qemu/hw/arm/mps2-tz.c
<<
>>
Prefs
   1/*
   2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
   3 *
   4 * Copyright (c) 2017 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
  13 * FPGA but is otherwise the same as the 2). Since the CPU itself
  14 * and most of the devices are in the FPGA, the details of the board
  15 * as seen by the guest depend significantly on the FPGA image.
  16 * This source file covers the following FPGA images, for TrustZone cores:
  17 *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
  18 *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
  19 *
  20 * Links to the TRM for the board itself and to the various Application
  21 * Notes which document the FPGA images can be found here:
  22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
  23 *
  24 * Board TRM:
  25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
  26 * Application Note AN505:
  27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
  28 * Application Note AN521:
  29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
  30 *
  31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
  32 * (ARM ECM0601256) for the details of some of the device layout:
  33 *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
  34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
  35 * most of the device layout:
  36 *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
  37 *
  38 */
  39
  40#include "qemu/osdep.h"
  41#include "qapi/error.h"
  42#include "qemu/error-report.h"
  43#include "hw/arm/boot.h"
  44#include "hw/arm/armv7m.h"
  45#include "hw/or-irq.h"
  46#include "hw/boards.h"
  47#include "exec/address-spaces.h"
  48#include "sysemu/sysemu.h"
  49#include "hw/misc/unimp.h"
  50#include "hw/char/cmsdk-apb-uart.h"
  51#include "hw/timer/cmsdk-apb-timer.h"
  52#include "hw/misc/mps2-scc.h"
  53#include "hw/misc/mps2-fpgaio.h"
  54#include "hw/misc/tz-mpc.h"
  55#include "hw/misc/tz-msc.h"
  56#include "hw/arm/armsse.h"
  57#include "hw/dma/pl080.h"
  58#include "hw/ssi/pl022.h"
  59#include "hw/net/lan9118.h"
  60#include "net/net.h"
  61#include "hw/core/split-irq.h"
  62
  63#define MPS2TZ_NUMIRQ 92
  64
  65typedef enum MPS2TZFPGAType {
  66    FPGA_AN505,
  67    FPGA_AN521,
  68} MPS2TZFPGAType;
  69
  70typedef struct {
  71    MachineClass parent;
  72    MPS2TZFPGAType fpga_type;
  73    uint32_t scc_id;
  74    const char *armsse_type;
  75} MPS2TZMachineClass;
  76
  77typedef struct {
  78    MachineState parent;
  79
  80    ARMSSE iotkit;
  81    MemoryRegion psram;
  82    MemoryRegion ssram[3];
  83    MemoryRegion ssram1_m;
  84    MPS2SCC scc;
  85    MPS2FPGAIO fpgaio;
  86    TZPPC ppc[5];
  87    TZMPC ssram_mpc[3];
  88    PL022State spi[5];
  89    UnimplementedDeviceState i2c[4];
  90    UnimplementedDeviceState i2s_audio;
  91    UnimplementedDeviceState gpio[4];
  92    UnimplementedDeviceState gfx;
  93    PL080State dma[4];
  94    TZMSC msc[4];
  95    CMSDKAPBUART uart[5];
  96    SplitIRQ sec_resp_splitter;
  97    qemu_or_irq uart_irq_orgate;
  98    DeviceState *lan9118;
  99    SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
 100} MPS2TZMachineState;
 101
 102#define TYPE_MPS2TZ_MACHINE "mps2tz"
 103#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
 104#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
 105
 106#define MPS2TZ_MACHINE(obj) \
 107    OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
 108#define MPS2TZ_MACHINE_GET_CLASS(obj) \
 109    OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
 110#define MPS2TZ_MACHINE_CLASS(klass) \
 111    OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
 112
 113/* Main SYSCLK frequency in Hz */
 114#define SYSCLK_FRQ 20000000
 115
 116/* Create an alias of an entire original MemoryRegion @orig
 117 * located at @base in the memory map.
 118 */
 119static void make_ram_alias(MemoryRegion *mr, const char *name,
 120                           MemoryRegion *orig, hwaddr base)
 121{
 122    memory_region_init_alias(mr, NULL, name, orig, 0,
 123                             memory_region_size(orig));
 124    memory_region_add_subregion(get_system_memory(), base, mr);
 125}
 126
 127static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
 128{
 129    /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
 130    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 131
 132    assert(irqno < MPS2TZ_NUMIRQ);
 133
 134    switch (mmc->fpga_type) {
 135    case FPGA_AN505:
 136        return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
 137    case FPGA_AN521:
 138        return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
 139    default:
 140        g_assert_not_reached();
 141    }
 142}
 143
 144/* Most of the devices in the AN505 FPGA image sit behind
 145 * Peripheral Protection Controllers. These data structures
 146 * define the layout of which devices sit behind which PPCs.
