFFFFFFF ),
4236 zSig0,
4237 zSig1
4238 )
4239 && increment
4240 )
4241 ) {
4242 float_raise(float_flag_overflow | float_flag_inexact, status);
4243 if ( ( roundingMode == float_round_to_zero )
4244 || ( zSign && ( roundingMode == float_round_up ) )
4245 || ( ! zSign && ( roundingMode == float_round_down ) )
4246 || (roundingMode == float_round_to_odd)
4247 ) {
4248 return
4249 packFloat128(
4250 zSign,
4251 0x7FFE,
4252 LIT64( 0x0000FFFFFFFFFFFF ),
4253 LIT64( 0xFFFFFFFFFFFFFFFF )
4254 );
4255 }
4256 return packFloat128( zSign, 0x7FFF, 0, 0 );
4257 }
4258 if ( zExp < 0 ) {
4259 if (status->flush_to_zero) {
4260 float_raise(float_flag_output_denormal, status);
4261 return packFloat128(zSign, 0, 0, 0);
4262 }
4263 isTiny =
4264 (status->float_detect_tininess
4265 == float_tininess_before_rounding)
4266 || ( zExp < -1 )
4267 || ! increment
4268 || lt128(
4269 zSig0,
4270 zSig1,
4271 LIT64( 0x0001FFFFFFFFFFFF ),
4272 LIT64( 0xFFFFFFFFFFFFFFFF )
4273 );
4274 shift128ExtraRightJamming(
4275 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
4276 zExp = 0;
4277 if (isTiny && zSig2) {
4278 float_raise(float_flag_underflow, status);
4279 }
4280 switch (roundingMode) {
4281 case float_round_nearest_even:
4282 case float_round_ties_away:
4283 increment = ((int64_t)zSig2 < 0);
4284 break;
4285 case float_round_to_zero:
4286 increment = 0;
4287 break;
4288 case float_round_up:
4289 increment = !zSign && zSig2;
4290 break;
4291 case float_round_down:
4292 increment = zSign && zSig2;
4293 break;
4294 case float_round_to_odd:
4295 increment = !(zSig1 & 0x1) && zSig2;
4296 break;
4297 default:
4298 abort();
4299 }
4300 }
4301 }
4302 if (zSig2) {
4303 status->float_exception_flags |= float_flag_inexact;
4304 }
4305 if ( increment ) {
4306 add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
4307 zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
4308 }
4309 else {
4310 if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
4311 }
4312 return packFloat128( zSign, zExp, zSig0, zSig1 );
4313
4314}
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
4327 uint64_t zSig0, uint64_t zSig1,
4328 float_status *status)
4329{
4330 int8_t shiftCount;
4331 uint64_t zSig2;
4332
4333 if ( zSig0 == 0 ) {
4334 zSig0 = zSig1;
4335 zSig1 = 0;
4336 zExp -= 64;
4337 }
4338 shiftCount = clz64(zSig0) - 15;
4339 if ( 0 <= shiftCount ) {
4340 zSig2 = 0;
4341 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
4342 }
4343 else {
4344 shift128ExtraRightJamming(
4345 zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
4346 }
4347 zExp -= shiftCount;
4348 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
4349
4350}
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360floatx80 int32_to_floatx80(int32_t a, float_status *status)
4361{
4362 flag zSign;
4363 uint32_t absA;
4364 int8_t shiftCount;
4365 uint64_t zSig;
4366
4367 if ( a == 0 ) return packFloatx80( 0, 0, 0 );
4368 zSign = ( a < 0 );
4369 absA = zSign ? - a : a;
4370 shiftCount = clz32(absA) + 32;
4371 zSig = absA;
4372 return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
4373
4374}
4375
4376
4377
4378
4379
4380
4381
4382float128 int32_to_float128(int32_t a, float_status *status)
4383{
4384 flag zSign;
4385 uint32_t absA;
4386 int8_t shiftCount;
4387 uint64_t zSig0;
4388
4389 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
4390 zSign = ( a < 0 );
4391 absA = zSign ? - a : a;
4392 shiftCount = clz32(absA) + 17;
4393 zSig0 = absA;
4394 return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
4395
4396}
4397
4398
4399
4400
4401
4402
4403
4404
4405floatx80 int64_to_floatx80(int64_t a, float_status *status)
4406{
4407 flag zSign;
4408 uint64_t absA;
4409 int8_t shiftCount;
4410
4411 if ( a == 0 ) return packFloatx80( 0, 0, 0 );
4412 zSign = ( a < 0 );
4413 absA = zSign ? - a : a;
4414 shiftCount = clz64(absA);
4415 return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
4416
4417}
4418
4419
4420
4421
4422
4423
4424
4425float128 int64_to_float128(int64_t a, float_status *status)
4426{
4427 flag zSign;
4428 uint64_t absA;
4429 int8_t shiftCount;
4430 int32_t zExp;
4431 uint64_t zSig0, zSig1;
4432
4433 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
4434 zSign = ( a < 0 );
4435 absA = zSign ? - a : a;
4436 shiftCount = clz64(absA) + 49;
4437 zExp = 0x406E - shiftCount;
4438 if ( 64 <= shiftCount ) {
4439 zSig1 = 0;
4440 zSig0 = absA;
4441 shiftCount -= 64;
4442 }
4443 else {
4444 zSig1 = absA;
4445 zSig0 = 0;
4446 }
4447 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
4448 return packFloat128( zSign, zExp, zSig0, zSig1 );
4449
4450}
4451
4452
4453
4454
4455
4456
4457
4458float128 uint64_to_float128(uint64_t a, float_status *status)
4459{
4460 if (a == 0) {
4461 return float128_zero;
4462 }
4463 return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
4464}
4465
4466
4467
4468
4469
4470
4471
4472
4473floatx80 float32_to_floatx80(float32 a, float_status *status)
4474{
4475 flag aSign;
4476 int aExp;
4477 uint32_t aSig;
4478
4479 a = float32_squash_input_denormal(a, status);
4480 aSig = extractFloat32Frac( a );
4481 aExp = extractFloat32Exp( a );
4482 aSign = extractFloat32Sign( a );
4483 if ( aExp == 0xFF ) {
4484 if (aSig) {
4485 return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
4486 }
4487 return packFloatx80(aSign,
4488 floatx80_infinity_high,
4489 floatx80_infinity_low);
4490 }
4491 if ( aExp == 0 ) {
4492 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
4493 normalizeFloat32Subnormal( aSig, &aExp, &aSig );
4494 }
4495 aSig |= 0x00800000;
4496 return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
4497
4498}
4499
4500
4501
4502
4503
4504
4505
4506
4507float128 float32_to_float128(float32 a, float_status *status)
4508{
4509 flag aSign;
4510 int aExp;
4511 uint32_t aSig;
4512
4513 a = float32_squash_input_denormal(a, status);
4514 aSig = extractFloat32Frac( a );
4515 aExp = extractFloat32Exp( a );
4516 aSign = extractFloat32Sign( a );
4517 if ( aExp == 0xFF ) {
4518 if (aSig) {
4519 return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
4520 }
4521 return packFloat128( aSign, 0x7FFF, 0, 0 );
4522 }
4523 if ( aExp == 0 ) {
4524 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
4525 normalizeFloat32Subnormal( aSig, &aExp, &aSig );
4526 --aExp;
4527 }
4528 return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
4529
4530}
4531
4532
4533
4534
4535
4536
4537
4538float32 float32_rem(float32 a, float32 b, float_status *status)
4539{
4540 flag aSign, zSign;
4541 int aExp, bExp, expDiff;
4542 uint32_t aSig, bSig;
4543 uint32_t q;
4544 uint64_t aSig64, bSig64, q64;
4545 uint32_t alternateASig;
4546 int32_t sigMean;
4547 a = float32_squash_input_denormal(a, status);
4548 b = float32_squash_input_denormal(b, status);
4549
4550 aSig = extractFloat32Frac( a );
4551 aExp = extractFloat32Exp( a );
4552 aSign = extractFloat32Sign( a );
4553 bSig = extractFloat32Frac( b );
4554 bExp = extractFloat32Exp( b );
4555 if ( aExp == 0xFF ) {
4556 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
4557 return propagateFloat32NaN(a, b, status);
4558 }
4559 float_raise(float_flag_invalid, status);
4560 return float32_default_nan(status);
4561 }
4562 if ( bExp == 0xFF ) {
4563 if (bSig) {
4564 return propagateFloat32NaN(a, b, status);
4565 }
4566 return a;
4567 }
4568 if ( bExp == 0 ) {
4569 if ( bSig == 0 ) {
4570 float_raise(float_flag_invalid, status);
4571 return float32_default_nan(status);
4572 }
4573 normalizeFloat32Subnormal( bSig, &bExp, &bSig );
4574 }
4575 if ( aExp == 0 ) {
4576 if ( aSig == 0 ) return a;
4577 normalizeFloat32Subnormal( aSig, &aExp, &aSig );
4578 }
4579 expDiff = aExp - bExp;
4580 aSig |= 0x00800000;
4581 bSig |= 0x00800000;
4582 if ( expDiff < 32 ) {
4583 aSig <<= 8;
4584 bSig <<= 8;
4585 if ( expDiff < 0 ) {
4586 if ( expDiff < -1 ) return a;
4587 aSig >>= 1;
4588 }
4589 q = ( bSig <= aSig );
4590 if ( q ) aSig -= bSig;
4591 if ( 0 < expDiff ) {
4592 q = ( ( (uint64_t) aSig )<<32 ) / bSig;
4593 q >>= 32 - expDiff;
4594 bSig >>= 2;
4595 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
4596 }
4597 else {
4598 aSig >>= 2;
4599 bSig >>= 2;
4600 }
4601 }
4602 else {
4603 if ( bSig <= aSig ) aSig -= bSig;
4604 aSig64 = ( (uint64_t) aSig )<<40;
4605 bSig64 = ( (uint64_t) bSig )<<40;
4606 expDiff -= 64;
4607 while ( 0 < expDiff ) {
4608 q64 = estimateDiv128To64( aSig64, 0, bSig64 );
4609 q64 = ( 2 < q64 ) ? q64 - 2 : 0;
4610 aSig64 = - ( ( bSig * q64 )<<38 );
4611 expDiff -= 62;
4612 }
4613 expDiff += 64;
4614 q64 = estimateDiv128To64( aSig64, 0, bSig64 );
4615 q64 = ( 2 < q64 ) ? q64 - 2 : 0;
4616 q = q64>>( 64 - expDiff );
4617 bSig <<= 6;
4618 aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
4619 }
4620 do {
4621 alternateASig = aSig;
4622 ++q;
4623 aSig -= bSig;
4624 } while ( 0 <= (int32_t) aSig );
4625 sigMean = aSig + alternateASig;
4626 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
4627 aSig = alternateASig;
4628 }
4629 zSign = ( (int32_t) aSig < 0 );
4630 if ( zSign ) aSig = - aSig;
4631 return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
4632}
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654static const float64 float32_exp2_coefficients[15] =
4655{
4656 const_float64( 0x3ff0000000000000ll ),
4657 const_float64( 0x3fe0000000000000ll ),
4658 const_float64( 0x3fc5555555555555ll ),
4659 const_float64( 0x3fa5555555555555ll ),
4660 const_float64( 0x3f81111111111111ll ),
4661 const_float64( 0x3f56c16c16c16c17ll ),
4662 const_float64( 0x3f2a01a01a01a01all ),
4663 const_float64( 0x3efa01a01a01a01all ),
4664 const_float64( 0x3ec71de3a556c734ll ),
4665 const_float64( 0x3e927e4fb7789f5cll ),
4666 const_float64( 0x3e5ae64567f544e4ll ),
4667 const_float64( 0x3e21eed8eff8d898ll ),
4668 const_float64( 0x3de6124613a86d09ll ),
4669 const_float64( 0x3da93974a8c07c9dll ),
4670 const_float64( 0x3d6ae7f3e733b81fll ),
4671};
4672
4673float32 float32_exp2(float32 a, float_status *status)
4674{
4675 flag aSign;
4676 int aExp;
4677 uint32_t aSig;
4678 float64 r, x, xn;
4679 int i;
4680 a = float32_squash_input_denormal(a, status);
4681
4682 aSig = extractFloat32Frac( a );
4683 aExp = extractFloat32Exp( a );
4684 aSign = extractFloat32Sign( a );
4685
4686 if ( aExp == 0xFF) {
4687 if (aSig) {
4688 return propagateFloat32NaN(a, float32_zero, status);
4689 }
4690 return (aSign) ? float32_zero : a;
4691 }
4692 if (aExp == 0) {
4693 if (aSig == 0) return float32_one;
4694 }
4695
4696 float_raise(float_flag_inexact, status);
4697
4698
4699
4700
4701 x = float32_to_float64(a, status);
4702 x = float64_mul(x, float64_ln2, status);
4703
4704 xn = x;
4705 r = float64_one;
4706 for (i = 0 ; i < 15 ; i++) {
4707 float64 f;
4708
4709 f = float64_mul(xn, float32_exp2_coefficients[i], status);
4710 r = float64_add(r, f, status);
4711
4712 xn = float64_mul(xn, x, status);
4713 }
4714
4715 return float64_to_float32(r, status);
4716}
4717
4718
4719
4720
4721
4722
4723float32 float32_log2(float32 a, float_status *status)
4724{
4725 flag aSign, zSign;
4726 int aExp;
4727 uint32_t aSig, zSig, i;
4728
4729 a = float32_squash_input_denormal(a, status);
4730 aSig = extractFloat32Frac( a );
4731 aExp = extractFloat32Exp( a );
4732 aSign = extractFloat32Sign( a );
4733
4734 if ( aExp == 0 ) {
4735 if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
4736 normalizeFloat32Subnormal( aSig, &aExp, &aSig );
4737 }
4738 if ( aSign ) {
4739 float_raise(float_flag_invalid, status);
4740 return float32_default_nan(status);
4741 }
4742 if ( aExp == 0xFF ) {
4743 if (aSig) {
4744 return propagateFloat32NaN(a, float32_zero, status);
4745 }
4746 return a;
4747 }
4748
4749 aExp -= 0x7F;
4750 aSig |= 0x00800000;
4751 zSign = aExp < 0;
4752 zSig = aExp << 23;
4753
4754 for (i = 1 << 22; i > 0; i >>= 1) {
4755 aSig = ( (uint64_t)aSig * aSig ) >> 23;
4756 if ( aSig & 0x01000000 ) {
4757 aSig >>= 1;
4758 zSig |= i;
