qemu/hw/arm/sbsa-ref.c
<<
>>
Prefs
   1/*
   2 * ARM SBSA Reference Platform emulation
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qapi/error.h"
  23#include "qemu/error-report.h"
  24#include "qemu/units.h"
  25#include "sysemu/device_tree.h"
  26#include "sysemu/numa.h"
  27#include "sysemu/sysemu.h"
  28#include "exec/address-spaces.h"
  29#include "exec/hwaddr.h"
  30#include "kvm_arm.h"
  31#include "hw/arm/boot.h"
  32#include "hw/block/flash.h"
  33#include "hw/boards.h"
  34#include "hw/ide/internal.h"
  35#include "hw/ide/ahci_internal.h"
  36#include "hw/intc/arm_gicv3_common.h"
  37#include "hw/loader.h"
  38#include "hw/pci-host/gpex.h"
  39#include "hw/usb.h"
  40#include "net/net.h"
  41
  42#define RAMLIMIT_GB 8192
  43#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
  44
  45#define NUM_IRQS        256
  46#define NUM_SMMU_IRQS   4
  47#define NUM_SATA_PORTS  6
  48
  49#define VIRTUAL_PMU_IRQ        7
  50#define ARCH_GIC_MAINT_IRQ     9
  51#define ARCH_TIMER_VIRT_IRQ    11
  52#define ARCH_TIMER_S_EL1_IRQ   13
  53#define ARCH_TIMER_NS_EL1_IRQ  14
  54#define ARCH_TIMER_NS_EL2_IRQ  10
  55
  56enum {
  57    SBSA_FLASH,
  58    SBSA_MEM,
  59    SBSA_CPUPERIPHS,
  60    SBSA_GIC_DIST,
  61    SBSA_GIC_REDIST,
  62    SBSA_SMMU,
  63    SBSA_UART,
  64    SBSA_RTC,
  65    SBSA_PCIE,
  66    SBSA_PCIE_MMIO,
  67    SBSA_PCIE_MMIO_HIGH,
  68    SBSA_PCIE_PIO,
  69    SBSA_PCIE_ECAM,
  70    SBSA_GPIO,
  71    SBSA_SECURE_UART,
  72    SBSA_SECURE_UART_MM,
  73    SBSA_SECURE_MEM,
  74    SBSA_AHCI,
  75    SBSA_EHCI,
  76};
  77
  78typedef struct MemMapEntry {
  79    hwaddr base;
  80    hwaddr size;
  81} MemMapEntry;
  82
  83typedef struct {
  84    MachineState parent;
  85    struct arm_boot_info bootinfo;
  86    int smp_cpus;
  87    void *fdt;
  88    int fdt_size;
  89    int psci_conduit;
  90    PFlashCFI01 *flash[2];
  91} SBSAMachineState;
  92
  93#define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
  94#define SBSA_MACHINE(obj) \
  95    OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
  96
  97static const MemMapEntry sbsa_ref_memmap[] = {
  98    /* 512M boot ROM */
  99    [SBSA_FLASH] =              {          0, 0x20000000 },
 100    /* 512M secure memory */
 101    [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
 102    /* Space reserved for CPU peripheral devices */
 103    [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
 104    [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
 105    [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
 106    [SBSA_UART] =               { 0x60000000, 0x00001000 },
 107    [SBSA_RTC] =                { 0x60010000, 0x00001000 },
 108    [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
 109    [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
 110    [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
 111    [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
 112    /* Space here reserved for more SMMUs */
 113    [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
 114    [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
 115    /* Space here reserved for other devices */
 116    [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
 117    /* 32-bit address PCIE MMIO space */
 118    [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
 119    /* 256M PCIE ECAM space */
 120    [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
 121    /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
 122    [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
 123    [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
 124};
 125
 126static const int sbsa_ref_irqmap[] = {
 127    [SBSA_UART] = 1,
 128    [SBSA_RTC] = 2,
 129    [SBSA_PCIE] = 3, /* ... to 6 */
 130    [SBSA_GPIO] = 7,
 131    [SBSA_SECURE_UART] = 8,
 132    [SBSA_SECURE_UART_MM] = 9,
 133    [SBSA_AHCI] = 10,
 134    [SBSA_EHCI] = 11,
 135};
 136
 137/*
 138 * Firmware on this machine only uses ACPI table to load OS, these limited
 139 * device tree nodes are just to let firmware know the info which varies from
 140 * command line parameters, so it is not necessary to be fully compatible
 141 * with the kernel CPU and NUMA binding rules.