 147 * The devfn for each port is a function which creates, configures
 148 * and initializes the device, returning the MemoryRegion which
 149 * needs to be plugged into the downstream end of the PPC port.
 150 */
 151typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
 152                                const char *name, hwaddr size);
 153
 154typedef struct PPCPortInfo {
 155    const char *name;
 156    MakeDevFn *devfn;
 157    void *opaque;
 158    hwaddr addr;
 159    hwaddr size;
 160} PPCPortInfo;
 161
 162typedef struct PPCInfo {
 163    const char *name;
 164    PPCPortInfo ports[TZ_NUM_PORTS];
 165} PPCInfo;
 166
 167static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
 168                                       void *opaque,
 169                                       const char *name, hwaddr size)
 170{
 171    /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
 172     * and return a pointer to its MemoryRegion.
 173     */
 174    UnimplementedDeviceState *uds = opaque;
 175
 176    sysbus_init_child_obj(OBJECT(mms), name, uds,
 177                          sizeof(UnimplementedDeviceState),
 178                          TYPE_UNIMPLEMENTED_DEVICE);
 179    qdev_prop_set_string(DEVICE(uds), "name", name);
 180    qdev_prop_set_uint64(DEVICE(uds), "size", size);
 181    object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
 182    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 183}
 184
 185static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
 186                               const char *name, hwaddr size)
 187{
 188    CMSDKAPBUART *uart = opaque;
 189    int i = uart - &mms->uart[0];
 190    int rxirqno = i * 2;
 191    int txirqno = i * 2 + 1;
 192    int combirqno = i + 10;
 193    SysBusDevice *s;
 194    DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
 195
 196    sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
 197                          TYPE_CMSDK_APB_UART);
 198    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
 199    qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
 200    object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
 201    s = SYS_BUS_DEVICE(uart);
 202    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
 203    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
 204    sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
 205    sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
 206    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
 207    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
 208}
 209
 210static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
 211                              const char *name, hwaddr size)
 212{
 213    MPS2SCC *scc = opaque;
 214    DeviceState *sccdev;
 215    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 216
 217    sysbus_init_child_obj(OBJECT(mms), "scc", scc,
 218                          sizeof(mms->scc), TYPE_MPS2_SCC);
 219    sccdev = DEVICE(scc);
 220    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
 221    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
 222    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
 223    object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
 224    return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
 225}
 226
 227static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
 228                                 const char *name, hwaddr size)
 229{
 230    MPS2FPGAIO *fpgaio = opaque;
 231
 232    sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio,
 233                          sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
 234    object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
 235    return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
 236}
 237
 238static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
 239                                  const char *name, hwaddr size)
 240{
 241    SysBusDevice *s;
 242    NICInfo *nd = &nd_table[0];
 243
 244    /* In hardware this is a LAN9220; the LAN9118 is software compatible
 245     * except that it doesn't support the checksum-offload feature.
 246     */
 247    qemu_check_nic_model(nd, "lan9118");
 248    mms->lan9118 = qdev_create(NULL, TYPE_LAN9118);
 249    qdev_set_nic_properties(mms->lan9118, nd);
 250    qdev_init_nofail(mms->lan9118);
 251
 252    s = SYS_BUS_DEVICE(mms->lan9118);
 253    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
 254    return sysbus_mmio_get_region(s, 0);
 255}
 256
 257static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
 258                              const char *name, hwaddr size)
 259{
 260    TZMPC *mpc = opaque;
 261    int i = mpc - &mms->ssram_mpc[0];
 262    MemoryRegion *ssram = &mms->ssram[i];
 263    MemoryRegion *upstream;
 264    char *mpcname = g_strdup_printf("%s-mpc", name);
 265    static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
 266    static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
 267
 268    memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
 269
 270    sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
 271                          TYPE_TZ_MPC);
 272    object_property_set_link(OBJECT(mpc), OBJECT(ssram),
 273                             "downstream", &error_fatal);
 274    object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
 275    /* Map the upstream end of the MPC into system memory */
 276    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 277    memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
 278    /* and connect its interrupt to the IoTKit */
 279    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
 280                                qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 281                                                       "mpcexp_status", i));
 282
 283    /* The first SSRAM is a special case as it has an alias; accesses to
 284     * the alias region at 0x00400000 must also go to the MPC upstream.