4759 }
4760 }
4761
4762 if ( zSign )
4763 zSig = -zSig;
4764
4765 return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
4766}
4767
4768
4769
4770
4771
4772
4773
4774
4775int float32_eq(float32 a, float32 b, float_status *status)
4776{
4777 uint32_t av, bv;
4778 a = float32_squash_input_denormal(a, status);
4779 b = float32_squash_input_denormal(b, status);
4780
4781 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4782 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4783 ) {
4784 float_raise(float_flag_invalid, status);
4785 return 0;
4786 }
4787 av = float32_val(a);
4788 bv = float32_val(b);
4789 return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
4790}
4791
4792
4793
4794
4795
4796
4797
4798
4799int float32_le(float32 a, float32 b, float_status *status)
4800{
4801 flag aSign, bSign;
4802 uint32_t av, bv;
4803 a = float32_squash_input_denormal(a, status);
4804 b = float32_squash_input_denormal(b, status);
4805
4806 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4807 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4808 ) {
4809 float_raise(float_flag_invalid, status);
4810 return 0;
4811 }
4812 aSign = extractFloat32Sign( a );
4813 bSign = extractFloat32Sign( b );
4814 av = float32_val(a);
4815 bv = float32_val(b);
4816 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
4817 return ( av == bv ) || ( aSign ^ ( av < bv ) );
4818
4819}
4820
4821
4822
4823
4824
4825
4826
4827
4828int float32_lt(float32 a, float32 b, float_status *status)
4829{
4830 flag aSign, bSign;
4831 uint32_t av, bv;
4832 a = float32_squash_input_denormal(a, status);
4833 b = float32_squash_input_denormal(b, status);
4834
4835 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4836 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4837 ) {
4838 float_raise(float_flag_invalid, status);
4839 return 0;
4840 }
4841 aSign = extractFloat32Sign( a );
4842 bSign = extractFloat32Sign( b );
4843 av = float32_val(a);
4844 bv = float32_val(b);
4845 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
4846 return ( av != bv ) && ( aSign ^ ( av < bv ) );
4847
4848}
4849
4850
4851
4852
4853
4854
4855
4856
4857int float32_unordered(float32 a, float32 b, float_status *status)
4858{
4859 a = float32_squash_input_denormal(a, status);
4860 b = float32_squash_input_denormal(b, status);
4861
4862 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4863 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4864 ) {
4865 float_raise(float_flag_invalid, status);
4866 return 1;
4867 }
4868 return 0;
4869}
4870
4871
4872
4873
4874
4875
4876
4877
4878int float32_eq_quiet(float32 a, float32 b, float_status *status)
4879{
4880 a = float32_squash_input_denormal(a, status);
4881 b = float32_squash_input_denormal(b, status);
4882
4883 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4884 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4885 ) {
4886 if (float32_is_signaling_nan(a, status)
4887 || float32_is_signaling_nan(b, status)) {
4888 float_raise(float_flag_invalid, status);
4889 }
4890 return 0;
4891 }
4892 return ( float32_val(a) == float32_val(b) ) ||
4893 ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
4894}
4895
4896
4897
4898
4899
4900
4901
4902
4903int float32_le_quiet(float32 a, float32 b, float_status *status)
4904{
4905 flag aSign, bSign;
4906 uint32_t av, bv;
4907 a = float32_squash_input_denormal(a, status);
4908 b = float32_squash_input_denormal(b, status);
4909
4910 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4911 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4912 ) {
4913 if (float32_is_signaling_nan(a, status)
4914 || float32_is_signaling_nan(b, status)) {
4915 float_raise(float_flag_invalid, status);
4916 }
4917 return 0;
4918 }
4919 aSign = extractFloat32Sign( a );
4920 bSign = extractFloat32Sign( b );
4921 av = float32_val(a);
4922 bv = float32_val(b);
4923 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
4924 return ( av == bv ) || ( aSign ^ ( av < bv ) );
4925
4926}
4927
4928
4929
4930
4931
4932
4933
4934
4935int float32_lt_quiet(float32 a, float32 b, float_status *status)
4936{
4937 flag aSign, bSign;
4938 uint32_t av, bv;
4939 a = float32_squash_input_denormal(a, status);
4940 b = float32_squash_input_denormal(b, status);
4941
4942 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4943 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4944 ) {
4945 if (float32_is_signaling_nan(a, status)
4946 || float32_is_signaling_nan(b, status)) {
4947 float_raise(float_flag_invalid, status);
4948 }
4949 return 0;
4950 }
4951 aSign = extractFloat32Sign( a );
4952 bSign = extractFloat32Sign( b );
4953 av = float32_val(a);
4954 bv = float32_val(b);
4955 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
4956 return ( av != bv ) && ( aSign ^ ( av < bv ) );
4957
4958}
4959
4960
4961
4962
4963
4964
4965
4966
4967int float32_unordered_quiet(float32 a, float32 b, float_status *status)
4968{
4969 a = float32_squash_input_denormal(a, status);
4970 b = float32_squash_input_denormal(b, status);
4971
4972 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
4973 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
4974 ) {
4975 if (float32_is_signaling_nan(a, status)
4976 || float32_is_signaling_nan(b, status)) {
4977 float_raise(float_flag_invalid, status);
4978 }
4979 return 1;
4980 }
4981 return 0;
4982}
4983
4984
4985
4986
4987
4988float16 float16_squash_input_denormal(float16 a, float_status *status)
4989{
4990 if (status->flush_inputs_to_zero) {
4991 if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
4992 float_raise(float_flag_input_denormal, status);
4993 return make_float16(float16_val(a) & 0x8000);
4994 }
4995 }
4996 return a;
4997}
4998
4999
5000
5001
5002
5003
5004
5005
5006floatx80 float64_to_floatx80(float64 a, float_status *status)
5007{
5008 flag aSign;
5009 int aExp;
5010 uint64_t aSig;
5011
5012 a = float64_squash_input_denormal(a, status);
5013 aSig = extractFloat64Frac( a );
5014 aExp = extractFloat64Exp( a );
5015 aSign = extractFloat64Sign( a );
5016 if ( aExp == 0x7FF ) {
5017 if (aSig) {
5018 return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
5019 }
5020 return packFloatx80(aSign,
5021 floatx80_infinity_high,
5022 floatx80_infinity_low);
5023 }
5024 if ( aExp == 0 ) {
5025 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
5026 normalizeFloat64Subnormal( aSig, &aExp, &aSig );
5027 }
5028 return
5029 packFloatx80(
5030 aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
5031
5032}
5033
5034
5035
5036
5037
5038
5039
5040
5041float128 float64_to_float128(float64 a, float_status *status)
5042{
5043 flag aSign;
5044 int aExp;
5045 uint64_t aSig, zSig0, zSig1;
5046
5047 a = float64_squash_input_denormal(a, status);
5048 aSig = extractFloat64Frac( a );
5049 aExp = extractFloat64Exp( a );
5050 aSign = extractFloat64Sign( a );
5051 if ( aExp == 0x7FF ) {
5052 if (aSig) {
5053 return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
5054 }
5055 return packFloat128( aSign, 0x7FFF, 0, 0 );
5056 }
5057 if ( aExp == 0 ) {
5058 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
5059 normalizeFloat64Subnormal( aSig, &aExp, &aSig );
5060 --aExp;
5061 }
5062 shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
5063 return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
5064
5065}
5066
5067
5068
5069
5070
5071
5072
5073
5074float64 float64_rem(float64 a, float64 b, float_status *status)
5075{
5076 flag aSign, zSign;
5077 int aExp, bExp, expDiff;
5078 uint64_t aSig, bSig;
5079 uint64_t q, alternateASig;
5080 int64_t sigMean;
5081
5082 a = float64_squash_input_denormal(a, status);
5083 b = float64_squash_input_denormal(b, status);
5084 aSig = extractFloat64Frac( a );
5085 aExp = extractFloat64Exp( a );
5086 aSign = extractFloat64Sign( a );
5087 bSig = extractFloat64Frac( b );
5088 bExp = extractFloat64Exp( b );
5089 if ( aExp == 0x7FF ) {
5090 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
5091 return propagateFloat64NaN(a, b, status);
5092 }
5093 float_raise(float_flag_invalid, status);
5094 return float64_default_nan(status);
5095 }
5096 if ( bExp == 0x7FF ) {
5097 if (bSig) {
5098 return propagateFloat64NaN(a, b, status);
5099 }
5100 return a;
5101 }
5102 if ( bExp == 0 ) {
5103 if ( bSig == 0 ) {
5104 float_raise(float_flag_invalid, status);
5105 return float64_default_nan(status);
5106 }
5107 normalizeFloat64Subnormal( bSig, &bExp, &bSig );
5108 }
5109 if ( aExp == 0 ) {
5110 if ( aSig == 0 ) return a;
5111 normalizeFloat64Subnormal( aSig, &aExp, &aSig );
5112 }
5113 expDiff = aExp - bExp;
5114 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
5115 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
5116 if ( expDiff < 0 ) {
5117 if ( expDiff < -1 ) return a;
5118 aSig >>= 1;
5119 }
5120 q = ( bSig <= aSig );
5121 if ( q ) aSig -= bSig;
5122 expDiff -= 64;
5123 while ( 0 < expDiff ) {
5124 q = estimateDiv128To64( aSig, 0, bSig );
5125 q = ( 2 < q ) ? q - 2 : 0;
5126 aSig = - ( ( bSig>>2 ) * q );
5127 expDiff -= 62;
5128 }
5129 expDiff += 64;
5130 if ( 0 < expDiff ) {
5131 q = estimateDiv128To64( aSig, 0, bSig );
5132 q = ( 2 < q ) ? q - 2 : 0;
5133 q >>= 64 - expDiff;
5134 bSig >>= 2;
5135 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
5136 }
5137 else {
5138 aSig >>= 2;
5139 bSig >>= 2;
5140 }
5141 do {
5142 alternateASig = aSig;
5143 ++q;
5144 aSig -= bSig;
5145 } while ( 0 <= (int64_t) aSig );
5146 sigMean = aSig + alternateASig;
5147 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
5148 aSig = alternateASig;
5149 }
5150 zSign = ( (int64_t) aSig < 0 );
5151 if ( zSign ) aSig = - aSig;
5152 return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
5153
5154}
5155
5156
5157
5158
5159
5160
5161float64 float64_log2(float64 a, float_status *status)
5162{
5163 flag aSign, zSign;
5164 int aExp;
5165 uint64_t aSig, aSig0, aSig1, zSig, i;
5166 a = float64_squash_input_denormal(a, status);
5167
5168 aSig = extractFloat64Frac( a );
5169 aExp = extractFloat64Exp( a );
5170 aSign = extractFloat64Sign( a );
5171
5172 if ( aExp == 0 ) {
5173 if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
5174 normalizeFloat64Subnormal( aSig, &aExp, &aSig );
5175 }
5176 if ( aSign ) {
5177 float_raise(float_flag_invalid, status);
5178 return float64_default_nan(status);
5179 }
5180 if ( aExp == 0x7FF ) {
5181 if (aSig) {
5182 return propagateFloat64NaN(a, float64_zero, status);
5183 }
5184 return a;
5185 }
5186
5187 aExp -= 0x3FF;
5188 aSig |= LIT64( 0x0010000000000000 );
5189 zSign = aExp < 0;
5190 zSig = (uint64_t)aExp << 52;
5191 for (i = 1LL << 51; i > 0; i >>= 1) {
5192 mul64To128( aSig, aSig, &aSig0, &aSig1 );
5193 aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
5194 if ( aSig & LIT64( 0x0020000000000000 ) ) {
5195 aSig >>= 1;
5196 zSig |= i;
5197 }
5198 }
5199
5200 if ( zSign )
5201 zSig = -zSig;
5202 return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
5203}
5204
5205
5206
5207
5208
5209
5210
5211
5212int float64_eq(float64 a, float64 b, float_status *status)
5213{
5214 uint64_t av, bv;
5215 a = float64_squash_input_denormal(a, status);
5216 b = float64_squash_input_denormal(b, status);
5217
5218 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5219 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5220 ) {
5221 float_raise(float_flag_invalid, status);
5222 return 0;
5223 }
5224 av = float64_val(a);
5225 bv = float64_val(b);
5226 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
5227
5228}
5229
5230
5231
5232
5233
5234
5235
5236
5237int float64_le(float64 a, float64 b, float_status *status)
5238{
5239 flag aSign, bSign;
5240 uint64_t av, bv;
5241 a = float64_squash_input_denormal(a, status);
5242 b = float64_squash_input_denormal(b, status);
5243
5244 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5245 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5246 ) {
