qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu-common.h"
  33#include "qemu/units.h"
  34#include "qemu/option.h"
  35#include "qapi/error.h"
  36#include "hw/sysbus.h"
  37#include "hw/arm/boot.h"
  38#include "hw/arm/primecell.h"
  39#include "hw/arm/virt.h"
  40#include "hw/block/flash.h"
  41#include "hw/vfio/vfio-calxeda-xgmac.h"
  42#include "hw/vfio/vfio-amd-xgbe.h"
  43#include "hw/display/ramfb.h"
  44#include "net/net.h"
  45#include "sysemu/device_tree.h"
  46#include "sysemu/numa.h"
  47#include "sysemu/sysemu.h"
  48#include "sysemu/kvm.h"
  49#include "hw/loader.h"
  50#include "exec/address-spaces.h"
  51#include "qemu/bitops.h"
  52#include "qemu/error-report.h"
  53#include "qemu/module.h"
  54#include "hw/pci-host/gpex.h"
  55#include "hw/arm/sysbus-fdt.h"
  56#include "hw/platform-bus.h"
  57#include "hw/arm/fdt.h"
  58#include "hw/intc/arm_gic.h"
  59#include "hw/intc/arm_gicv3_common.h"
  60#include "kvm_arm.h"
  61#include "hw/firmware/smbios.h"
  62#include "qapi/visitor.h"
  63#include "standard-headers/linux/input.h"
  64#include "hw/arm/smmuv3.h"
  65#include "hw/acpi/acpi.h"
  66#include "target/arm/internals.h"
  67
  68#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  69    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  70                                                    void *data) \
  71    { \
  72        MachineClass *mc = MACHINE_CLASS(oc); \
  73        virt_machine_##major##_##minor##_options(mc); \
  74        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  75        if (latest) { \
  76            mc->alias = "virt"; \
  77        } \
  78    } \
  79    static const TypeInfo machvirt_##major##_##minor##_info = { \
  80        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  81        .parent = TYPE_VIRT_MACHINE, \
  82        .class_init = virt_##major##_##minor##_class_init, \
  83    }; \
  84    static void machvirt_machine_##major##_##minor##_init(void) \
  85    { \
  86        type_register_static(&machvirt_##major##_##minor##_info); \
  87    } \
  88    type_init(machvirt_machine_##major##_##minor##_init);
  89
  90#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  91    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  92#define DEFINE_VIRT_MACHINE(major, minor) \
  93    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  94
  95
  96/* Number of external interrupt lines to configure the GIC with */
  97#define NUM_IRQS 256
  98
  99#define PLATFORM_BUS_NUM_IRQS 64
 100
 101/* Legacy RAM limit in GB (< version 4.0) */
 102#define LEGACY_RAMLIMIT_GB 255
 103#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 104
 105/* Addresses and sizes of our components.
 106 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 107 * 128MB..256MB is used for miscellaneous device I/O.
 108 * 256MB..1GB is reserved for possible future PCI support (ie where the
 109 * PCI memory window will go if we add a PCI host controller).
 110 * 1GB and up is RAM (which may happily spill over into the
 111 * high memory region beyond 4GB).
 112 * This represents a compromise between how much RAM can be given to
 113 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 114 * Note that devices should generally be placed at multiples of 0x10000,
 115 * to accommodate guests using 64K pages.
 116 */
 117static const MemMapEntry base_memmap[] = {
 118    /* Space up to 0x8000000 is reserved for a boot ROM */
 119    [VIRT_FLASH] =              {          0, 0x08000000 },
 120    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 121    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 122    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 123    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 124    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 125    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 126    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 127    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 128    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 129    /* This redistributor space allows up to 2*64kB*123 CPUs */
 130    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 131    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 132    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 133    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 134    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 135    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 136    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 137    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 138    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 139    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 140    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 141    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 142    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 143    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 144    /* Actual RAM size depends on initial RAM and device memory settings */
 145    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 146};
 147
 148/*
 149 * Highmem IO Regions: This memory map is floating, located after the RAM.