 285     */
 286    if (i == 0) {
 287        make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
 288    }
 289
 290    g_free(mpcname);
 291    /* Return the register interface MR for our caller to map behind the PPC */
 292    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
 293}
 294
 295static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
 296                              const char *name, hwaddr size)
 297{
 298    PL080State *dma = opaque;
 299    int i = dma - &mms->dma[0];
 300    SysBusDevice *s;
 301    char *mscname = g_strdup_printf("%s-msc", name);
 302    TZMSC *msc = &mms->msc[i];
 303    DeviceState *iotkitdev = DEVICE(&mms->iotkit);
 304    MemoryRegion *msc_upstream;
 305    MemoryRegion *msc_downstream;
 306
 307    /*
 308     * Each DMA device is a PL081 whose transaction master interface
 309     * is guarded by a Master Security Controller. The downstream end of
 310     * the MSC connects to the IoTKit AHB Slave Expansion port, so the
 311     * DMA devices can see all devices and memory that the CPU does.
 312     */
 313    sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
 314    msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
 315    object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
 316                             "downstream", &error_fatal);
 317    object_property_set_link(OBJECT(msc), OBJECT(mms),
 318                             "idau", &error_fatal);
 319    object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
 320
 321    qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
 322                                qdev_get_gpio_in_named(iotkitdev,
 323                                                       "mscexp_status", i));
 324    qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
 325                                qdev_get_gpio_in_named(DEVICE(msc),
 326                                                       "irq_clear", 0));
 327    qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
 328                                qdev_get_gpio_in_named(DEVICE(msc),
 329                                                       "cfg_nonsec", 0));
 330    qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
 331                          ARRAY_SIZE(mms->ppc) + i,
 332                          qdev_get_gpio_in_named(DEVICE(msc),
 333                                                 "cfg_sec_resp", 0));
 334    msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
 335
 336    sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
 337    object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
 338                             "downstream", &error_fatal);
 339    object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
 340
 341    s = SYS_BUS_DEVICE(dma);
 342    /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
 343    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
 344    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
 345    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
 346
 347    g_free(mscname);
 348    return sysbus_mmio_get_region(s, 0);
 349}
 350
 351static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
 352                              const char *name, hwaddr size)
 353{
 354    /*
 355     * The AN505 has five PL022 SPI controllers.
 356     * One of these should have the LCD controller behind it; the others
 357     * are connected only to the FPGA's "general purpose SPI connector"
 358     * or "shield" expansion connectors.
 359     * Note that if we do implement devices behind SPI, the chip select
 360     * lines are set via the "MISC" register in the MPS2 FPGAIO device.
 361     */
 362    PL022State *spi = opaque;
 363    int i = spi - &mms->spi[0];
 364    SysBusDevice *s;
 365
 366    sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
 367                          TYPE_PL022);
 368    object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
 369    s = SYS_BUS_DEVICE(spi);
 370    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
 371    return sysbus_mmio_get_region(s, 0);
 372}
 373
 374static void mps2tz_common_init(MachineState *machine)
 375{
 376    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
 377    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 378    MachineClass *mc = MACHINE_GET_CLASS(machine);
 379    MemoryRegion *system_memory = get_system_memory();
 380    DeviceState *iotkitdev;
 381    DeviceState *dev_splitter;
 382    int i;
 383
 384    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
 385        error_report("This board can only be used with CPU %s",
 386                     mc->default_cpu_type);
 387        exit(1);
 388    }
 389
 390    sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
 391                          sizeof(mms->iotkit), mmc->armsse_type);
 392    iotkitdev = DEVICE(&mms->iotkit);
 393    object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
 394                             "memory", &error_abort);
 395    qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
 396    qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
 397    object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
 398                             &error_fatal);
 399
 400    /*
 401     * The AN521 needs us to create splitters to feed the IRQ inputs
 402     * for each CPU in the SSE-200 from each device in the board.
 403     */
 404    if (mmc->fpga_type == FPGA_AN521) {
 405        for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
 406            char *name = g_strdup_printf("mps2-irq-splitter%d", i);
 407            SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
 408
 409            object_initialize_child(OBJECT(machine), name,
 410                                    splitter, sizeof(*splitter),
 411                                    TYPE_SPLIT_IRQ, &error_fatal, NULL);
 412            g_free(name);
 413
 414            object_property_set_int(OBJECT(splitter), 2, "num-lines",
 415                                    &error_fatal);
 416            object_property_set_bool(OBJECT(splitter), true, "realized",
 417                                     &error_fatal);
 418            qdev_connect_gpio_out(DEVICE(splitter), 0,
 419                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 420                                                         "EXP_IRQ", i));
 421            qdev_connect_gpio_out(DEVICE(splitter), 1,
 422                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 423                                                         "EXP_CPU1_IRQ", i));
 424        }
 425    }
 426
 427    /* The sec_resp_cfg output from the IoTKit must be split into multiple
 428     * lines, one for each of the PPCs we create here, plus one per MSC.