5247 float_raise(float_flag_invalid, status);
5248 return 0;
5249 }
5250 aSign = extractFloat64Sign( a );
5251 bSign = extractFloat64Sign( b );
5252 av = float64_val(a);
5253 bv = float64_val(b);
5254 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
5255 return ( av == bv ) || ( aSign ^ ( av < bv ) );
5256
5257}
5258
5259
5260
5261
5262
5263
5264
5265
5266int float64_lt(float64 a, float64 b, float_status *status)
5267{
5268 flag aSign, bSign;
5269 uint64_t av, bv;
5270
5271 a = float64_squash_input_denormal(a, status);
5272 b = float64_squash_input_denormal(b, status);
5273 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5274 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5275 ) {
5276 float_raise(float_flag_invalid, status);
5277 return 0;
5278 }
5279 aSign = extractFloat64Sign( a );
5280 bSign = extractFloat64Sign( b );
5281 av = float64_val(a);
5282 bv = float64_val(b);
5283 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
5284 return ( av != bv ) && ( aSign ^ ( av < bv ) );
5285
5286}
5287
5288
5289
5290
5291
5292
5293
5294
5295int float64_unordered(float64 a, float64 b, float_status *status)
5296{
5297 a = float64_squash_input_denormal(a, status);
5298 b = float64_squash_input_denormal(b, status);
5299
5300 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5301 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5302 ) {
5303 float_raise(float_flag_invalid, status);
5304 return 1;
5305 }
5306 return 0;
5307}
5308
5309
5310
5311
5312
5313
5314
5315
5316int float64_eq_quiet(float64 a, float64 b, float_status *status)
5317{
5318 uint64_t av, bv;
5319 a = float64_squash_input_denormal(a, status);
5320 b = float64_squash_input_denormal(b, status);
5321
5322 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5323 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5324 ) {
5325 if (float64_is_signaling_nan(a, status)
5326 || float64_is_signaling_nan(b, status)) {
5327 float_raise(float_flag_invalid, status);
5328 }
5329 return 0;
5330 }
5331 av = float64_val(a);
5332 bv = float64_val(b);
5333 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
5334
5335}
5336
5337
5338
5339
5340
5341
5342
5343
5344int float64_le_quiet(float64 a, float64 b, float_status *status)
5345{
5346 flag aSign, bSign;
5347 uint64_t av, bv;
5348 a = float64_squash_input_denormal(a, status);
5349 b = float64_squash_input_denormal(b, status);
5350
5351 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5352 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5353 ) {
5354 if (float64_is_signaling_nan(a, status)
5355 || float64_is_signaling_nan(b, status)) {
5356 float_raise(float_flag_invalid, status);
5357 }
5358 return 0;
5359 }
5360 aSign = extractFloat64Sign( a );
5361 bSign = extractFloat64Sign( b );
5362 av = float64_val(a);
5363 bv = float64_val(b);
5364 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
5365 return ( av == bv ) || ( aSign ^ ( av < bv ) );
5366
5367}
5368
5369
5370
5371
5372
5373
5374
5375
5376int float64_lt_quiet(float64 a, float64 b, float_status *status)
5377{
5378 flag aSign, bSign;
5379 uint64_t av, bv;
5380 a = float64_squash_input_denormal(a, status);
5381 b = float64_squash_input_denormal(b, status);
5382
5383 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5384 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5385 ) {
5386 if (float64_is_signaling_nan(a, status)
5387 || float64_is_signaling_nan(b, status)) {
5388 float_raise(float_flag_invalid, status);
5389 }
5390 return 0;
5391 }
5392 aSign = extractFloat64Sign( a );
5393 bSign = extractFloat64Sign( b );
5394 av = float64_val(a);
5395 bv = float64_val(b);
5396 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
5397 return ( av != bv ) && ( aSign ^ ( av < bv ) );
5398
5399}
5400
5401
5402
5403
5404
5405
5406
5407
5408int float64_unordered_quiet(float64 a, float64 b, float_status *status)
5409{
5410 a = float64_squash_input_denormal(a, status);
5411 b = float64_squash_input_denormal(b, status);
5412
5413 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
5414 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
5415 ) {
5416 if (float64_is_signaling_nan(a, status)
5417 || float64_is_signaling_nan(b, status)) {
5418 float_raise(float_flag_invalid, status);
5419 }
5420 return 1;
5421 }
5422 return 0;
5423}
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435int32_t floatx80_to_int32(floatx80 a, float_status *status)
5436{
5437 flag aSign;
5438 int32_t aExp, shiftCount;
5439 uint64_t aSig;
5440
5441 if (floatx80_invalid_encoding(a)) {
5442 float_raise(float_flag_invalid, status);
5443 return 1 << 31;
5444 }
5445 aSig = extractFloatx80Frac( a );
5446 aExp = extractFloatx80Exp( a );
5447 aSign = extractFloatx80Sign( a );
5448 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
5449 shiftCount = 0x4037 - aExp;
5450 if ( shiftCount <= 0 ) shiftCount = 1;
5451 shift64RightJamming( aSig, shiftCount, &aSig );
5452 return roundAndPackInt32(aSign, aSig, status);
5453
5454}
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
5467{
5468 flag aSign;
5469 int32_t aExp, shiftCount;
5470 uint64_t aSig, savedASig;
5471 int32_t z;
5472
5473 if (floatx80_invalid_encoding(a)) {
5474 float_raise(float_flag_invalid, status);
5475 return 1 << 31;
5476 }
5477 aSig = extractFloatx80Frac( a );
5478 aExp = extractFloatx80Exp( a );
5479 aSign = extractFloatx80Sign( a );
5480 if ( 0x401E < aExp ) {
5481 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
5482 goto invalid;
5483 }
5484 else if ( aExp < 0x3FFF ) {
5485 if (aExp || aSig) {
5486 status->float_exception_flags |= float_flag_inexact;
5487 }
5488 return 0;
5489 }
5490 shiftCount = 0x403E - aExp;
5491 savedASig = aSig;
5492 aSig >>= shiftCount;
5493 z = aSig;
5494 if ( aSign ) z = - z;
5495 if ( ( z < 0 ) ^ aSign ) {
5496 invalid:
5497 float_raise(float_flag_invalid, status);
5498 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
5499 }
5500 if ( ( aSig<<shiftCount ) != savedASig ) {
5501 status->float_exception_flags |= float_flag_inexact;
5502 }
5503 return z;
5504
5505}
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517int64_t floatx80_to_int64(floatx80 a, float_status *status)
5518{
5519 flag aSign;
5520 int32_t aExp, shiftCount;
5521 uint64_t aSig, aSigExtra;
5522
5523 if (floatx80_invalid_encoding(a)) {
5524 float_raise(float_flag_invalid, status);
5525 return 1ULL << 63;
5526 }
5527 aSig = extractFloatx80Frac( a );
5528 aExp = extractFloatx80Exp( a );
5529 aSign = extractFloatx80Sign( a );
5530 shiftCount = 0x403E - aExp;
5531 if ( shiftCount <= 0 ) {
5532 if ( shiftCount ) {
5533 float_raise(float_flag_invalid, status);
5534 if (!aSign || floatx80_is_any_nan(a)) {
5535 return LIT64( 0x7FFFFFFFFFFFFFFF );
5536 }
5537 return (int64_t) LIT64( 0x8000000000000000 );
5538 }
5539 aSigExtra = 0;
5540 }
5541 else {
5542 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
5543 }
5544 return roundAndPackInt64(aSign, aSig, aSigExtra, status);
5545
5546}
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
5559{
5560 flag aSign;
5561 int32_t aExp, shiftCount;
5562 uint64_t aSig;
5563 int64_t z;
5564
5565 if (floatx80_invalid_encoding(a)) {
5566 float_raise(float_flag_invalid, status);
5567 return 1ULL << 63;
5568 }
5569 aSig = extractFloatx80Frac( a );
5570 aExp = extractFloatx80Exp( a );
5571 aSign = extractFloatx80Sign( a );
5572 shiftCount = aExp - 0x403E;
5573 if ( 0 <= shiftCount ) {
5574 aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
5575 if ( ( a.high != 0xC03E ) || aSig ) {
5576 float_raise(float_flag_invalid, status);
5577 if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
5578 return LIT64( 0x7FFFFFFFFFFFFFFF );
5579 }
5580 }
5581 return (int64_t) LIT64( 0x8000000000000000 );
5582 }
5583 else if ( aExp < 0x3FFF ) {
5584 if (aExp | aSig) {
5585 status->float_exception_flags |= float_flag_inexact;
5586 }
5587 return 0;
5588 }
5589 z = aSig>>( - shiftCount );
5590 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
5591 status->float_exception_flags |= float_flag_inexact;
5592 }
5593 if ( aSign ) z = - z;
5594 return z;
5595
5596}
5597
5598
5599
5600
5601
5602
5603
5604
5605float32 floatx80_to_float32(floatx80 a, float_status *status)
5606{
5607 flag aSign;
5608 int32_t aExp;
5609 uint64_t aSig;
5610
5611 if (floatx80_invalid_encoding(a)) {
5612 float_raise(float_flag_invalid, status);
5613 return float32_default_nan(status);
5614 }
5615 aSig = extractFloatx80Frac( a );
5616 aExp = extractFloatx80Exp( a );
5617 aSign = extractFloatx80Sign( a );
5618 if ( aExp == 0x7FFF ) {
5619 if ( (uint64_t) ( aSig<<1 ) ) {
5620 return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
5621 }
5622 return packFloat32( aSign, 0xFF, 0 );
5623 }
5624 shift64RightJamming( aSig, 33, &aSig );
5625 if ( aExp || aSig ) aExp -= 0x3F81;
5626 return roundAndPackFloat32(aSign, aExp, aSig, status);
5627
5628}
5629
5630
5631
5632
5633
5634
5635
5636
5637float64 floatx80_to_float64(floatx80 a, float_status *status)
5638{
5639 flag aSign;
5640 int32_t aExp;
5641 uint64_t aSig, zSig;
5642
5643 if (floatx80_invalid_encoding(a)) {
5644 float_raise(float_flag_invalid, status);
5645 return float64_default_nan(status);
5646 }
5647 aSig = extractFloatx80Frac( a );
5648 aExp = extractFloatx80Exp( a );
5649 aSign = extractFloatx80Sign( a );
5650 if ( aExp == 0x7FFF ) {
5651 if ( (uint64_t) ( aSig<<1 ) ) {
5652 return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
5653 }
5654 return packFloat64( aSign, 0x7FF, 0 );
5655 }
5656 shift64RightJamming( aSig, 1, &zSig );
5657 if ( aExp || aSig ) aExp -= 0x3C01;
5658 return roundAndPackFloat64(aSign, aExp, zSig, status);
5659
5660}
5661
5662
5663
5664
5665
5666
5667
5668
5669float128 floatx80_to_float128(floatx80 a, float_status *status)
5670{
5671 flag aSign;
5672 int aExp;
5673 uint64_t aSig, zSig0, zSig1;
5674
5675 if (floatx80_invalid_encoding(a)) {
5676 float_raise(float_flag_invalid, status);
5677 return float128_default_nan(status);
5678 }
5679 aSig = extractFloatx80Frac( a );
5680 aExp = extractFloatx80Exp( a );
5681 aSign = extractFloatx80Sign( a );
5682 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
5683 return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
5684 }
5685 shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
5686 return packFloat128( aSign, aExp, zSig0, zSig1 );
5687
5688}
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698floatx80 floatx80_round(floatx80 a, float_status *status)
5699{
5700 return roundAndPackFloatx80(status->floatx80_rounding_precision,
5701 extractFloatx80Sign(a),
5702 extractFloatx80Exp(a),
5703 extractFloatx80Frac(a), 0, status);
5704}
5705
5706
5707
5708
5709
5710
5711
5712
5713floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
5714{
5715 flag aSign;
5716 int32_t aExp;
5717 uint64_t lastBitMask, roundBitsMask;
5718 floatx80 z;
5719
5720 if (floatx80_invalid_encoding(a)) {
5721 float_raise(float_flag_invalid, status);
5722 return floatx80_default_nan(status);
5723 }
5724 aExp = extractFloatx80Exp( a );
5725 if ( 0x403E <= aExp ) {
5726 if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
5727 return propagateFloatx80NaN(a, a, status);
5728 }
5729 return a;
5730 }
5731 if ( aExp < 0x3FFF ) {
5732 if ( ( aExp == 0 )
5733 && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
5734 return a;
5735 }
5736 status->float_exception_flags |= float_flag_inexact;
5737 aSign = extractFloatx80Sign( a );
5738 switch (status->float_rounding_mode) {
5739 case float_round_nearest_even:
5740 if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
5741 ) {
5742 return
5743 packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
5744 }
5745 break;
5746 case float_round_ties_away:
5747 if (aExp == 0x3FFE) {
5748 return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
5749 }
5750 break;
5751 case float_round_down:
5752 return
5753 aSign ?