 142 */
 143static void create_fdt(SBSAMachineState *sms)
 144{
 145    void *fdt = create_device_tree(&sms->fdt_size);
 146    const MachineState *ms = MACHINE(sms);
 147    int cpu;
 148
 149    if (!fdt) {
 150        error_report("create_device_tree() failed");
 151        exit(1);
 152    }
 153
 154    sms->fdt = fdt;
 155
 156    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
 157    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 158    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 159
 160    if (have_numa_distance) {
 161        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 162        uint32_t *matrix = g_malloc0(size);
 163        int idx, i, j;
 164
 165        for (i = 0; i < nb_numa_nodes; i++) {
 166            for (j = 0; j < nb_numa_nodes; j++) {
 167                idx = (i * nb_numa_nodes + j) * 3;
 168                matrix[idx + 0] = cpu_to_be32(i);
 169                matrix[idx + 1] = cpu_to_be32(j);
 170                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 171            }
 172        }
 173
 174        qemu_fdt_add_subnode(fdt, "/distance-map");
 175        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 176                         matrix, size);
 177        g_free(matrix);
 178    }
 179
 180    qemu_fdt_add_subnode(sms->fdt, "/cpus");
 181
 182    for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
 183        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 184        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 185        CPUState *cs = CPU(armcpu);
 186
 187        qemu_fdt_add_subnode(sms->fdt, nodename);
 188
 189        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 190            qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
 191                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 192        }
 193
 194        g_free(nodename);
 195    }
 196}
 197
 198#define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
 199
 200static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
 201                                        const char *name,
 202                                        const char *alias_prop_name)
 203{
 204    /*
 205     * Create a single flash device.  We use the same parameters as
 206     * the flash devices on the Versatile Express board.
 207     */
 208    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 209
 210    qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
 211    qdev_prop_set_uint8(dev, "width", 4);
 212    qdev_prop_set_uint8(dev, "device-width", 2);
 213    qdev_prop_set_bit(dev, "big-endian", false);
 214    qdev_prop_set_uint16(dev, "id0", 0x89);
 215    qdev_prop_set_uint16(dev, "id1", 0x18);
 216    qdev_prop_set_uint16(dev, "id2", 0x00);
 217    qdev_prop_set_uint16(dev, "id3", 0x00);
 218    qdev_prop_set_string(dev, "name", name);
 219    object_property_add_child(OBJECT(sms), name, OBJECT(dev),
 220                              &error_abort);
 221    object_property_add_alias(OBJECT(sms), alias_prop_name,
 222                              OBJECT(dev), "drive", &error_abort);
 223    return PFLASH_CFI01(dev);
 224}
 225
 226static void sbsa_flash_create(SBSAMachineState *sms)
 227{
 228    sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
 229    sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
 230}
 231
 232static void sbsa_flash_map1(PFlashCFI01 *flash,
 233                            hwaddr base, hwaddr size,
 234                            MemoryRegion *sysmem)
 235{
 236    DeviceState *dev = DEVICE(flash);
 237
 238    assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
 239    assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
 240    qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
 241    qdev_init_nofail(dev);
 242
 243    memory_region_add_subregion(sysmem, base,
 244                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
 245                                                       0));
 246}
 247
 248static void sbsa_flash_map(SBSAMachineState *sms,
 249                           MemoryRegion *sysmem,
 250                           MemoryRegion *secure_sysmem)
 251{
 252    /*
 253     * Map two flash devices to fill the SBSA_FLASH space in the memmap.
 254     * sysmem is the system memory space. secure_sysmem is the secure view
 255     * of the system, and the first flash device should be made visible only
 256     * there. The second flash device is visible to both secure and nonsecure.