 429     */
 430    object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
 431                      TYPE_SPLIT_IRQ);
 432    object_property_add_child(OBJECT(machine), "sec-resp-splitter",
 433                              OBJECT(&mms->sec_resp_splitter), &error_abort);
 434    object_property_set_int(OBJECT(&mms->sec_resp_splitter),
 435                            ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
 436                            "num-lines", &error_fatal);
 437    object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
 438                             "realized", &error_fatal);
 439    dev_splitter = DEVICE(&mms->sec_resp_splitter);
 440    qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
 441                                qdev_get_gpio_in(dev_splitter, 0));
 442
 443    /* The IoTKit sets up much of the memory layout, including
 444     * the aliases between secure and non-secure regions in the
 445     * address space. The FPGA itself contains:
 446     *
 447     * 0x00000000..0x003fffff  SSRAM1
 448     * 0x00400000..0x007fffff  alias of SSRAM1
 449     * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
 450     * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
 451     * 0x80000000..0x80ffffff  16MB PSRAM
 452     */
 453
 454    /* The FPGA images have an odd combination of different RAMs,
 455     * because in hardware they are different implementations and
 456     * connected to different buses, giving varying performance/size
 457     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
 458     * call the 16MB our "system memory", as it's the largest lump.
 459     */
 460    memory_region_allocate_system_memory(&mms->psram,
 461                                         NULL, "mps.ram", 0x01000000);
 462    memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
 463
 464    /* The overflow IRQs for all UARTs are ORed together.
 465     * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
 466     * Create the OR gate for this.
 467     */
 468    object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
 469                      TYPE_OR_IRQ);
 470    object_property_add_child(OBJECT(mms), "uart-irq-orgate",
 471                              OBJECT(&mms->uart_irq_orgate), &error_abort);
 472    object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
 473                            &error_fatal);
 474    object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
 475                             "realized", &error_fatal);
 476    qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
 477                          get_sse_irq_in(mms, 15));
 478
 479    /* Most of the devices in the FPGA are behind Peripheral Protection
 480     * Controllers. The required order for initializing things is:
 481     *  + initialize the PPC
 482     *  + initialize, configure and realize downstream devices
 483     *  + connect downstream device MemoryRegions to the PPC
 484     *  + realize the PPC
 485     *  + map the PPC's MemoryRegions to the places in the address map
 486     *    where the downstream devices should appear
 487     *  + wire up the PPC's control lines to the IoTKit object
 488     */
 489
 490    const PPCInfo ppcs[] = { {
 491            .name = "apb_ppcexp0",
 492            .ports = {
 493                { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
 494                { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
 495                { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
 496            },
 497        }, {
 498            .name = "apb_ppcexp1",
 499            .ports = {
 500                { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
 501                { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
 502                { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
 503                { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
 504                { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
 505                { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
 506                { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
 507                { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
 508                { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
 509                { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
 510                { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
 511                { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
 512                { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
 513                { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
 514            },
 515        }, {
 516            .name = "apb_ppcexp2",
 517            .ports = {
 518                { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
 519                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
 520                  0x40301000, 0x1000 },
 521                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
 522            },
 523        }, {
 524            .name = "ahb_ppcexp0",
 525            .ports = {
 526                { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
 527                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
 528                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
 529                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
 530                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
 531                { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
 532            },
 533        }, {
 534            .name = "ahb_ppcexp1",
 535            .ports = {
 536                { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
 537                { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
 538                { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
 539                { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
 540            },
 541        },
 542    };
 543
 544    for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
 545        const PPCInfo *ppcinfo = &ppcs[i];
 546        TZPPC *ppc = &mms->ppc[i];
 547        DeviceState *ppcdev;
 548        int port;
 549        char *gpioname;
 550