5754 packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
5755 : packFloatx80( 0, 0, 0 );
5756 case float_round_up:
5757 return
5758 aSign ? packFloatx80( 1, 0, 0 )
5759 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
5760 }
5761 return packFloatx80( aSign, 0, 0 );
5762 }
5763 lastBitMask = 1;
5764 lastBitMask <<= 0x403E - aExp;
5765 roundBitsMask = lastBitMask - 1;
5766 z = a;
5767 switch (status->float_rounding_mode) {
5768 case float_round_nearest_even:
5769 z.low += lastBitMask>>1;
5770 if ((z.low & roundBitsMask) == 0) {
5771 z.low &= ~lastBitMask;
5772 }
5773 break;
5774 case float_round_ties_away:
5775 z.low += lastBitMask >> 1;
5776 break;
5777 case float_round_to_zero:
5778 break;
5779 case float_round_up:
5780 if (!extractFloatx80Sign(z)) {
5781 z.low += roundBitsMask;
5782 }
5783 break;
5784 case float_round_down:
5785 if (extractFloatx80Sign(z)) {
5786 z.low += roundBitsMask;
5787 }
5788 break;
5789 default:
5790 abort();
5791 }
5792 z.low &= ~ roundBitsMask;
5793 if ( z.low == 0 ) {
5794 ++z.high;
5795 z.low = LIT64( 0x8000000000000000 );
5796 }
5797 if (z.low != a.low) {
5798 status->float_exception_flags |= float_flag_inexact;
5799 }
5800 return z;
5801
5802}
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
5813 float_status *status)
5814{
5815 int32_t aExp, bExp, zExp;
5816 uint64_t aSig, bSig, zSig0, zSig1;
5817 int32_t expDiff;
5818
5819 aSig = extractFloatx80Frac( a );
5820 aExp = extractFloatx80Exp( a );
5821 bSig = extractFloatx80Frac( b );
5822 bExp = extractFloatx80Exp( b );
5823 expDiff = aExp - bExp;
5824 if ( 0 < expDiff ) {
5825 if ( aExp == 0x7FFF ) {
5826 if ((uint64_t)(aSig << 1)) {
5827 return propagateFloatx80NaN(a, b, status);
5828 }
5829 return a;
5830 }
5831 if ( bExp == 0 ) --expDiff;
5832 shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
5833 zExp = aExp;
5834 }
5835 else if ( expDiff < 0 ) {
5836 if ( bExp == 0x7FFF ) {
5837 if ((uint64_t)(bSig << 1)) {
5838 return propagateFloatx80NaN(a, b, status);
5839 }
5840 return packFloatx80(zSign,
5841 floatx80_infinity_high,
5842 floatx80_infinity_low);
5843 }
5844 if ( aExp == 0 ) ++expDiff;
5845 shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
5846 zExp = bExp;
5847 }
5848 else {
5849 if ( aExp == 0x7FFF ) {
5850 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
5851 return propagateFloatx80NaN(a, b, status);
5852 }
5853 return a;
5854 }
5855 zSig1 = 0;
5856 zSig0 = aSig + bSig;
5857 if ( aExp == 0 ) {
5858 normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
5859 goto roundAndPack;
5860 }
5861 zExp = aExp;
5862 goto shiftRight1;
5863 }
5864 zSig0 = aSig + bSig;
5865 if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
5866 shiftRight1:
5867 shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
5868 zSig0 |= LIT64( 0x8000000000000000 );
5869 ++zExp;
5870 roundAndPack:
5871 return roundAndPackFloatx80(status->floatx80_rounding_precision,
5872 zSign, zExp, zSig0, zSig1, status);
5873}
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
5884 float_status *status)
5885{
5886 int32_t aExp, bExp, zExp;
5887 uint64_t aSig, bSig, zSig0, zSig1;
5888 int32_t expDiff;
5889
5890 aSig = extractFloatx80Frac( a );
5891 aExp = extractFloatx80Exp( a );
5892 bSig = extractFloatx80Frac( b );
5893 bExp = extractFloatx80Exp( b );
5894 expDiff = aExp - bExp;
5895 if ( 0 < expDiff ) goto aExpBigger;
5896 if ( expDiff < 0 ) goto bExpBigger;
5897 if ( aExp == 0x7FFF ) {
5898 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
5899 return propagateFloatx80NaN(a, b, status);
5900 }
5901 float_raise(float_flag_invalid, status);
5902 return floatx80_default_nan(status);
5903 }
5904 if ( aExp == 0 ) {
5905 aExp = 1;
5906 bExp = 1;
5907 }
5908 zSig1 = 0;
5909 if ( bSig < aSig ) goto aBigger;
5910 if ( aSig < bSig ) goto bBigger;
5911 return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
5912 bExpBigger:
5913 if ( bExp == 0x7FFF ) {
5914 if ((uint64_t)(bSig << 1)) {
5915 return propagateFloatx80NaN(a, b, status);
5916 }
5917 return packFloatx80(zSign ^ 1, floatx80_infinity_high,
5918 floatx80_infinity_low);
5919 }
5920 if ( aExp == 0 ) ++expDiff;
5921 shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
5922 bBigger:
5923 sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
5924 zExp = bExp;
5925 zSign ^= 1;
5926 goto normalizeRoundAndPack;
5927 aExpBigger:
5928 if ( aExp == 0x7FFF ) {
5929 if ((uint64_t)(aSig << 1)) {
5930 return propagateFloatx80NaN(a, b, status);
5931 }
5932 return a;
5933 }
5934 if ( bExp == 0 ) --expDiff;
5935 shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
5936 aBigger:
5937 sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
5938 zExp = aExp;
5939 normalizeRoundAndPack:
5940 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
5941 zSign, zExp, zSig0, zSig1, status);
5942}
5943
5944
5945
5946
5947
5948
5949
5950floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
5951{
5952 flag aSign, bSign;
5953
5954 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
5955 float_raise(float_flag_invalid, status);
5956 return floatx80_default_nan(status);
5957 }
5958 aSign = extractFloatx80Sign( a );
5959 bSign = extractFloatx80Sign( b );
5960 if ( aSign == bSign ) {
5961 return addFloatx80Sigs(a, b, aSign, status);
5962 }
5963 else {
5964 return subFloatx80Sigs(a, b, aSign, status);
5965 }
5966
5967}
5968
5969
5970
5971
5972
5973
5974
5975floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
5976{
5977 flag aSign, bSign;
5978
5979 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
5980 float_raise(float_flag_invalid, status);
5981 return floatx80_default_nan(status);
5982 }
5983 aSign = extractFloatx80Sign( a );
5984 bSign = extractFloatx80Sign( b );
5985 if ( aSign == bSign ) {
5986 return subFloatx80Sigs(a, b, aSign, status);
5987 }
5988 else {
5989 return addFloatx80Sigs(a, b, aSign, status);
5990 }
5991
5992}
5993
5994
5995
5996
5997
5998
5999
6000floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
6001{
6002 flag aSign, bSign, zSign;
6003 int32_t aExp, bExp, zExp;
6004 uint64_t aSig, bSig, zSig0, zSig1;
6005
6006 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6007 float_raise(float_flag_invalid, status);
6008 return floatx80_default_nan(status);
6009 }
6010 aSig = extractFloatx80Frac( a );
6011 aExp = extractFloatx80Exp( a );
6012 aSign = extractFloatx80Sign( a );
6013 bSig = extractFloatx80Frac( b );
6014 bExp = extractFloatx80Exp( b );
6015 bSign = extractFloatx80Sign( b );
6016 zSign = aSign ^ bSign;
6017 if ( aExp == 0x7FFF ) {
6018 if ( (uint64_t) ( aSig<<1 )
6019 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
6020 return propagateFloatx80NaN(a, b, status);
6021 }
6022 if ( ( bExp | bSig ) == 0 ) goto invalid;
6023 return packFloatx80(zSign, floatx80_infinity_high,
6024 floatx80_infinity_low);
6025 }
6026 if ( bExp == 0x7FFF ) {
6027 if ((uint64_t)(bSig << 1)) {
6028 return propagateFloatx80NaN(a, b, status);
6029 }
6030 if ( ( aExp | aSig ) == 0 ) {
6031 invalid:
6032 float_raise(float_flag_invalid, status);
6033 return floatx80_default_nan(status);
6034 }
6035 return packFloatx80(zSign, floatx80_infinity_high,
6036 floatx80_infinity_low);
6037 }
6038 if ( aExp == 0 ) {
6039 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
6040 normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
6041 }
6042 if ( bExp == 0 ) {
6043 if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
6044 normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
6045 }
6046 zExp = aExp + bExp - 0x3FFE;
6047 mul64To128( aSig, bSig, &zSig0, &zSig1 );
6048 if ( 0 < (int64_t) zSig0 ) {
6049 shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
6050 --zExp;
6051 }
6052 return roundAndPackFloatx80(status->floatx80_rounding_precision,
6053 zSign, zExp, zSig0, zSig1, status);
6054}
6055
6056
6057
6058
6059
6060
6061
6062floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
6063{
6064 flag aSign, bSign, zSign;
6065 int32_t aExp, bExp, zExp;
6066 uint64_t aSig, bSig, zSig0, zSig1;
6067 uint64_t rem0, rem1, rem2, term0, term1, term2;
6068
6069 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6070 float_raise(float_flag_invalid, status);
6071 return floatx80_default_nan(status);
6072 }
6073 aSig = extractFloatx80Frac( a );
6074 aExp = extractFloatx80Exp( a );
6075 aSign = extractFloatx80Sign( a );
6076 bSig = extractFloatx80Frac( b );
6077 bExp = extractFloatx80Exp( b );
6078 bSign = extractFloatx80Sign( b );
6079 zSign = aSign ^ bSign;
6080 if ( aExp == 0x7FFF ) {
6081 if ((uint64_t)(aSig << 1)) {
6082 return propagateFloatx80NaN(a, b, status);
6083 }
6084 if ( bExp == 0x7FFF ) {
6085 if ((uint64_t)(bSig << 1)) {
6086 return propagateFloatx80NaN(a, b, status);
6087 }
6088 goto invalid;
6089 }
6090 return packFloatx80(zSign, floatx80_infinity_high,
6091 floatx80_infinity_low);
6092 }
6093 if ( bExp == 0x7FFF ) {
6094 if ((uint64_t)(bSig << 1)) {
6095 return propagateFloatx80NaN(a, b, status);
6096 }
6097 return packFloatx80( zSign, 0, 0 );
6098 }
6099 if ( bExp == 0 ) {
6100 if ( bSig == 0 ) {
6101 if ( ( aExp | aSig ) == 0 ) {
6102 invalid:
6103 float_raise(float_flag_invalid, status);
6104 return floatx80_default_nan(status);
6105 }
6106 float_raise(float_flag_divbyzero, status);
6107 return packFloatx80(zSign, floatx80_infinity_high,
6108 floatx80_infinity_low);
6109 }
6110 normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
6111 }
6112 if ( aExp == 0 ) {
6113 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
6114 normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
6115 }
6116 zExp = aExp - bExp + 0x3FFE;
6117 rem1 = 0;
6118 if ( bSig <= aSig ) {
6119 shift128Right( aSig, 0, 1, &aSig, &rem1 );
6120 ++zExp;
6121 }
6122 zSig0 = estimateDiv128To64( aSig, rem1, bSig );
6123 mul64To128( bSig, zSig0, &term0, &term1 );
6124 sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
6125 while ( (int64_t) rem0 < 0 ) {
6126 --zSig0;
6127 add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
6128 }
6129 zSig1 = estimateDiv128To64( rem1, 0, bSig );
6130 if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
6131 mul64To128( bSig, zSig1, &term1, &term2 );
6132 sub128( rem1, 0, term1, term2, &rem1, &rem2 );
6133 while ( (int64_t) rem1 < 0 ) {
6134 --zSig1;
6135 add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
6136 }
6137 zSig1 |= ( ( rem1 | rem2 ) != 0 );
6138 }
6139 return roundAndPackFloatx80(status->floatx80_rounding_precision,
6140 zSign, zExp, zSig0, zSig1, status);
6141}
6142
6143
6144
6145
6146
6147
6148
6149floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
6150{
6151 flag aSign, zSign;
6152 int32_t aExp, bExp, expDiff;
6153 uint64_t aSig0, aSig1, bSig;
6154 uint64_t q, term0, term1, alternateASig0, alternateASig1;
6155
6156 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6157 float_raise(float_flag_invalid, status);
6158 return floatx80_default_nan(status);
6159 }
6160 aSig0 = extractFloatx80Frac( a );
6161 aExp = extractFloatx80Exp( a );
6162 aSign = extractFloatx80Sign( a );
6163 bSig = extractFloatx80Frac( b );
6164 bExp = extractFloatx80Exp( b );
6165 if ( aExp == 0x7FFF ) {
6166 if ( (uint64_t) ( aSig0<<1 )
6167 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
6168 return propagateFloatx80NaN(a, b, status);
6169 }
6170 goto invalid;
6171 }
6172 if ( bExp == 0x7FFF ) {
6173 if ((uint64_t)(bSig << 1)) {
6174 return propagateFloatx80NaN(a, b, status);
6175 }
6176 return a;
6177 }
6178 if ( bExp == 0 ) {
6179 if ( bSig == 0 ) {
6180 invalid:
6181 float_raise(float_flag_invalid, status);
6182 return floatx80_default_nan(status);
6183 }
6184 normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
6185 }
6186 if ( aExp == 0 ) {
6187 if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
6188 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
6189 }
6190 bSig |= LIT64( 0x8000000000000000 );
6191 zSign = aSign;
6192 expDiff = aExp - bExp;
6193 aSig1 = 0;
6194 if ( expDiff < 0 ) {
6195 if ( expDiff < -1 ) return a;
6196 shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
6197 expDiff = 0;
6198 }
6199 q = ( bSig <= aSig0 );
6200 if ( q ) aSig0 -= bSig;
6201 expDiff -= 64;
6202 while ( 0 < expDiff ) {
6203 q = estimateDiv128To64( aSig0, aSig1, bSig );
6204 q = ( 2 < q ) ? q - 2 : 0;