 150 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 151 * top of the RAM, so that its base get the same alignment as the size,
 152 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 153 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 154 * Note the extended_memmap is sized so that it eventually also includes the
 155 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 156 * index of base_memmap).
 157 */
 158static MemMapEntry extended_memmap[] = {
 159    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 160    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 161    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 162    /* Second PCIe window */
 163    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 164};
 165
 166static const int a15irqmap[] = {
 167    [VIRT_UART] = 1,
 168    [VIRT_RTC] = 2,
 169    [VIRT_PCIE] = 3, /* ... to 6 */
 170    [VIRT_GPIO] = 7,
 171    [VIRT_SECURE_UART] = 8,
 172    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 173    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 174    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 175    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 176};
 177
 178static const char *valid_cpus[] = {
 179    ARM_CPU_TYPE_NAME("cortex-a7"),
 180    ARM_CPU_TYPE_NAME("cortex-a15"),
 181    ARM_CPU_TYPE_NAME("cortex-a53"),
 182    ARM_CPU_TYPE_NAME("cortex-a57"),
 183    ARM_CPU_TYPE_NAME("cortex-a72"),
 184    ARM_CPU_TYPE_NAME("host"),
 185    ARM_CPU_TYPE_NAME("max"),
 186};
 187
 188static bool cpu_type_valid(const char *cpu)
 189{
 190    int i;
 191
 192    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 193        if (strcmp(cpu, valid_cpus[i]) == 0) {
 194            return true;
 195        }
 196    }
 197    return false;
 198}
 199
 200static void create_fdt(VirtMachineState *vms)
 201{
 202    void *fdt = create_device_tree(&vms->fdt_size);
 203
 204    if (!fdt) {
 205        error_report("create_device_tree() failed");
 206        exit(1);
 207    }
 208
 209    vms->fdt = fdt;
 210
 211    /* Header */
 212    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 213    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 214    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 215
 216    /* /chosen must exist for load_dtb to fill in necessary properties later */
 217    qemu_fdt_add_subnode(fdt, "/chosen");
 218
 219    /* Clock node, for the benefit of the UART. The kernel device tree
 220     * binding documentation claims the PL011 node clock properties are
 221     * optional but in practice if you omit them the kernel refuses to
 222     * probe for the device.
 223     */
 224    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 225    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 226    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 227    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 228    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 229    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 230                                "clk24mhz");
 231    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 232
 233    if (have_numa_distance) {
 234        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 235        uint32_t *matrix = g_malloc0(size);
 236        int idx, i, j;
 237
 238        for (i = 0; i < nb_numa_nodes; i++) {
 239            for (j = 0; j < nb_numa_nodes; j++) {
 240                idx = (i * nb_numa_nodes + j) * 3;
 241                matrix[idx + 0] = cpu_to_be32(i);
 242                matrix[idx + 1] = cpu_to_be32(j);
 243                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 244            }
 245        }
 246
 247        qemu_fdt_add_subnode(fdt, "/distance-map");
 248        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 249                                "numa-distance-map-v1");
 250        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 251                         matrix, size);
 252        g_free(matrix);
 253    }
 254}
 255
 256static void fdt_add_timer_nodes(const VirtMachineState *vms)
 257{
 258    /* On real hardware these interrupts are level-triggered.
 259     * On KVM they were edge-triggered before host kernel version 4.4,
 260     * and level-triggered afterwards.
 261     * On emulated QEMU they are level-triggered.
 262     *
 263     * Getting the DTB info about them wrong is awkward for some
 264     * guest kernels:
 265     *  pre-4.8 ignore the DT and leave the interrupt configured
 266     *   with whatever the GIC reset value (or the bootloader) left it at
 267     *  4.8 before rc6 honour the incorrect data by programming it back
 268     *   into the GIC, causing problems
 269     *  4.8rc6 and later ignore the DT and always write "level triggered"
 270     *   into the GIC
 271     *
 272     * For backwards-compatibility, virt-2.8 and earlier will continue
 273     * to say these are edge-triggered, but later machines will report
 274     * the correct information.