 551        sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
 552                              sizeof(TZPPC), TYPE_TZ_PPC);
 553        ppcdev = DEVICE(ppc);
 554
 555        for (port = 0; port < TZ_NUM_PORTS; port++) {
 556            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 557            MemoryRegion *mr;
 558            char *portname;
 559
 560            if (!pinfo->devfn) {
 561                continue;
 562            }
 563
 564            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
 565            portname = g_strdup_printf("port[%d]", port);
 566            object_property_set_link(OBJECT(ppc), OBJECT(mr),
 567                                     portname, &error_fatal);
 568            g_free(portname);
 569        }
 570
 571        object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
 572
 573        for (port = 0; port < TZ_NUM_PORTS; port++) {
 574            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
 575
 576            if (!pinfo->devfn) {
 577                continue;
 578            }
 579            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
 580
 581            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
 582            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
 583                                        qdev_get_gpio_in_named(ppcdev,
 584                                                               "cfg_nonsec",
 585                                                               port));
 586            g_free(gpioname);
 587            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
 588            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
 589                                        qdev_get_gpio_in_named(ppcdev,
 590                                                               "cfg_ap", port));
 591            g_free(gpioname);
 592        }
 593
 594        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
 595        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
 596                                    qdev_get_gpio_in_named(ppcdev,
 597                                                           "irq_enable", 0));
 598        g_free(gpioname);
 599        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
 600        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
 601                                    qdev_get_gpio_in_named(ppcdev,
 602                                                           "irq_clear", 0));
 603        g_free(gpioname);
 604        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
 605        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
 606                                    qdev_get_gpio_in_named(iotkitdev,
 607                                                           gpioname, 0));
 608        g_free(gpioname);
 609
 610        qdev_connect_gpio_out(dev_splitter, i,
 611                              qdev_get_gpio_in_named(ppcdev,
 612                                                     "cfg_sec_resp", 0));
 613    }
 614
 615    create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
 616
 617    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
 618}
 619
 620static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
 621                               int *iregion, bool *exempt, bool *ns, bool *nsc)
 622{
 623    /*
 624     * The MPS2 TZ FPGA images have IDAUs in them which are connected to
 625     * the Master Security Controllers. Thes have the same logic as
 626     * is used by the IoTKit for the IDAU connected to the CPU, except
 627     * that MSCs don't care about the NSC attribute.
 628     */
 629    int region = extract32(address, 28, 4);
 630
 631    *ns = !(region & 1);
 632    *nsc = false;
 633    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
 634    *exempt = (address & 0xeff00000) == 0xe0000000;
 635    *iregion = region;
 636}
 637
 638static void mps2tz_class_init(ObjectClass *oc, void *data)
 639{
 640    MachineClass *mc = MACHINE_CLASS(oc);
 641    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
 642
 643    mc->init = mps2tz_common_init;
 644    iic->check = mps2_tz_idau_check;
 645}
 646
 647static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
 648{
 649    MachineClass *mc = MACHINE_CLASS(oc);
 650    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
 651
 652    mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
 653    mc->default_cpus = 1;
 654    mc->min_cpus = mc->default_cpus;
 655    mc->max_cpus = mc->default_cpus;
 656    mmc->fpga_type = FPGA_AN505;
 657    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
 658    mmc->scc_id = 0x41045050;
 659    mmc->armsse_type = TYPE_IOTKIT;
 660}
 661
 662static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
 663{
 664    MachineClass *mc = MACHINE_CLASS(oc);
 665    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
 666
 667    mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
 668    mc->default_cpus = 2;
 669    mc->min_cpus = mc->default_cpus;
 670    mc->max_cpus = mc->default_cpus;
 671    mmc->fpga_type = FPGA_AN521;
 672    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
 673    mmc->scc_id = 0x41045210;
 674    mmc->armsse_type = TYPE_SSE200;
 675}
 676
 677static const TypeInfo mps2tz_info = {
 678    .name = TYPE_MPS2TZ_MACHINE,
 679    .parent = TYPE_MACHINE,
 680    .abstract = true,
 681    .instance_size = sizeof(MPS2TZMachineState),
 682    .class_size = sizeof(MPS2TZMachineClass),
 683    .class_init = mps2tz_class_init,
 684    .interfaces = (InterfaceInfo[]) {
 685        { TYPE_IDAU_INTERFACE },
 686        { }
 687    },
 688};
 689
 690static const TypeInfo mps2tz_an505_info = {
 691    .name = TYPE_MPS2TZ_AN505_MACHINE,
 692    .parent = TYPE_MPS2TZ_MACHINE,
 693    .class_init = mps2tz_an505_class_init,
 694};
 695
 696static const TypeInfo mps2tz_an521_info = {
 697    .name = TYPE_MPS2TZ_AN521_MACHINE,
 698    .parent = TYPE_MPS2TZ_MACHINE,
 699    .class_init = mps2tz_an521_class_init,
 700};
 701
 702static void mps2tz_machine_init(void)
 703{
 704    type_register_static(&mps2tz_info);
 705    type_register_static(&mps2tz_an505_info);
 706    type_register_static(&mps2tz_an521_info);
 707}
 708
 709type_init(mps2tz_machine_init);
 710