6205 mul64To128( bSig, q, &term0, &term1 );
6206 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
6207 shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
6208 expDiff -= 62;
6209 }
6210 expDiff += 64;
6211 if ( 0 < expDiff ) {
6212 q = estimateDiv128To64( aSig0, aSig1, bSig );
6213 q = ( 2 < q ) ? q - 2 : 0;
6214 q >>= 64 - expDiff;
6215 mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
6216 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
6217 shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
6218 while ( le128( term0, term1, aSig0, aSig1 ) ) {
6219 ++q;
6220 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
6221 }
6222 }
6223 else {
6224 term1 = 0;
6225 term0 = bSig;
6226 }
6227 sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
6228 if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
6229 || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
6230 && ( q & 1 ) )
6231 ) {
6232 aSig0 = alternateASig0;
6233 aSig1 = alternateASig1;
6234 zSign = ! zSign;
6235 }
6236 return
6237 normalizeRoundAndPackFloatx80(
6238 80, zSign, bExp + expDiff, aSig0, aSig1, status);
6239
6240}
6241
6242
6243
6244
6245
6246
6247
6248floatx80 floatx80_sqrt(floatx80 a, float_status *status)
6249{
6250 flag aSign;
6251 int32_t aExp, zExp;
6252 uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
6253 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
6254
6255 if (floatx80_invalid_encoding(a)) {
6256 float_raise(float_flag_invalid, status);
6257 return floatx80_default_nan(status);
6258 }
6259 aSig0 = extractFloatx80Frac( a );
6260 aExp = extractFloatx80Exp( a );
6261 aSign = extractFloatx80Sign( a );
6262 if ( aExp == 0x7FFF ) {
6263 if ((uint64_t)(aSig0 << 1)) {
6264 return propagateFloatx80NaN(a, a, status);
6265 }
6266 if ( ! aSign ) return a;
6267 goto invalid;
6268 }
6269 if ( aSign ) {
6270 if ( ( aExp | aSig0 ) == 0 ) return a;
6271 invalid:
6272 float_raise(float_flag_invalid, status);
6273 return floatx80_default_nan(status);
6274 }
6275 if ( aExp == 0 ) {
6276 if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
6277 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
6278 }
6279 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
6280 zSig0 = estimateSqrt32( aExp, aSig0>>32 );
6281 shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
6282 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
6283 doubleZSig0 = zSig0<<1;
6284 mul64To128( zSig0, zSig0, &term0, &term1 );
6285 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6286 while ( (int64_t) rem0 < 0 ) {
6287 --zSig0;
6288 doubleZSig0 -= 2;
6289 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
6290 }
6291 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
6292 if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
6293 if ( zSig1 == 0 ) zSig1 = 1;
6294 mul64To128( doubleZSig0, zSig1, &term1, &term2 );
6295 sub128( rem1, 0, term1, term2, &rem1, &rem2 );
6296 mul64To128( zSig1, zSig1, &term2, &term3 );
6297 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6298 while ( (int64_t) rem1 < 0 ) {
6299 --zSig1;
6300 shortShift128Left( 0, zSig1, 1, &term2, &term3 );
6301 term3 |= 1;
6302 term2 |= doubleZSig0;
6303 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
6304 }
6305 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
6306 }
6307 shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
6308 zSig0 |= doubleZSig0;
6309 return roundAndPackFloatx80(status->floatx80_rounding_precision,
6310 0, zExp, zSig0, zSig1, status);
6311}
6312
6313
6314
6315
6316
6317
6318
6319
6320int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
6321{
6322
6323 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
6324 || (extractFloatx80Exp(a) == 0x7FFF
6325 && (uint64_t) (extractFloatx80Frac(a) << 1))
6326 || (extractFloatx80Exp(b) == 0x7FFF
6327 && (uint64_t) (extractFloatx80Frac(b) << 1))
6328 ) {
6329 float_raise(float_flag_invalid, status);
6330 return 0;
6331 }
6332 return
6333 ( a.low == b.low )
6334 && ( ( a.high == b.high )
6335 || ( ( a.low == 0 )
6336 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
6337 );
6338
6339}
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349int floatx80_le(floatx80 a, floatx80 b, float_status *status)
6350{
6351 flag aSign, bSign;
6352
6353 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
6354 || (extractFloatx80Exp(a) == 0x7FFF
6355 && (uint64_t) (extractFloatx80Frac(a) << 1))
6356 || (extractFloatx80Exp(b) == 0x7FFF
6357 && (uint64_t) (extractFloatx80Frac(b) << 1))
6358 ) {
6359 float_raise(float_flag_invalid, status);
6360 return 0;
6361 }
6362 aSign = extractFloatx80Sign( a );
6363 bSign = extractFloatx80Sign( b );
6364 if ( aSign != bSign ) {
6365 return
6366 aSign
6367 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6368 == 0 );
6369 }
6370 return
6371 aSign ? le128( b.high, b.low, a.high, a.low )
6372 : le128( a.high, a.low, b.high, b.low );
6373
6374}
6375
6376
6377
6378
6379
6380
6381
6382
6383int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
6384{
6385 flag aSign, bSign;
6386
6387 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
6388 || (extractFloatx80Exp(a) == 0x7FFF
6389 && (uint64_t) (extractFloatx80Frac(a) << 1))
6390 || (extractFloatx80Exp(b) == 0x7FFF
6391 && (uint64_t) (extractFloatx80Frac(b) << 1))
6392 ) {
6393 float_raise(float_flag_invalid, status);
6394 return 0;
6395 }
6396 aSign = extractFloatx80Sign( a );
6397 bSign = extractFloatx80Sign( b );
6398 if ( aSign != bSign ) {
6399 return
6400 aSign
6401 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6402 != 0 );
6403 }
6404 return
6405 aSign ? lt128( b.high, b.low, a.high, a.low )
6406 : lt128( a.high, a.low, b.high, b.low );
6407
6408}
6409
6410
6411
6412
6413
6414
6415
6416int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
6417{
6418 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
6419 || (extractFloatx80Exp(a) == 0x7FFF
6420 && (uint64_t) (extractFloatx80Frac(a) << 1))
6421 || (extractFloatx80Exp(b) == 0x7FFF
6422 && (uint64_t) (extractFloatx80Frac(b) << 1))
6423 ) {
6424 float_raise(float_flag_invalid, status);
6425 return 1;
6426 }
6427 return 0;
6428}
6429
6430
6431
6432
6433
6434
6435
6436
6437int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
6438{
6439
6440 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6441 float_raise(float_flag_invalid, status);
6442 return 0;
6443 }
6444 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
6445 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
6446 || ( ( extractFloatx80Exp( b ) == 0x7FFF )
6447 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
6448 ) {
6449 if (floatx80_is_signaling_nan(a, status)
6450 || floatx80_is_signaling_nan(b, status)) {
6451 float_raise(float_flag_invalid, status);
6452 }
6453 return 0;
6454 }
6455 return
6456 ( a.low == b.low )
6457 && ( ( a.high == b.high )
6458 || ( ( a.low == 0 )
6459 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
6460 );
6461
6462}
6463
6464
6465
6466
6467
6468
6469
6470
6471int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
6472{
6473 flag aSign, bSign;
6474
6475 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6476 float_raise(float_flag_invalid, status);
6477 return 0;
6478 }
6479 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
6480 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
6481 || ( ( extractFloatx80Exp( b ) == 0x7FFF )
6482 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
6483 ) {
6484 if (floatx80_is_signaling_nan(a, status)
6485 || floatx80_is_signaling_nan(b, status)) {
6486 float_raise(float_flag_invalid, status);
6487 }
6488 return 0;
6489 }
6490 aSign = extractFloatx80Sign( a );
6491 bSign = extractFloatx80Sign( b );
6492 if ( aSign != bSign ) {
6493 return
6494 aSign
6495 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6496 == 0 );
6497 }
6498 return
6499 aSign ? le128( b.high, b.low, a.high, a.low )
6500 : le128( a.high, a.low, b.high, b.low );
6501
6502}
6503
6504
6505
6506
6507
6508
6509
6510
6511int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
6512{
6513 flag aSign, bSign;
6514
6515 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6516 float_raise(float_flag_invalid, status);
6517 return 0;
6518 }
6519 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
6520 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
6521 || ( ( extractFloatx80Exp( b ) == 0x7FFF )
6522 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
6523 ) {
6524 if (floatx80_is_signaling_nan(a, status)
6525 || floatx80_is_signaling_nan(b, status)) {
6526 float_raise(float_flag_invalid, status);
6527 }
6528 return 0;
6529 }
6530 aSign = extractFloatx80Sign( a );
6531 bSign = extractFloatx80Sign( b );
6532 if ( aSign != bSign ) {
6533 return
6534 aSign
6535 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6536 != 0 );
6537 }
6538 return
6539 aSign ? lt128( b.high, b.low, a.high, a.low )
6540 : lt128( a.high, a.low, b.high, b.low );
6541
6542}
6543
6544
6545
6546
6547
6548
6549
6550int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
6551{
6552 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
6553 float_raise(float_flag_invalid, status);
6554 return 1;
6555 }
6556 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
6557 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
6558 || ( ( extractFloatx80Exp( b ) == 0x7FFF )
6559 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
6560 ) {
6561 if (floatx80_is_signaling_nan(a, status)
6562 || floatx80_is_signaling_nan(b, status)) {
6563 float_raise(float_flag_invalid, status);
6564 }
6565 return 1;
6566 }
6567 return 0;
6568}
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580int32_t float128_to_int32(float128 a, float_status *status)
6581{
6582 flag aSign;
6583 int32_t aExp, shiftCount;
6584 uint64_t aSig0, aSig1;
6585
6586 aSig1 = extractFloat128Frac1( a );
6587 aSig0 = extractFloat128Frac0( a );
6588 aExp = extractFloat128Exp( a );
6589 aSign = extractFloat128Sign( a );
6590 if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
6591 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
6592 aSig0 |= ( aSig1 != 0 );
6593 shiftCount = 0x4028 - aExp;
6594 if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
6595 return roundAndPackInt32(aSign, aSig0, status);
6596
6597}
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
6610{
6611 flag aSign;
6612 int32_t aExp, shiftCount;
6613 uint64_t aSig0, aSig1, savedASig;
6614 int32_t z;
6615
6616 aSig1 = extractFloat128Frac1( a );
6617 aSig0 = extractFloat128Frac0( a );
6618 aExp = extractFloat128Exp( a );
6619 aSign = extractFloat128Sign( a );
6620 aSig0 |= ( aSig1 != 0 );
6621 if ( 0x401E < aExp ) {
6622 if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
6623 goto invalid;
6624 }
6625 else if ( aExp < 0x3FFF ) {
6626 if (aExp || aSig0) {
6627 status->float_exception_flags |= float_flag_inexact;
6628 }
6629 return 0;
6630 }
6631 aSig0 |= LIT64( 0x0001000000000000 );
6632 shiftCount = 0x402F - aExp;
6633 savedASig = aSig0;
6634 aSig0 >>= shiftCount;
6635 z = aSig0;
6636 if ( aSign ) z = - z;
6637 if ( ( z < 0 ) ^ aSign ) {
6638 invalid:
6639 float_raise(float_flag_invalid, status);
6640 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
6641 }
6642 if ( ( aSig0<<shiftCount ) != savedASig ) {
6643 status->float_exception_flags |= float_flag_inexact;
6644 }
6645 return z;
6646
6647}
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659int64_t float128_to_int64(float128 a, float_status *status)
6660{
6661 flag aSign;
6662 int32_t aExp, shiftCount;
6663 uint64_t aSig0, aSig1;
6664
6665 aSig1 = extractFloat128Frac1( a );
6666 aSig0 = extractFloat128Frac0( a );
6667 aExp = extractFloat128Exp( a );
6668 aSign = extractFloat128Sign( a );
6669 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
6670 shiftCount = 0x402F - aExp;
6671 if ( shiftCount <= 0 ) {
6672 if ( 0x403E < aExp ) {
6673 float_raise(float_flag_invalid, status);
6674 if ( ! aSign
6675 || ( ( aExp == 0x7FFF )
6676 && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
6677 )
6678 ) {
6679 return LIT64( 0x7FFFFFFFFFFFFFFF );
6680 }
6681 return (int64_t) LIT64( 0x8000000000000000 );
6682 }
6683 shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
6684 }
6685 else {