 275     */
 276    ARMCPU *armcpu;
 277    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 278    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 279
 280    if (vmc->claim_edge_triggered_timers) {
 281        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 282    }
 283
 284    if (vms->gic_version == 2) {
 285        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 286                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 287                             (1 << vms->smp_cpus) - 1);
 288    }
 289
 290    qemu_fdt_add_subnode(vms->fdt, "/timer");
 291
 292    armcpu = ARM_CPU(qemu_get_cpu(0));
 293    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 294        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 295        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 296                         compat, sizeof(compat));
 297    } else {
 298        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 299                                "arm,armv7-timer");
 300    }
 301    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 302    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 303                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 304                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 305                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 306                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 307}
 308
 309static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 310{
 311    int cpu;
 312    int addr_cells = 1;
 313    const MachineState *ms = MACHINE(vms);
 314
 315    /*
 316     * From Documentation/devicetree/bindings/arm/cpus.txt
 317     *  On ARM v8 64-bit systems value should be set to 2,
 318     *  that corresponds to the MPIDR_EL1 register size.
 319     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 320     *  in the system, #address-cells can be set to 1, since
 321     *  MPIDR_EL1[63:32] bits are not used for CPUs
 322     *  identification.
 323     *
 324     *  Here we actually don't know whether our system is 32- or 64-bit one.
 325     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 326     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 327     */
 328    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 329        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 330
 331        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 332            addr_cells = 2;
 333            break;
 334        }
 335    }
 336
 337    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 338    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 339    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 340
 341    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 342        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 343        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 344        CPUState *cs = CPU(armcpu);
 345
 346        qemu_fdt_add_subnode(vms->fdt, nodename);
 347        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 348        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 349                                    armcpu->dtb_compatible);
 350
 351        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 352            && vms->smp_cpus > 1) {
 353            qemu_fdt_setprop_string(vms->fdt, nodename,
 354                                        "enable-method", "psci");
 355        }
 356
 357        if (addr_cells == 2) {
 358            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 359                                 armcpu->mp_affinity);
 360        } else {
 361            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 362                                  armcpu->mp_affinity);
 363        }
 364
 365        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 366            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 367                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 368        }
 369
 370        g_free(nodename);
 371    }
 372}
 373
 374static void fdt_add_its_gic_node(VirtMachineState *vms)
 375{
 376    char *nodename;
 377
 378    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 379    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 380                               vms->memmap[VIRT_GIC_ITS].base);
 381    qemu_fdt_add_subnode(vms->fdt, nodename);
 382    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 383                            "arm,gic-v3-its");
 384    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 385    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 386                                 2, vms->memmap[VIRT_GIC_ITS].base,
 387                                 2, vms->memmap[VIRT_GIC_ITS].size);
 388    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 389    g_free(nodename);
 390}
 391
 392static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 393{
 394    char *nodename;
 395
 396    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 397                               vms->memmap[VIRT_GIC_V2M].base);
 398    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 399    qemu_fdt_add_subnode(vms->fdt, nodename);
 400    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 401                            "arm,gic-v2m-frame");
 402    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 403    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 404                                 2, vms->memmap[VIRT_GIC_V2M].base,
 405                                 2, vms->memmap[VIRT_GIC_V2M].size);
 406    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 407    g_free(nodename);
 408}
 409
 410static void fdt_add_gic_node(VirtMachineState *vms)
 411{
 412    char *nodename;
 413
 414    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 415    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 416
 417    nodename = g_strdup_printf("/intc@%" PRIx64,
 418                               vms->memmap[VIRT_GIC_DIST].base);
 419    qemu_fdt_add_subnode(vms->fdt, nodename);
 420    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 421    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 422    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 423    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 424    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 425    if (vms->gic_version == 3) {