 257     */
 258    hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
 259    hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
 260
 261    sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
 262                    secure_sysmem);
 263    sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
 264                    sysmem);
 265}
 266
 267static bool sbsa_firmware_init(SBSAMachineState *sms,
 268                               MemoryRegion *sysmem,
 269                               MemoryRegion *secure_sysmem)
 270{
 271    int i;
 272    BlockBackend *pflash_blk0;
 273
 274    /* Map legacy -drive if=pflash to machine properties */
 275    for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
 276        pflash_cfi01_legacy_drive(sms->flash[i],
 277                                  drive_get(IF_PFLASH, 0, i));
 278    }
 279
 280    sbsa_flash_map(sms, sysmem, secure_sysmem);
 281
 282    pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
 283
 284    if (bios_name) {
 285        char *fname;
 286        MemoryRegion *mr;
 287        int image_size;
 288
 289        if (pflash_blk0) {
 290            error_report("The contents of the first flash device may be "
 291                         "specified with -bios or with -drive if=pflash... "
 292                         "but you cannot use both options at once");
 293            exit(1);
 294        }
 295
 296        /* Fall back to -bios */
 297
 298        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 299        if (!fname) {
 300            error_report("Could not find ROM image '%s'", bios_name);
 301            exit(1);
 302        }
 303        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
 304        image_size = load_image_mr(fname, mr);
 305        g_free(fname);
 306        if (image_size < 0) {
 307            error_report("Could not load ROM image '%s'", bios_name);
 308            exit(1);
 309        }
 310    }
 311
 312    return pflash_blk0 || bios_name;
 313}
 314
 315static void create_secure_ram(SBSAMachineState *sms,
 316                              MemoryRegion *secure_sysmem)
 317{
 318    MemoryRegion *secram = g_new(MemoryRegion, 1);
 319    hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
 320    hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
 321
 322    memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
 323                           &error_fatal);
 324    memory_region_add_subregion(secure_sysmem, base, secram);
 325}
 326
 327static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
 328{
 329    unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
 330    DeviceState *gicdev;
 331    SysBusDevice *gicbusdev;
 332    const char *gictype;
 333    uint32_t redist0_capacity, redist0_count;
 334    int i;
 335
 336    gictype = gicv3_class_name();
 337
 338    gicdev = qdev_create(NULL, gictype);
 339    qdev_prop_set_uint32(gicdev, "revision", 3);
 340    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 341    /*
 342     * Note that the num-irq property counts both internal and external
 343     * interrupts; there are always 32 of the former (mandated by GIC spec).
 344     */
 345    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 346    qdev_prop_set_bit(gicdev, "has-security-extensions", true);
 347
 348    redist0_capacity =
 349                sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
 350    redist0_count = MIN(smp_cpus, redist0_capacity);
 351
 352    qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
 353    qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 354
 355    qdev_init_nofail(gicdev);
 356    gicbusdev = SYS_BUS_DEVICE(gicdev);
 357    sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
 358    sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
 359
 360    /*
 361     * Wire the outputs from each CPU's generic timer and the GICv3
 362     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 363     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 364     */
 365    for (i = 0; i < smp_cpus; i++) {
 366        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 367        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 368        int irq;
 369        /*
 370         * Mapping from the output timer irq lines from the CPU to the
 371         * GIC PPI inputs used for this board.