6686 shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
6687 }
6688 return roundAndPackInt64(aSign, aSig0, aSig1, status);
6689
6690}
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
6703{
6704 flag aSign;
6705 int32_t aExp, shiftCount;
6706 uint64_t aSig0, aSig1;
6707 int64_t z;
6708
6709 aSig1 = extractFloat128Frac1( a );
6710 aSig0 = extractFloat128Frac0( a );
6711 aExp = extractFloat128Exp( a );
6712 aSign = extractFloat128Sign( a );
6713 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
6714 shiftCount = aExp - 0x402F;
6715 if ( 0 < shiftCount ) {
6716 if ( 0x403E <= aExp ) {
6717 aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
6718 if ( ( a.high == LIT64( 0xC03E000000000000 ) )
6719 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
6720 if (aSig1) {
6721 status->float_exception_flags |= float_flag_inexact;
6722 }
6723 }
6724 else {
6725 float_raise(float_flag_invalid, status);
6726 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
6727 return LIT64( 0x7FFFFFFFFFFFFFFF );
6728 }
6729 }
6730 return (int64_t) LIT64( 0x8000000000000000 );
6731 }
6732 z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
6733 if ( (uint64_t) ( aSig1<<shiftCount ) ) {
6734 status->float_exception_flags |= float_flag_inexact;
6735 }
6736 }
6737 else {
6738 if ( aExp < 0x3FFF ) {
6739 if ( aExp | aSig0 | aSig1 ) {
6740 status->float_exception_flags |= float_flag_inexact;
6741 }
6742 return 0;
6743 }
6744 z = aSig0>>( - shiftCount );
6745 if ( aSig1
6746 || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
6747 status->float_exception_flags |= float_flag_inexact;
6748 }
6749 }
6750 if ( aSign ) z = - z;
6751 return z;
6752
6753}
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767uint64_t float128_to_uint64(float128 a, float_status *status)
6768{
6769 flag aSign;
6770 int aExp;
6771 int shiftCount;
6772 uint64_t aSig0, aSig1;
6773
6774 aSig0 = extractFloat128Frac0(a);
6775 aSig1 = extractFloat128Frac1(a);
6776 aExp = extractFloat128Exp(a);
6777 aSign = extractFloat128Sign(a);
6778 if (aSign && (aExp > 0x3FFE)) {
6779 float_raise(float_flag_invalid, status);
6780 if (float128_is_any_nan(a)) {
6781 return LIT64(0xFFFFFFFFFFFFFFFF);
6782 } else {
6783 return 0;
6784 }
6785 }
6786 if (aExp) {
6787 aSig0 |= LIT64(0x0001000000000000);
6788 }
6789 shiftCount = 0x402F - aExp;
6790 if (shiftCount <= 0) {
6791 if (0x403E < aExp) {
6792 float_raise(float_flag_invalid, status);
6793 return LIT64(0xFFFFFFFFFFFFFFFF);
6794 }
6795 shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
6796 } else {
6797 shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
6798 }
6799 return roundAndPackUint64(aSign, aSig0, aSig1, status);
6800}
6801
6802uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
6803{
6804 uint64_t v;
6805 signed char current_rounding_mode = status->float_rounding_mode;
6806
6807 set_float_rounding_mode(float_round_to_zero, status);
6808 v = float128_to_uint64(a, status);
6809 set_float_rounding_mode(current_rounding_mode, status);
6810
6811 return v;
6812}
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
6826{
6827 uint64_t v;
6828 uint32_t res;
6829 int old_exc_flags = get_float_exception_flags(status);
6830
6831 v = float128_to_uint64_round_to_zero(a, status);
6832 if (v > 0xffffffff) {
6833 res = 0xffffffff;
6834 } else {
6835 return v;
6836 }
6837 set_float_exception_flags(old_exc_flags, status);
6838 float_raise(float_flag_invalid, status);
6839 return res;
6840}
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854uint32_t float128_to_uint32(float128 a, float_status *status)
6855{
6856 uint64_t v;
6857 uint32_t res;
6858 int old_exc_flags = get_float_exception_flags(status);
6859
6860 v = float128_to_uint64(a, status);
6861 if (v > 0xffffffff) {
6862 res = 0xffffffff;
6863 } else {
6864 return v;
6865 }
6866 set_float_exception_flags(old_exc_flags, status);
6867 float_raise(float_flag_invalid, status);
6868 return res;
6869}
6870
6871
6872
6873
6874
6875
6876
6877
6878float32 float128_to_float32(float128 a, float_status *status)
6879{
6880 flag aSign;
6881 int32_t aExp;
6882 uint64_t aSig0, aSig1;
6883 uint32_t zSig;
6884
6885 aSig1 = extractFloat128Frac1( a );
6886 aSig0 = extractFloat128Frac0( a );
6887 aExp = extractFloat128Exp( a );
6888 aSign = extractFloat128Sign( a );
6889 if ( aExp == 0x7FFF ) {
6890 if ( aSig0 | aSig1 ) {
6891 return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
6892 }
6893 return packFloat32( aSign, 0xFF, 0 );
6894 }
6895 aSig0 |= ( aSig1 != 0 );
6896 shift64RightJamming( aSig0, 18, &aSig0 );
6897 zSig = aSig0;
6898 if ( aExp || zSig ) {
6899 zSig |= 0x40000000;
6900 aExp -= 0x3F81;
6901 }
6902 return roundAndPackFloat32(aSign, aExp, zSig, status);
6903
6904}
6905
6906
6907
6908
6909
6910
6911
6912
6913float64 float128_to_float64(float128 a, float_status *status)
6914{
6915 flag aSign;
6916 int32_t aExp;
6917 uint64_t aSig0, aSig1;
6918
6919 aSig1 = extractFloat128Frac1( a );
6920 aSig0 = extractFloat128Frac0( a );
6921 aExp = extractFloat128Exp( a );
6922 aSign = extractFloat128Sign( a );
6923 if ( aExp == 0x7FFF ) {
6924 if ( aSig0 | aSig1 ) {
6925 return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
6926 }
6927 return packFloat64( aSign, 0x7FF, 0 );
6928 }
6929 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
6930 aSig0 |= ( aSig1 != 0 );
6931 if ( aExp || aSig0 ) {
6932 aSig0 |= LIT64( 0x4000000000000000 );
6933 aExp -= 0x3C01;
6934 }
6935 return roundAndPackFloat64(aSign, aExp, aSig0, status);
6936
6937}
6938
6939
6940
6941
6942
6943
6944
6945
6946floatx80 float128_to_floatx80(float128 a, float_status *status)
6947{
6948 flag aSign;
6949 int32_t aExp;
6950 uint64_t aSig0, aSig1;
6951
6952 aSig1 = extractFloat128Frac1( a );
6953 aSig0 = extractFloat128Frac0( a );
6954 aExp = extractFloat128Exp( a );
6955 aSign = extractFloat128Sign( a );
6956 if ( aExp == 0x7FFF ) {
6957 if ( aSig0 | aSig1 ) {
6958 return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
6959 }
6960 return packFloatx80(aSign, floatx80_infinity_high,
6961 floatx80_infinity_low);
6962 }
6963 if ( aExp == 0 ) {
6964 if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
6965 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6966 }
6967 else {
6968 aSig0 |= LIT64( 0x0001000000000000 );
6969 }
6970 shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
6971 return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
6972
6973}
6974
6975
6976
6977
6978
6979
6980
6981
6982float128 float128_round_to_int(float128 a, float_status *status)
6983{
6984 flag aSign;
6985 int32_t aExp;
6986 uint64_t lastBitMask, roundBitsMask;
6987 float128 z;
6988
6989 aExp = extractFloat128Exp( a );
6990 if ( 0x402F <= aExp ) {
6991 if ( 0x406F <= aExp ) {
6992 if ( ( aExp == 0x7FFF )
6993 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
6994 ) {
6995 return propagateFloat128NaN(a, a, status);
6996 }
6997 return a;
6998 }
6999 lastBitMask = 1;
7000 lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
7001 roundBitsMask = lastBitMask - 1;
7002 z = a;
7003 switch (status->float_rounding_mode) {
7004 case float_round_nearest_even:
7005 if ( lastBitMask ) {
7006 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
7007 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
7008 }
7009 else {
7010 if ( (int64_t) z.low < 0 ) {
7011 ++z.high;
7012 if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
7013 }
7014 }
7015 break;
7016 case float_round_ties_away:
7017 if (lastBitMask) {
7018 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
7019 } else {
7020 if ((int64_t) z.low < 0) {
7021 ++z.high;
7022 }
7023 }
7024 break;
7025 case float_round_to_zero:
7026 break;
7027 case float_round_up:
7028 if (!extractFloat128Sign(z)) {
7029 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
7030 }
7031 break;
7032 case float_round_down:
7033 if (extractFloat128Sign(z)) {
7034 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
7035 }
7036 break;
7037 case float_round_to_odd:
7038
7039
7040
7041
7042 if ((lastBitMask ? z.low & lastBitMask : z.high & 1) == 0) {
7043 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
7044 }
7045 break;
7046 default:
7047 abort();
7048 }
7049 z.low &= ~ roundBitsMask;
7050 }
7051 else {
7052 if ( aExp < 0x3FFF ) {
7053 if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
7054 status->float_exception_flags |= float_flag_inexact;
7055 aSign = extractFloat128Sign( a );
7056 switch (status->float_rounding_mode) {
7057 case float_round_nearest_even:
7058 if ( ( aExp == 0x3FFE )
7059 && ( extractFloat128Frac0( a )
7060 | extractFloat128Frac1( a ) )
7061 ) {
7062 return packFloat128( aSign, 0x3FFF, 0, 0 );
7063 }
7064 break;
7065 case float_round_ties_away:
7066 if (aExp == 0x3FFE) {
7067 return packFloat128(aSign, 0x3FFF, 0, 0);
7068 }
7069 break;
7070 case float_round_down:
7071 return
7072 aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
7073 : packFloat128( 0, 0, 0, 0 );
7074 case float_round_up:
7075 return
7076 aSign ? packFloat128( 1, 0, 0, 0 )
7077 : packFloat128( 0, 0x3FFF, 0, 0 );
7078
7079 case float_round_to_odd:
7080 return packFloat128(aSign, 0x3FFF, 0, 0);
7081 }
7082 return packFloat128( aSign, 0, 0, 0 );
7083 }
7084 lastBitMask = 1;
7085 lastBitMask <<= 0x402F - aExp;
7086 roundBitsMask = lastBitMask - 1;
7087 z.low = 0;
7088 z.high = a.high;
7089 switch (status->float_rounding_mode) {
7090 case float_round_nearest_even:
7091 z.high += lastBitMask>>1;
7092 if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
7093 z.high &= ~ lastBitMask;
7094 }
7095 break;
7096 case float_round_ties_away:
7097 z.high += lastBitMask>>1;
7098 break;
7099 case float_round_to_zero:
7100 break;
7101 case float_round_up:
7102 if (!extractFloat128Sign(z)) {
7103 z.high |= ( a.low != 0 );
7104 z.high += roundBitsMask;
7105 }
7106 break;
7107 case float_round_down:
7108 if (extractFloat128Sign(z)) {
7109 z.high |= (a.low != 0);
7110 z.high += roundBitsMask;
7111 }
7112 break;
7113 case float_round_to_odd:
7114 if ((z.high & lastBitMask) == 0) {
7115 z.high |= (a.low != 0);
7116 z.high += roundBitsMask;
7117 }
7118 break;
7119 default:
7120 abort();
7121 }
7122 z.high &= ~ roundBitsMask;
7123 }
7124 if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
7125 status->float_exception_flags |= float_flag_inexact;
7126 }
7127 return z;
7128
7129}
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
7140 float_status *status)
7141{
7142 int32_t aExp, bExp, zExp;
7143 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
7144 int32_t expDiff;
7145
7146 aSig1 = extractFloat128Frac1( a );
7147 aSig0 = extractFloat128Frac0( a );
7148 aExp = extractFloat128Exp( a );
7149 bSig1 = extractFloat128Frac1( b );
7150 bSig0 = extractFloat128Frac0( b );
7151 bExp = extractFloat128Exp( b );
7152 expDiff = aExp - bExp;
7153 if ( 0 < expDiff ) {
7154 if ( aExp == 0x7FFF ) {
7155 if (aSig0 | aSig1) {
7156 return propagateFloat128NaN(a, b, status);
7157 }
7158 return a;
7159 }
7160 if ( bExp == 0 ) {
7161 --expDiff;
7162 }
7163 else {
7164 bSig0 |= LIT64( 0x0001000000000000 );
7165 }
7166 shift128ExtraRightJamming(
7167 bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
7168 zExp = aExp;
7169 }
7170 else if ( expDiff < 0 ) {
7171 if ( bExp == 0x7FFF ) {
7172 if (bSig0 | bSig1) {
7173 return propagateFloat128NaN(a, b, status);
7174 }
7175 return packFloat128( zSign, 0x7FFF, 0, 0 );
7176 }
7177 if ( aExp == 0 ) {
7178 ++expDiff;
7179 }
7180 else {
7181 aSig0 |= LIT64( 0x0001000000000000 );
7182 }
7183 shift128ExtraRightJamming(
7184 aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
7185 zExp = bExp;
7186 }
7187 else {
7188 if ( aExp == 0x7FFF ) {
7189 if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
7190 return propagateFloat128NaN(a, b, status);
7191 }
7192 return a;
7193 }
7194 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
7195 if ( aExp == 0 ) {
7196 if (status->flush_to_zero) {
7197 if (zSig0 | zSig1) {
7198 float_raise(float_flag_output_denormal, status);
7199 }
7200 return packFloat128(zSign, 0, 0, 0);
7201 }
7202 return packFloat128( zSign, 0, zSig0, zSig1 );
7203 }
7204 zSig2 = 0;
7205 zSig0 |= LIT64( 0x0002000000000000 );
7206 zExp = aExp;
7207 goto shiftRight1;
7208 }
7209 aSig0 |= LIT64( 0x0001000000000000 );