 426        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 427
 428        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 429                                "arm,gic-v3");
 430
 431        qemu_fdt_setprop_cell(vms->fdt, nodename,
 432                              "#redistributor-regions", nb_redist_regions);
 433
 434        if (nb_redist_regions == 1) {
 435            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 436                                         2, vms->memmap[VIRT_GIC_DIST].base,
 437                                         2, vms->memmap[VIRT_GIC_DIST].size,
 438                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 439                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 440        } else {
 441            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 442                                 2, vms->memmap[VIRT_GIC_DIST].base,
 443                                 2, vms->memmap[VIRT_GIC_DIST].size,
 444                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 445                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 446                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 447                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 448        }
 449
 450        if (vms->virt) {
 451            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 452                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 453                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 454        }
 455    } else {
 456        /* 'cortex-a15-gic' means 'GIC v2' */
 457        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 458                                "arm,cortex-a15-gic");
 459        if (!vms->virt) {
 460            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 461                                         2, vms->memmap[VIRT_GIC_DIST].base,
 462                                         2, vms->memmap[VIRT_GIC_DIST].size,
 463                                         2, vms->memmap[VIRT_GIC_CPU].base,
 464                                         2, vms->memmap[VIRT_GIC_CPU].size);
 465        } else {
 466            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 467                                         2, vms->memmap[VIRT_GIC_DIST].base,
 468                                         2, vms->memmap[VIRT_GIC_DIST].size,
 469                                         2, vms->memmap[VIRT_GIC_CPU].base,
 470                                         2, vms->memmap[VIRT_GIC_CPU].size,
 471                                         2, vms->memmap[VIRT_GIC_HYP].base,
 472                                         2, vms->memmap[VIRT_GIC_HYP].size,
 473                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 474                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 475            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 476                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 477                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 478        }
 479    }
 480
 481    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 482    g_free(nodename);
 483}
 484
 485static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 486{
 487    CPUState *cpu;
 488    ARMCPU *armcpu;
 489    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 490
 491    CPU_FOREACH(cpu) {
 492        armcpu = ARM_CPU(cpu);
 493        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 494            return;
 495        }
 496        if (kvm_enabled()) {
 497            if (kvm_irqchip_in_kernel()) {
 498                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 499            }
 500            kvm_arm_pmu_init(cpu);
 501        }
 502    }
 503
 504    if (vms->gic_version == 2) {
 505        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 506                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 507                             (1 << vms->smp_cpus) - 1);
 508    }
 509
 510    armcpu = ARM_CPU(qemu_get_cpu(0));
 511    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 512    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 513        const char compat[] = "arm,armv8-pmuv3";
 514        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 515                         compat, sizeof(compat));
 516        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 517                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 518    }
 519}
 520
 521static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 522{
 523    const char *itsclass = its_class_name();
 524    DeviceState *dev;
 525
 526    if (!itsclass) {
 527        /* Do nothing if not supported */
 528        return;
 529    }
 530
 531    dev = qdev_create(NULL, itsclass);
 532
 533    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 534                             &error_abort);
 535    qdev_init_nofail(dev);
 536    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 537
 538    fdt_add_its_gic_node(vms);
 539}
 540
 541static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 542{
 543    int i;
 544    int irq = vms->irqmap[VIRT_GIC_V2M];
 545    DeviceState *dev;
 546
 547    dev = qdev_create(NULL, "arm-gicv2m");
 548    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 549    qdev_prop_set_uint32(dev, "base-spi", irq);
 550    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 551    qdev_init_nofail(dev);
 552
 553    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 554        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 555    }
 556
 557    fdt_add_v2m_gic_node(vms);
 558}
 559
 560static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 561{
 562    MachineState *ms = MACHINE(vms);
 563    /* We create a standalone GIC */
 564    DeviceState *gicdev;
 565    SysBusDevice *gicbusdev;
 566    const char *gictype;
 567    int type = vms->gic_version, i;
 568    unsigned int smp_cpus = ms->smp.cpus;
 569    uint32_t nb_redist_regions = 0;
 570
 571    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 572
 573    gicdev = qdev_create(NULL, gictype);
 574    qdev_prop_set_uint32(gicdev, "revision", type);
 575    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 576    /* Note that the num-irq property counts both internal and external
 577     * interrupts; there are always 32 of the former (mandated by GIC spec).