 372         */
 373        const int timer_irq[] = {
 374            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 375            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 376            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 377            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 378        };
 379
 380        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 381            qdev_connect_gpio_out(cpudev, irq,
 382                                  qdev_get_gpio_in(gicdev,
 383                                                   ppibase + timer_irq[irq]));
 384        }
 385
 386        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 387                                    qdev_get_gpio_in(gicdev, ppibase
 388                                                     + ARCH_GIC_MAINT_IRQ));
 389        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 390                                    qdev_get_gpio_in(gicdev, ppibase
 391                                                     + VIRTUAL_PMU_IRQ));
 392
 393        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 394        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 395                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 396        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 397                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 398        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 399                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 400    }
 401
 402    for (i = 0; i < NUM_IRQS; i++) {
 403        pic[i] = qdev_get_gpio_in(gicdev, i);
 404    }
 405}
 406
 407static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
 408                        MemoryRegion *mem, Chardev *chr)
 409{
 410    hwaddr base = sbsa_ref_memmap[uart].base;
 411    int irq = sbsa_ref_irqmap[uart];
 412    DeviceState *dev = qdev_create(NULL, "pl011");
 413    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 414
 415    qdev_prop_set_chr(dev, "chardev", chr);
 416    qdev_init_nofail(dev);
 417    memory_region_add_subregion(mem, base,
 418                                sysbus_mmio_get_region(s, 0));
 419    sysbus_connect_irq(s, 0, pic[irq]);
 420}
 421
 422static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
 423{
 424    hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
 425    int irq = sbsa_ref_irqmap[SBSA_RTC];
 426
 427    sysbus_create_simple("pl031", base, pic[irq]);
 428}
 429
 430static DeviceState *gpio_key_dev;
 431static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
 432{
 433    /* use gpio Pin 3 for power button event */
 434    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 435}
 436
 437static Notifier sbsa_ref_powerdown_notifier = {
 438    .notify = sbsa_ref_powerdown_req
 439};
 440
 441static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
 442{
 443    DeviceState *pl061_dev;
 444    hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
 445    int irq = sbsa_ref_irqmap[SBSA_GPIO];
 446
 447    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 448
 449    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 450                                        qdev_get_gpio_in(pl061_dev, 3));
 451
 452    /* connect powerdown request */
 453    qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
 454}
 455
 456static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
 457{
 458    hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
 459    int irq = sbsa_ref_irqmap[SBSA_AHCI];
 460    DeviceState *dev;
 461    DriveInfo *hd[NUM_SATA_PORTS];
 462    SysbusAHCIState *sysahci;
 463    AHCIState *ahci;
 464    int i;
 465
 466    dev = qdev_create(NULL, "sysbus-ahci");
 467    qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
 468    qdev_init_nofail(dev);
 469    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
 470    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
 471
 472    sysahci = SYSBUS_AHCI(dev);
 473    ahci = &sysahci->ahci;
 474    ide_drive_get(hd, ARRAY_SIZE(hd));
 475    for (i = 0; i < ahci->ports; i++) {
 476        if (hd[i] == NULL) {
 477            continue;
 478        }
 479        ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
 480    }
 481}
 482
 483static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
 484{
 485    hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
 486    int irq = sbsa_ref_irqmap[SBSA_EHCI];
 487
 488    sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
 489}
 490
 491static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
 492                        PCIBus *bus)
 493{
 494    hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
 495    int irq =  sbsa_ref_irqmap[SBSA_SMMU];
 496    DeviceState *dev;
 497    int i;
 498
 499    dev = qdev_create(NULL, "arm-smmuv3");
 500
 501    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
 502                             &error_abort);
 503    qdev_init_nofail(dev);