7210 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
7211 --zExp;
7212 if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
7213 ++zExp;
7214 shiftRight1:
7215 shift128ExtraRightJamming(
7216 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
7217 roundAndPack:
7218 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
7219
7220}
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
7231 float_status *status)
7232{
7233 int32_t aExp, bExp, zExp;
7234 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
7235 int32_t expDiff;
7236
7237 aSig1 = extractFloat128Frac1( a );
7238 aSig0 = extractFloat128Frac0( a );
7239 aExp = extractFloat128Exp( a );
7240 bSig1 = extractFloat128Frac1( b );
7241 bSig0 = extractFloat128Frac0( b );
7242 bExp = extractFloat128Exp( b );
7243 expDiff = aExp - bExp;
7244 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
7245 shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
7246 if ( 0 < expDiff ) goto aExpBigger;
7247 if ( expDiff < 0 ) goto bExpBigger;
7248 if ( aExp == 0x7FFF ) {
7249 if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
7250 return propagateFloat128NaN(a, b, status);
7251 }
7252 float_raise(float_flag_invalid, status);
7253 return float128_default_nan(status);
7254 }
7255 if ( aExp == 0 ) {
7256 aExp = 1;
7257 bExp = 1;
7258 }
7259 if ( bSig0 < aSig0 ) goto aBigger;
7260 if ( aSig0 < bSig0 ) goto bBigger;
7261 if ( bSig1 < aSig1 ) goto aBigger;
7262 if ( aSig1 < bSig1 ) goto bBigger;
7263 return packFloat128(status->float_rounding_mode == float_round_down,
7264 0, 0, 0);
7265 bExpBigger:
7266 if ( bExp == 0x7FFF ) {
7267 if (bSig0 | bSig1) {
7268 return propagateFloat128NaN(a, b, status);
7269 }
7270 return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
7271 }
7272 if ( aExp == 0 ) {
7273 ++expDiff;
7274 }
7275 else {
7276 aSig0 |= LIT64( 0x4000000000000000 );
7277 }
7278 shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
7279 bSig0 |= LIT64( 0x4000000000000000 );
7280 bBigger:
7281 sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
7282 zExp = bExp;
7283 zSign ^= 1;
7284 goto normalizeRoundAndPack;
7285 aExpBigger:
7286 if ( aExp == 0x7FFF ) {
7287 if (aSig0 | aSig1) {
7288 return propagateFloat128NaN(a, b, status);
7289 }
7290 return a;
7291 }
7292 if ( bExp == 0 ) {
7293 --expDiff;
7294 }
7295 else {
7296 bSig0 |= LIT64( 0x4000000000000000 );
7297 }
7298 shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
7299 aSig0 |= LIT64( 0x4000000000000000 );
7300 aBigger:
7301 sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
7302 zExp = aExp;
7303 normalizeRoundAndPack:
7304 --zExp;
7305 return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
7306 status);
7307
7308}
7309
7310
7311
7312
7313
7314
7315
7316float128 float128_add(float128 a, float128 b, float_status *status)
7317{
7318 flag aSign, bSign;
7319
7320 aSign = extractFloat128Sign( a );
7321 bSign = extractFloat128Sign( b );
7322 if ( aSign == bSign ) {
7323 return addFloat128Sigs(a, b, aSign, status);
7324 }
7325 else {
7326 return subFloat128Sigs(a, b, aSign, status);
7327 }
7328
7329}
7330
7331
7332
7333
7334
7335
7336
7337float128 float128_sub(float128 a, float128 b, float_status *status)
7338{
7339 flag aSign, bSign;
7340
7341 aSign = extractFloat128Sign( a );
7342 bSign = extractFloat128Sign( b );
7343 if ( aSign == bSign ) {
7344 return subFloat128Sigs(a, b, aSign, status);
7345 }
7346 else {
7347 return addFloat128Sigs(a, b, aSign, status);
7348 }
7349
7350}
7351
7352
7353
7354
7355
7356
7357
7358float128 float128_mul(float128 a, float128 b, float_status *status)
7359{
7360 flag aSign, bSign, zSign;
7361 int32_t aExp, bExp, zExp;
7362 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
7363
7364 aSig1 = extractFloat128Frac1( a );
7365 aSig0 = extractFloat128Frac0( a );
7366 aExp = extractFloat128Exp( a );
7367 aSign = extractFloat128Sign( a );
7368 bSig1 = extractFloat128Frac1( b );
7369 bSig0 = extractFloat128Frac0( b );
7370 bExp = extractFloat128Exp( b );
7371 bSign = extractFloat128Sign( b );
7372 zSign = aSign ^ bSign;
7373 if ( aExp == 0x7FFF ) {
7374 if ( ( aSig0 | aSig1 )
7375 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
7376 return propagateFloat128NaN(a, b, status);
7377 }
7378 if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
7379 return packFloat128( zSign, 0x7FFF, 0, 0 );
7380 }
7381 if ( bExp == 0x7FFF ) {
7382 if (bSig0 | bSig1) {
7383 return propagateFloat128NaN(a, b, status);
7384 }
7385 if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
7386 invalid:
7387 float_raise(float_flag_invalid, status);
7388 return float128_default_nan(status);
7389 }
7390 return packFloat128( zSign, 0x7FFF, 0, 0 );
7391 }
7392 if ( aExp == 0 ) {
7393 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
7394 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
7395 }
7396 if ( bExp == 0 ) {
7397 if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
7398 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
7399 }
7400 zExp = aExp + bExp - 0x4000;
7401 aSig0 |= LIT64( 0x0001000000000000 );
7402 shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
7403 mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
7404 add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
7405 zSig2 |= ( zSig3 != 0 );
7406 if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
7407 shift128ExtraRightJamming(
7408 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
7409 ++zExp;
7410 }
7411 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
7412
7413}
7414
7415
7416
7417
7418
7419
7420
7421float128 float128_div(float128 a, float128 b, float_status *status)
7422{
7423 flag aSign, bSign, zSign;
7424 int32_t aExp, bExp, zExp;
7425 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
7426 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
7427
7428 aSig1 = extractFloat128Frac1( a );
7429 aSig0 = extractFloat128Frac0( a );
7430 aExp = extractFloat128Exp( a );
7431 aSign = extractFloat128Sign( a );
7432 bSig1 = extractFloat128Frac1( b );
7433 bSig0 = extractFloat128Frac0( b );
7434 bExp = extractFloat128Exp( b );
7435 bSign = extractFloat128Sign( b );
7436 zSign = aSign ^ bSign;
7437 if ( aExp == 0x7FFF ) {
7438 if (aSig0 | aSig1) {
7439 return propagateFloat128NaN(a, b, status);
7440 }
7441 if ( bExp == 0x7FFF ) {
7442 if (bSig0 | bSig1) {
7443 return propagateFloat128NaN(a, b, status);
7444 }
7445 goto invalid;
7446 }
7447 return packFloat128( zSign, 0x7FFF, 0, 0 );
7448 }
7449 if ( bExp == 0x7FFF ) {
7450 if (bSig0 | bSig1) {
7451 return propagateFloat128NaN(a, b, status);
7452 }
7453 return packFloat128( zSign, 0, 0, 0 );
7454 }
7455 if ( bExp == 0 ) {
7456 if ( ( bSig0 | bSig1 ) == 0 ) {
7457 if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
7458 invalid:
7459 float_raise(float_flag_invalid, status);
7460 return float128_default_nan(status);
7461 }
7462 float_raise(float_flag_divbyzero, status);
7463 return packFloat128( zSign, 0x7FFF, 0, 0 );
7464 }
7465 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
7466 }
7467 if ( aExp == 0 ) {
7468 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
7469 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
7470 }
7471 zExp = aExp - bExp + 0x3FFD;
7472 shortShift128Left(
7473 aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
7474 shortShift128Left(
7475 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
7476 if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
7477 shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
7478 ++zExp;
7479 }
7480 zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
7481 mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
7482 sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
7483 while ( (int64_t) rem0 < 0 ) {
7484 --zSig0;
7485 add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
7486 }
7487 zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
7488 if ( ( zSig1 & 0x3FFF ) <= 4 ) {
7489 mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
7490 sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
7491 while ( (int64_t) rem1 < 0 ) {
7492 --zSig1;
7493 add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
7494 }
7495 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
7496 }
7497 shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
7498 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
7499
7500}
7501
7502
7503
7504
7505
7506
7507
7508float128 float128_rem(float128 a, float128 b, float_status *status)
7509{
7510 flag aSign, zSign;
7511 int32_t aExp, bExp, expDiff;
7512 uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
7513 uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
7514 int64_t sigMean0;
7515
7516 aSig1 = extractFloat128Frac1( a );
7517 aSig0 = extractFloat128Frac0( a );
7518 aExp = extractFloat128Exp( a );
7519 aSign = extractFloat128Sign( a );
7520 bSig1 = extractFloat128Frac1( b );
7521 bSig0 = extractFloat128Frac0( b );
7522 bExp = extractFloat128Exp( b );
7523 if ( aExp == 0x7FFF ) {
7524 if ( ( aSig0 | aSig1 )
7525 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
7526 return propagateFloat128NaN(a, b, status);
7527 }
7528 goto invalid;
7529 }
7530 if ( bExp == 0x7FFF ) {
7531 if (bSig0 | bSig1) {
7532 return propagateFloat128NaN(a, b, status);
7533 }
7534 return a;
7535 }
7536 if ( bExp == 0 ) {
7537 if ( ( bSig0 | bSig1 ) == 0 ) {
7538 invalid:
7539 float_raise(float_flag_invalid, status);
7540 return float128_default_nan(status);
7541 }
7542 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
7543 }
7544 if ( aExp == 0 ) {
7545 if ( ( aSig0 | aSig1 ) == 0 ) return a;
7546 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
7547 }
7548 expDiff = aExp - bExp;
7549 if ( expDiff < -1 ) return a;
7550 shortShift128Left(
7551 aSig0 | LIT64( 0x0001000000000000 ),
7552 aSig1,
7553 15 - ( expDiff < 0 ),
7554 &aSig0,
7555 &aSig1
7556 );
7557 shortShift128Left(
7558 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
7559 q = le128( bSig0, bSig1, aSig0, aSig1 );
7560 if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
7561 expDiff -= 64;
7562 while ( 0 < expDiff ) {
7563 q = estimateDiv128To64( aSig0, aSig1, bSig0 );
7564 q = ( 4 < q ) ? q - 4 : 0;
7565 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
7566 shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
7567 shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
7568 sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
7569 expDiff -= 61;
7570 }
7571 if ( -64 < expDiff ) {
7572 q = estimateDiv128To64( aSig0, aSig1, bSig0 );
7573 q = ( 4 < q ) ? q - 4 : 0;
7574 q >>= - expDiff;
7575 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
7576 expDiff += 52;
7577 if ( expDiff < 0 ) {
7578 shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
7579 }
7580 else {
7581 shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
7582 }
7583 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
7584 sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
7585 }
7586 else {
7587 shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
7588 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
7589 }
7590 do {
7591 alternateASig0 = aSig0;
7592 alternateASig1 = aSig1;
7593 ++q;
7594 sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
7595 } while ( 0 <= (int64_t) aSig0 );
7596 add128(
7597 aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
7598 if ( ( sigMean0 < 0 )
7599 || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
7600 aSig0 = alternateASig0;
7601 aSig1 = alternateASig1;
7602 }
7603 zSign = ( (int64_t) aSig0 < 0 );
7604 if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
7605 return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
7606 status);
7607}
7608
7609
7610
7611
7612
7613
7614
7615float128 float128_sqrt(float128 a, float_status *status)
7616{
7617 flag aSign;
7618 int32_t aExp, zExp;
7619 uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
7620 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
7621
7622 aSig1 = extractFloat128Frac1( a );
7623 aSig0 = extractFloat128Frac0( a );
7624 aExp = extractFloat128Exp( a );
7625 aSign = extractFloat128Sign( a );
7626 if ( aExp == 0x7FFF ) {
7627 if (aSig0 | aSig1) {
7628 return propagateFloat128NaN(a, a, status);