 578     */
 579    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 580    if (!kvm_irqchip_in_kernel()) {
 581        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 582    }
 583
 584    if (type == 3) {
 585        uint32_t redist0_capacity =
 586                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 587        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 588
 589        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 590
 591        qdev_prop_set_uint32(gicdev, "len-redist-region-count",
 592                             nb_redist_regions);
 593        qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 594
 595        if (nb_redist_regions == 2) {
 596            uint32_t redist1_capacity =
 597                    vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 598
 599            qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
 600                MIN(smp_cpus - redist0_count, redist1_capacity));
 601        }
 602    } else {
 603        if (!kvm_irqchip_in_kernel()) {
 604            qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
 605                              vms->virt);
 606        }
 607    }
 608    qdev_init_nofail(gicdev);
 609    gicbusdev = SYS_BUS_DEVICE(gicdev);
 610    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 611    if (type == 3) {
 612        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 613        if (nb_redist_regions == 2) {
 614            sysbus_mmio_map(gicbusdev, 2,
 615                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 616        }
 617    } else {
 618        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 619        if (vms->virt) {
 620            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 621            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 622        }
 623    }
 624
 625    /* Wire the outputs from each CPU's generic timer and the GICv3
 626     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 627     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 628     */
 629    for (i = 0; i < smp_cpus; i++) {
 630        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 631        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 632        int irq;
 633        /* Mapping from the output timer irq lines from the CPU to the
 634         * GIC PPI inputs we use for the virt board.
 635         */
 636        const int timer_irq[] = {
 637            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 638            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 639            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 640            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 641        };
 642
 643        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 644            qdev_connect_gpio_out(cpudev, irq,
 645                                  qdev_get_gpio_in(gicdev,
 646                                                   ppibase + timer_irq[irq]));
 647        }
 648
 649        if (type == 3) {
 650            qemu_irq irq = qdev_get_gpio_in(gicdev,
 651                                            ppibase + ARCH_GIC_MAINT_IRQ);
 652            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 653                                        0, irq);
 654        } else if (vms->virt) {
 655            qemu_irq irq = qdev_get_gpio_in(gicdev,
 656                                            ppibase + ARCH_GIC_MAINT_IRQ);
 657            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 658        }
 659
 660        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 661                                    qdev_get_gpio_in(gicdev, ppibase
 662                                                     + VIRTUAL_PMU_IRQ));
 663
 664        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 665        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 666                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 667        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 668                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 669        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 670                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 671    }
 672
 673    for (i = 0; i < NUM_IRQS; i++) {
 674        pic[i] = qdev_get_gpio_in(gicdev, i);
 675    }
 676
 677    fdt_add_gic_node(vms);
 678
 679    if (type == 3 && vms->its) {
 680        create_its(vms, gicdev);
 681    } else if (type == 2) {
 682        create_v2m(vms, pic);
 683    }
 684}
 685
 686static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 687                        MemoryRegion *mem, Chardev *chr)
 688{
 689    char *nodename;
 690    hwaddr base = vms->memmap[uart].base;
 691    hwaddr size = vms->memmap[uart].size;
 692    int irq = vms->irqmap[uart];
 693    const char compat[] = "arm,pl011\0arm,primecell";
 694    const char clocknames[] = "uartclk\0apb_pclk";
 695    DeviceState *dev = qdev_create(NULL, "pl011");
 696    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 697
 698    qdev_prop_set_chr(dev, "chardev", chr);
 699    qdev_init_nofail(dev);
 700    memory_region_add_subregion(mem, base,
 701                                sysbus_mmio_get_region(s, 0));
 702    sysbus_connect_irq(s, 0, pic[irq]);
 703
 704    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 705    qemu_fdt_add_subnode(vms->fdt, nodename);
 706    /* Note that we can't use setprop_string because of the embedded NUL */
 707    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 708                         compat, sizeof(compat));
 709    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 710                                     2, base, 2, size);
 711    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 712                               GIC_FDT_IRQ_TYPE_SPI, irq,