 504    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
 505    for (i = 0; i < NUM_SMMU_IRQS; i++) {
 506        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 507    }
 508}
 509
 510static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
 511{
 512    hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
 513    hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
 514    hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
 515    hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
 516    hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
 517    hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
 518    hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
 519    int irq = sbsa_ref_irqmap[SBSA_PCIE];
 520    MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
 521    MemoryRegion *ecam_alias, *ecam_reg;
 522    DeviceState *dev;
 523    PCIHostState *pci;
 524    int i;
 525
 526    dev = qdev_create(NULL, TYPE_GPEX_HOST);
 527    qdev_init_nofail(dev);
 528
 529    /* Map ECAM space */
 530    ecam_alias = g_new0(MemoryRegion, 1);
 531    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 532    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 533                             ecam_reg, 0, size_ecam);
 534    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 535
 536    /* Map the MMIO space */
 537    mmio_alias = g_new0(MemoryRegion, 1);
 538    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 539    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 540                             mmio_reg, base_mmio, size_mmio);
 541    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 542
 543    /* Map the MMIO_HIGH space */
 544    mmio_alias_high = g_new0(MemoryRegion, 1);
 545    memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
 546                             mmio_reg, base_mmio_high, size_mmio_high);
 547    memory_region_add_subregion(get_system_memory(), base_mmio_high,
 548                                mmio_alias_high);
 549
 550    /* Map IO port space */
 551    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 552
 553    for (i = 0; i < GPEX_NUM_IRQS; i++) {
 554        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 555        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
 556    }
 557
 558    pci = PCI_HOST_BRIDGE(dev);
 559    if (pci->bus) {
 560        for (i = 0; i < nb_nics; i++) {
 561            NICInfo *nd = &nd_table[i];
 562
 563            if (!nd->model) {
 564                nd->model = g_strdup("e1000e");
 565            }
 566
 567            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
 568        }
 569    }
 570
 571    pci_create_simple(pci->bus, -1, "VGA");
 572
 573    create_smmu(sms, pic, pci->bus);
 574}
 575
 576static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
 577{
 578    const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
 579                                                 bootinfo);
 580
 581    *fdt_size = board->fdt_size;
 582    return board->fdt;
 583}
 584
 585static void sbsa_ref_init(MachineState *machine)
 586{
 587    unsigned int smp_cpus = machine->smp.cpus;
 588    unsigned int max_cpus = machine->smp.max_cpus;
 589    SBSAMachineState *sms = SBSA_MACHINE(machine);
 590    MachineClass *mc = MACHINE_GET_CLASS(machine);
 591    MemoryRegion *sysmem = get_system_memory();
 592    MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
 593    MemoryRegion *ram = g_new(MemoryRegion, 1);
 594    bool firmware_loaded;
 595    const CPUArchIdList *possible_cpus;
 596    int n, sbsa_max_cpus;
 597    qemu_irq pic[NUM_IRQS];
 598
 599    if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
 600        error_report("sbsa-ref: CPU type other than the built-in "
 601                     "cortex-a57 not supported");
 602        exit(1);
 603    }
 604
 605    if (kvm_enabled()) {
 606        error_report("sbsa-ref: KVM is not supported for this machine");
 607        exit(1);
 608    }
 609
 610    /*
 611     * The Secure view of the world is the same as the NonSecure,
 612     * but with a few extra devices. Create it as a container region
 613     * containing the system memory at low priority; any secure-only
 614     * devices go in at higher priority and take precedence.
 615     */
 616    memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
 617                       UINT64_MAX);
 618    memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
 619
 620    firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
 621
 622    if (machine->kernel_filename && firmware_loaded) {
 623        error_report("sbsa-ref: No fw_cfg device on this machine, "
 624                     "so -kernel option is not supported when firmware loaded, "
 625                     "please load OS from hard disk instead");
 626        exit(1);
 627    }
 628
 629    /*
 630     * This machine has EL3 enabled, external firmware should supply PSCI
 631     * implementation, so the QEMU's internal PSCI is disabled.