7629 }
7630 if ( ! aSign ) return a;
7631 goto invalid;
7632 }
7633 if ( aSign ) {
7634 if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
7635 invalid:
7636 float_raise(float_flag_invalid, status);
7637 return float128_default_nan(status);
7638 }
7639 if ( aExp == 0 ) {
7640 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
7641 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
7642 }
7643 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
7644 aSig0 |= LIT64( 0x0001000000000000 );
7645 zSig0 = estimateSqrt32( aExp, aSig0>>17 );
7646 shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
7647 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
7648 doubleZSig0 = zSig0<<1;
7649 mul64To128( zSig0, zSig0, &term0, &term1 );
7650 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
7651 while ( (int64_t) rem0 < 0 ) {
7652 --zSig0;
7653 doubleZSig0 -= 2;
7654 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
7655 }
7656 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
7657 if ( ( zSig1 & 0x1FFF ) <= 5 ) {
7658 if ( zSig1 == 0 ) zSig1 = 1;
7659 mul64To128( doubleZSig0, zSig1, &term1, &term2 );
7660 sub128( rem1, 0, term1, term2, &rem1, &rem2 );
7661 mul64To128( zSig1, zSig1, &term2, &term3 );
7662 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
7663 while ( (int64_t) rem1 < 0 ) {
7664 --zSig1;
7665 shortShift128Left( 0, zSig1, 1, &term2, &term3 );
7666 term3 |= 1;
7667 term2 |= doubleZSig0;
7668 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
7669 }
7670 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
7671 }
7672 shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
7673 return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
7674
7675}
7676
7677
7678
7679
7680
7681
7682
7683
7684int float128_eq(float128 a, float128 b, float_status *status)
7685{
7686
7687 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7688 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7689 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7690 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7691 ) {
7692 float_raise(float_flag_invalid, status);
7693 return 0;
7694 }
7695 return
7696 ( a.low == b.low )
7697 && ( ( a.high == b.high )
7698 || ( ( a.low == 0 )
7699 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
7700 );
7701
7702}
7703
7704
7705
7706
7707
7708
7709
7710
7711int float128_le(float128 a, float128 b, float_status *status)
7712{
7713 flag aSign, bSign;
7714
7715 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7716 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7717 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7718 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7719 ) {
7720 float_raise(float_flag_invalid, status);
7721 return 0;
7722 }
7723 aSign = extractFloat128Sign( a );
7724 bSign = extractFloat128Sign( b );
7725 if ( aSign != bSign ) {
7726 return
7727 aSign
7728 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7729 == 0 );
7730 }
7731 return
7732 aSign ? le128( b.high, b.low, a.high, a.low )
7733 : le128( a.high, a.low, b.high, b.low );
7734
7735}
7736
7737
7738
7739
7740
7741
7742
7743
7744int float128_lt(float128 a, float128 b, float_status *status)
7745{
7746 flag aSign, bSign;
7747
7748 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7749 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7750 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7751 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7752 ) {
7753 float_raise(float_flag_invalid, status);
7754 return 0;
7755 }
7756 aSign = extractFloat128Sign( a );
7757 bSign = extractFloat128Sign( b );
7758 if ( aSign != bSign ) {
7759 return
7760 aSign
7761 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7762 != 0 );
7763 }
7764 return
7765 aSign ? lt128( b.high, b.low, a.high, a.low )
7766 : lt128( a.high, a.low, b.high, b.low );
7767
7768}
7769
7770
7771
7772
7773
7774
7775
7776
7777int float128_unordered(float128 a, float128 b, float_status *status)
7778{
7779 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7780 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7781 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7782 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7783 ) {
7784 float_raise(float_flag_invalid, status);
7785 return 1;
7786 }
7787 return 0;
7788}
7789
7790
7791
7792
7793
7794
7795
7796
7797int float128_eq_quiet(float128 a, float128 b, float_status *status)
7798{
7799
7800 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7801 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7802 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7803 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7804 ) {
7805 if (float128_is_signaling_nan(a, status)
7806 || float128_is_signaling_nan(b, status)) {
7807 float_raise(float_flag_invalid, status);
7808 }
7809 return 0;
7810 }
7811 return
7812 ( a.low == b.low )
7813 && ( ( a.high == b.high )
7814 || ( ( a.low == 0 )
7815 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
7816 );
7817
7818}
7819
7820
7821
7822
7823
7824
7825
7826
7827int float128_le_quiet(float128 a, float128 b, float_status *status)
7828{
7829 flag aSign, bSign;
7830
7831 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7832 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7833 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7834 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7835 ) {
7836 if (float128_is_signaling_nan(a, status)
7837 || float128_is_signaling_nan(b, status)) {
7838 float_raise(float_flag_invalid, status);
7839 }
7840 return 0;
7841 }
7842 aSign = extractFloat128Sign( a );
7843 bSign = extractFloat128Sign( b );
7844 if ( aSign != bSign ) {
7845 return
7846 aSign
7847 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7848 == 0 );
7849 }
7850 return
7851 aSign ? le128( b.high, b.low, a.high, a.low )
7852 : le128( a.high, a.low, b.high, b.low );
7853
7854}
7855
7856
7857
7858
7859
7860
7861
7862
7863int float128_lt_quiet(float128 a, float128 b, float_status *status)
7864{
7865 flag aSign, bSign;
7866
7867 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7868 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7869 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7870 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7871 ) {
7872 if (float128_is_signaling_nan(a, status)
7873 || float128_is_signaling_nan(b, status)) {
7874 float_raise(float_flag_invalid, status);
7875 }
7876 return 0;
7877 }
7878 aSign = extractFloat128Sign( a );
7879 bSign = extractFloat128Sign( b );
7880 if ( aSign != bSign ) {
7881 return
7882 aSign
7883 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7884 != 0 );
7885 }
7886 return
7887 aSign ? lt128( b.high, b.low, a.high, a.low )
7888 : lt128( a.high, a.low, b.high, b.low );
7889
7890}
7891
7892
7893
7894
7895
7896
7897
7898
7899int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7900{
7901 if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
7902 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7903 || ( ( extractFloat128Exp( b ) == 0x7FFF )
7904 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7905 ) {
7906 if (float128_is_signaling_nan(a, status)
7907 || float128_is_signaling_nan(b, status)) {
7908 float_raise(float_flag_invalid, status);
7909 }
7910 return 1;
7911 }
7912 return 0;
7913}
7914
7915static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
7916 int is_quiet, float_status *status)
7917{
7918 flag aSign, bSign;
7919
7920 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
7921 float_raise(float_flag_invalid, status);
7922 return float_relation_unordered;
7923 }
7924 if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
7925 ( extractFloatx80Frac( a )<<1 ) ) ||
7926 ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
7927 ( extractFloatx80Frac( b )<<1 ) )) {
7928 if (!is_quiet ||
7929 floatx80_is_signaling_nan(a, status) ||
7930 floatx80_is_signaling_nan(b, status)) {
7931 float_raise(float_flag_invalid, status);
7932 }
7933 return float_relation_unordered;
7934 }
7935 aSign = extractFloatx80Sign( a );
7936 bSign = extractFloatx80Sign( b );
7937 if ( aSign != bSign ) {
7938
7939 if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
7940 ( ( a.low | b.low ) == 0 ) ) {
7941
7942 return float_relation_equal;
7943 } else {
7944 return 1 - (2 * aSign);
7945 }
7946 } else {
7947 if (a.low == b.low && a.high == b.high) {
7948 return float_relation_equal;
7949 } else {
7950 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
7951 }
7952 }
7953}
7954
7955int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7956{
7957 return floatx80_compare_internal(a, b, 0, status);
7958}
7959
7960int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7961{
7962 return floatx80_compare_internal(a, b, 1, status);
7963}
7964
7965static inline int float128_compare_internal(float128 a, float128 b,
7966 int is_quiet, float_status *status)
7967{
7968 flag aSign, bSign;
7969
7970 if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
7971 ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
7972 ( ( extractFloat128Exp( b ) == 0x7fff ) &&
7973 ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
7974 if (!is_quiet ||
7975 float128_is_signaling_nan(a, status) ||
7976 float128_is_signaling_nan(b, status)) {
7977 float_raise(float_flag_invalid, status);
7978 }
7979 return float_relation_unordered;
7980 }
7981 aSign = extractFloat128Sign( a );
7982 bSign = extractFloat128Sign( b );
7983 if ( aSign != bSign ) {
7984 if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
7985
7986 return float_relation_equal;
7987 } else {
7988 return 1 - (2 * aSign);
7989 }
7990 } else {
7991 if (a.low == b.low && a.high == b.high) {
7992 return float_relation_equal;
7993 } else {
7994 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
7995 }
7996 }
7997}
7998
7999int float128_compare(float128 a, float128 b, float_status *status)
8000{
8001 return float128_compare_internal(a, b, 0, status);
8002}
8003
8004int float128_compare_quiet(float128 a, float128 b, float_status *status)
8005{
8006 return float128_compare_internal(a, b, 1, status);
8007}
8008
8009floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
8010{
8011 flag aSign;
8012 int32_t aExp;
8013 uint64_t aSig;
8014
8015 if (floatx80_invalid_encoding(a)) {
8016 float_raise(float_flag_invalid, status);
8017 return floatx80_default_nan(status);
8018 }
8019 aSig = extractFloatx80Frac( a );
8020 aExp = extractFloatx80Exp( a );
8021 aSign = extractFloatx80Sign( a );
8022
8023 if ( aExp == 0x7FFF ) {
8024 if ( aSig<<1 ) {
8025 return propagateFloatx80NaN(a, a, status);
8026 }
8027 return a;
8028 }
8029
8030 if (aExp == 0) {
8031 if (aSig == 0) {
8032 return a;
8033 }
8034 aExp++;
8035 }
8036
8037 if (n > 0x10000) {
8038 n = 0x10000;
8039 } else if (n < -0x10000) {
8040 n = -0x10000;
8041 }
8042
8043 aExp += n;
8044 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
8045 aSign, aExp, aSig, 0, status);
8046}
8047
8048float128 float128_scalbn(float128 a, int n, float_status *status)
8049{
8050 flag aSign;
8051 int32_t aExp;
8052 uint64_t aSig0, aSig1;
8053
8054 aSig1 = extractFloat128Frac1( a );
8055 aSig0 = extractFloat128Frac0( a );
8056 aExp = extractFloat128Exp( a );
8057 aSign = extractFloat128Sign( a );
8058 if ( aExp == 0x7FFF ) {
8059 if ( aSig0 | aSig1 ) {
8060 return propagateFloat128NaN(a, a, status);
8061 }
8062 return a;
8063 }
8064 if (aExp != 0) {
8065 aSig0 |= LIT64( 0x0001000000000000 );
8066 } else if (aSig0 == 0 && aSig1 == 0) {
8067 return a;
8068 } else {
8069 aExp++;
8070 }
8071
8072 if (n > 0x10000) {
8073 n = 0x10000;
8074 } else if (n < -0x10000) {
8075 n = -0x10000;
8076 }
8077
8078 aExp += n - 1;
8079 return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
8080 , status);
8081
8082}
8083
8084static void __attribute__((constructor)) softfloat_init(void)
8085{
8086 union_float64 ua, ub, uc, ur;
8087
8088 if (QEMU_NO_HARDFLOAT) {
8089 return;
8090 }
8091
8092
8093
8094
8095
8096 ua.s = 0x0020000000000001ULL;
8097 ub.s = 0x3ca0000000000000ULL;
8098 uc.s = 0x0020000000000000ULL;
8099 ur.h = fma(ua.h, ub.h, uc.h);
8100 if (ur.s != 0x0020000000000001ULL) {
8101 force_soft_fma = true;
8102 }
8103}
8104