 713                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 714    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 715                               vms->clock_phandle, vms->clock_phandle);
 716    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 717                         clocknames, sizeof(clocknames));
 718
 719    if (uart == VIRT_UART) {
 720        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 721    } else {
 722        /* Mark as not usable by the normal world */
 723        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 724        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 725
 726        qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
 727        qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
 728                                nodename);
 729    }
 730
 731    g_free(nodename);
 732}
 733
 734static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 735{
 736    char *nodename;
 737    hwaddr base = vms->memmap[VIRT_RTC].base;
 738    hwaddr size = vms->memmap[VIRT_RTC].size;
 739    int irq = vms->irqmap[VIRT_RTC];
 740    const char compat[] = "arm,pl031\0arm,primecell";
 741
 742    sysbus_create_simple("pl031", base, pic[irq]);
 743
 744    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 745    qemu_fdt_add_subnode(vms->fdt, nodename);
 746    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 747    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 748                                 2, base, 2, size);
 749    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 750                           GIC_FDT_IRQ_TYPE_SPI, irq,
 751                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 752    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 753    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 754    g_free(nodename);
 755}
 756
 757static DeviceState *gpio_key_dev;
 758static void virt_powerdown_req(Notifier *n, void *opaque)
 759{
 760    /* use gpio Pin 3 for power button event */
 761    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 762}
 763
 764static Notifier virt_system_powerdown_notifier = {
 765    .notify = virt_powerdown_req
 766};
 767
 768static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 769{
 770    char *nodename;
 771    DeviceState *pl061_dev;
 772    hwaddr base = vms->memmap[VIRT_GPIO].base;
 773    hwaddr size = vms->memmap[VIRT_GPIO].size;
 774    int irq = vms->irqmap[VIRT_GPIO];
 775    const char compat[] = "arm,pl061\0arm,primecell";
 776
 777    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 778
 779    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 780    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 781    qemu_fdt_add_subnode(vms->fdt, nodename);
 782    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 783                                 2, base, 2, size);
 784    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 785    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 786    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 787    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 788                           GIC_FDT_IRQ_TYPE_SPI, irq,
 789                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 790    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 791    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 792    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 793
 794    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 795                                        qdev_get_gpio_in(pl061_dev, 3));
 796    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 797    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 798    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 799    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 800
 801    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 802    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 803                            "label", "GPIO Key Poweroff");
 804    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 805                          KEY_POWER);
 806    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 807                           "gpios", phandle, 3, 0);
 808
 809    /* connect powerdown request */
 810    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 811
 812    g_free(nodename);
 813}
 814
 815static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 816{
 817    int i;
 818    hwaddr size = vms->memmap[VIRT_MMIO].size;
 819
 820    /* We create the transports in forwards order. Since qbus_realize()
 821     * prepends (not appends) new child buses, the incrementing loop below will
 822     * create a list of virtio-mmio buses with decreasing base addresses.
 823     *
 824     * When a -device option is processed from the command line,
 825     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 826     * order. The upshot is that -device options in increasing command line
 827     * order are mapped to virtio-mmio buses with decreasing base addresses.
 828     *
 829     * When this code was originally written, that arrangement ensured that the
 830     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 831     * the first -device on the command line. (The end-to-end order is a
 832     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 833     * guest kernel's name-to-address assignment strategy.)
 834     *
 835     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 836     * the message, if not necessarily the code, of commit 70161ff336.
 837     * Therefore the loop now establishes the inverse of the original intent.
 838     *
 839     * Unfortunately, we can't counteract the kernel change by reversing the
 840     * loop; it would break existing command lines.