 632     */
 633    sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
 634
 635    sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
 636
 637    if (max_cpus > sbsa_max_cpus) {
 638        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
 639                     "supported by machine 'sbsa-ref' (%d)",
 640                     max_cpus, sbsa_max_cpus);
 641        exit(1);
 642    }
 643
 644    sms->smp_cpus = smp_cpus;
 645
 646    if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
 647        error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
 648        exit(1);
 649    }
 650
 651    possible_cpus = mc->possible_cpu_arch_ids(machine);
 652    for (n = 0; n < possible_cpus->len; n++) {
 653        Object *cpuobj;
 654        CPUState *cs;
 655
 656        if (n >= smp_cpus) {
 657            break;
 658        }
 659
 660        cpuobj = object_new(possible_cpus->cpus[n].type);
 661        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
 662                                "mp-affinity", NULL);
 663
 664        cs = CPU(cpuobj);
 665        cs->cpu_index = n;
 666
 667        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
 668                          &error_fatal);
 669
 670        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
 671            object_property_set_int(cpuobj,
 672                                    sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
 673                                    "reset-cbar", &error_abort);
 674        }
 675
 676        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
 677                                 &error_abort);
 678
 679        object_property_set_link(cpuobj, OBJECT(secure_sysmem),
 680                                 "secure-memory", &error_abort);
 681
 682        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
 683        object_unref(cpuobj);
 684    }
 685
 686    memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
 687                                         machine->ram_size);
 688    memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
 689
 690    create_fdt(sms);
 691
 692    create_secure_ram(sms, secure_sysmem);
 693
 694    create_gic(sms, pic);
 695
 696    create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
 697    create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
 698    /* Second secure UART for RAS and MM from EL0 */
 699    create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
 700
 701    create_rtc(sms, pic);
 702
 703    create_gpio(sms, pic);
 704
 705    create_ahci(sms, pic);
 706
 707    create_ehci(sms, pic);
 708
 709    create_pcie(sms, pic);
 710
 711    sms->bootinfo.ram_size = machine->ram_size;
 712    sms->bootinfo.kernel_filename = machine->kernel_filename;
 713    sms->bootinfo.nb_cpus = smp_cpus;
 714    sms->bootinfo.board_id = -1;
 715    sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
 716    sms->bootinfo.get_dtb = sbsa_ref_dtb;
 717    sms->bootinfo.firmware_loaded = firmware_loaded;
 718    arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
 719}
 720
 721static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
 722{
 723    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
 724    return arm_cpu_mp_affinity(idx, clustersz);
 725}
 726
 727static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
 728{
 729    unsigned int max_cpus = ms->smp.max_cpus;
 730    SBSAMachineState *sms = SBSA_MACHINE(ms);
 731    int n;
 732
 733    if (ms->possible_cpus) {
 734        assert(ms->possible_cpus->len == max_cpus);
 735        return ms->possible_cpus;
 736    }
 737
 738    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 739                                  sizeof(CPUArchId) * max_cpus);
 740    ms->possible_cpus->len = max_cpus;
 741    for (n = 0; n < ms->possible_cpus->len; n++) {
 742        ms->possible_cpus->cpus[n].type = ms->cpu_type;
 743        ms->possible_cpus->cpus[n].arch_id =
 744            sbsa_ref_cpu_mp_affinity(sms, n);
 745        ms->possible_cpus->cpus[n].props.has_thread_id = true;
 746        ms->possible_cpus->cpus[n].props.thread_id = n;
 747    }
 748    return ms->possible_cpus;
 749}
 750
 751static CpuInstanceProperties
 752sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 753{
 754    MachineClass *mc = MACHINE_GET_CLASS(ms);
 755    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 756
 757    assert(cpu_index < possible_cpus->len);
 758    return possible_cpus->cpus[cpu_index].props;
 759}
 760
 761static int64_t
 762sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
 763{
 764    return idx % nb_numa_nodes;
 765}
 766
 767static void sbsa_ref_instance_init(Object *obj)
 768{
 769    SBSAMachineState *sms = SBSA_MACHINE(obj);
 770
 771    sbsa_flash_create(sms);
 772}
 773
 774static void sbsa_ref_class_init(ObjectClass *oc, void *data)
 775{
 776    MachineClass *mc = MACHINE_CLASS(oc);
 777
 778    mc->init = sbsa_ref_init;
 779    mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
 780    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
 781    mc->max_cpus = 512;
 782    mc->pci_allow_0_address = true;
 783    mc->minimum_page_bits = 12;
 784    mc->block_default_type = IF_IDE;
 785    mc->no_cdrom = 1;
 786    mc->default_ram_size = 1 * GiB;
 787    mc->default_cpus = 4;
 788    mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
 789    mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
 790    mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
 791}
 792
 793static const TypeInfo sbsa_ref_info = {
 794    .name          = TYPE_SBSA_MACHINE,
 795    .parent        = TYPE_MACHINE,
 796    .instance_init = sbsa_ref_instance_init,
 797    .class_init    = sbsa_ref_class_init,
 798    .instance_size = sizeof(SBSAMachineState),
 799};
 800
 801static void sbsa_ref_machine_init(void)
 802{
 803    type_register_static(&sbsa_ref_info);
 804}
 805
 806type_init(sbsa_ref_machine_init);
 807