 841     *
 842     * In any case, the kernel makes no guarantee about the stability of
 843     * enumeration order of virtio devices (as demonstrated by it changing
 844     * between kernel versions). For reliable and stable identification
 845     * of disks users must use UUIDs or similar mechanisms.
 846     */
 847    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 848        int irq = vms->irqmap[VIRT_MMIO] + i;
 849        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 850
 851        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 852    }
 853
 854    /* We add dtb nodes in reverse order so that they appear in the finished
 855     * device tree lowest address first.
 856     *
 857     * Note that this mapping is independent of the loop above. The previous
 858     * loop influences virtio device to virtio transport assignment, whereas
 859     * this loop controls how virtio transports are laid out in the dtb.
 860     */
 861    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 862        char *nodename;
 863        int irq = vms->irqmap[VIRT_MMIO] + i;
 864        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 865
 866        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 867        qemu_fdt_add_subnode(vms->fdt, nodename);
 868        qemu_fdt_setprop_string(vms->fdt, nodename,
 869                                "compatible", "virtio,mmio");
 870        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 871                                     2, base, 2, size);
 872        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 873                               GIC_FDT_IRQ_TYPE_SPI, irq,
 874                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 875        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 876        g_free(nodename);
 877    }
 878}
 879
 880#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
 881
 882static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
 883                                        const char *name,
 884                                        const char *alias_prop_name)
 885{
 886    /*
 887     * Create a single flash device.  We use the same parameters as
 888     * the flash devices on the Versatile Express board.
 889     */
 890    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 891
 892    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
 893    qdev_prop_set_uint8(dev, "width", 4);
 894    qdev_prop_set_uint8(dev, "device-width", 2);
 895    qdev_prop_set_bit(dev, "big-endian", false);
 896    qdev_prop_set_uint16(dev, "id0", 0x89);
 897    qdev_prop_set_uint16(dev, "id1", 0x18);
 898    qdev_prop_set_uint16(dev, "id2", 0x00);
 899    qdev_prop_set_uint16(dev, "id3", 0x00);
 900    qdev_prop_set_string(dev, "name", name);
 901    object_property_add_child(OBJECT(vms), name, OBJECT(dev),
 902                              &error_abort);
 903    object_property_add_alias(OBJECT(vms), alias_prop_name,
 904                              OBJECT(dev), "drive", &error_abort);
 905    return PFLASH_CFI01(dev);
 906}
 907
 908static void virt_flash_create(VirtMachineState *vms)
 909{
 910    vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
 911    vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
 912}
 913
 914static void virt_flash_map1(PFlashCFI01 *flash,
 915                            hwaddr base, hwaddr size,
 916                            MemoryRegion *sysmem)
 917{
 918    DeviceState *dev = DEVICE(flash);
 919
 920    assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
 921    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
 922    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
 923    qdev_init_nofail(dev);
 924
 925    memory_region_add_subregion(sysmem, base,
 926                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
 927                                                       0));
 928}
 929
 930static void virt_flash_map(VirtMachineState *vms,
 931                           MemoryRegion *sysmem,
 932                           MemoryRegion *secure_sysmem)
 933{
 934    /*
 935     * Map two flash devices to fill the VIRT_FLASH space in the memmap.
 936     * sysmem is the system memory space. secure_sysmem is the secure view
 937     * of the system, and the first flash device should be made visible only
 938     * there. The second flash device is visible to both secure and nonsecure.
 939     * If sysmem == secure_sysmem this means there is no separate Secure
 940     * address space and both flash devices are generally visible.
 941     */
 942    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 943    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 944
 945    virt_flash_map1(vms->flash[0], flashbase, flashsize,
 946                    secure_sysmem);
 947    virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
 948                    sysmem);
 949}
 950
 951static void virt_flash_fdt(VirtMachineState *vms,
 952                           MemoryRegion *sysmem,
 953                           MemoryRegion *secure_sysmem)
 954{
 955    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 956    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 957    char *nodename;
 958
 959    if (sysmem == secure_sysmem) {
 960        /* Report both flash devices as a single node in the DT */
 961        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 962        qemu_fdt_add_subnode(vms->fdt, nodename);
 963        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 964        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 965                                     2, flashbase, 2, flashsize,
 966                                     2, flashbase + flashsize, 2, flashsize);
 967        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 968        g_free(nodename);
 969    } else {
 970        /*
 971         * Report the devices as separate nodes so we can mark one as
 972         * only visible to the secure world.
 973         */
 974        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 975        qemu_fdt_add_subnode(vms->fdt, nodename);
 976        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 977        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 978                                     2, flashbase, 2, flashsize);
 979        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 980        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 981        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 982        g_free(nodename);
 983
 984        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 985        qemu_fdt_add_subnode(vms->fdt, nodename);
 986        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 987        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 988                                     2, flashbase + flashsize, 2, flashsize);
 989        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 990        g_free(nodename);
 991    }
 992}
 993
 994static bool virt_firmware_init(VirtMachineState *vms,
 995                               MemoryRegion *sysmem,
 996                               MemoryRegion *secure_sysmem)
 997{
 998    int i;
 999    BlockBackend *pflash_blk0;
1000
1001    /* Map legacy -drive if=pflash to machine properties */
1002    for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1003        pflash_cfi01_legacy_drive(vms->flash[i],
1004                                  drive_get(IF_PFLASH, 0, i));
1005    }
1006
1007    virt_flash_map(vms, sysmem, secure_sysmem);
1008
1009    pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1010
1011    if (bios_name) {
1012        char *fname;
1013        MemoryRegion *mr;
1014        int image_size;
1015
1016        if (pflash_blk0) {
1017            error_report("The contents of the first flash device may be "
1018                         "specified with -bios or with -drive if=pflash... "
1019                         "but you cannot use both options at once");
1020            exit(1);
1021        }
1022
1023        /* Fall back to -bios */
1024
1025        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1026        if (!fname) {
1027            error_report("Could not find ROM image '%s'", bios_name);
1028            exit(1);
1029        }
1030        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1031        image_size = load_image_mr(fname, mr);
1032        g_free(fname);
1033        if (image_size < 0) {
1034            error_report("Could not load ROM image '%s'", bios_name);
1035            exit(1);
1036        }
1037    }
1038
1039    return pflash_blk0 || bios_name;
1040}
1041
1042static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1043{
1044    MachineState *ms = MACHINE(vms);
1045    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1046    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1047    FWCfgState *fw_cfg;
1048    char *nodename;
1049
1050    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1051    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1052
1053    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1054    qemu_fdt_add_subnode(vms->fdt, nodename);
1055    qemu_fdt_setprop_string(vms->fdt, nodename,
1056                            "compatible", "qemu,fw-cfg-mmio");
1057    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1058                                 2, base, 2, size);
1059    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1060    g_free(nodename);
1061    return fw_cfg;
1062}
1063
1064static void create_pcie_irq_map(const VirtMachineState *vms,
1065                                uint32_t gic_phandle,
1066                                int first_irq, const char *nodename)
1067{
1068    int devfn, pin;
1069    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1070    uint32_t *irq_map = full_irq_map;
1071
1072    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1073        for (pin = 0; pin < 4; pin++) {
1074            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1075            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1076            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1077            int i;
1078
1079            uint32_t map[] = {
1080                devfn << 8, 0, 0,                           /* devfn */
1081                pin + 1,                                    /* PCI pin */
1082                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1083
1084            /* Convert map to big endian */
1085            for (i = 0; i < 10; i++) {
1086                irq_map[i] = cpu_to_be32(map[i]);
1087            }
1088            irq_map += 10;
1089        }
1090    }
1091
1092    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1093                     full_irq_map, sizeof(full_irq_map));
1094
1095    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1096                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1097                           0x7           /* PCI irq */);
1098}
1099
1100static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1101                        PCIBus *bus)
1102{
1103    char *node;
1104    const char compat[] = "arm,smmu-v3";
1105    int irq =  vms->irqmap[VIRT_SMMU];
1106    int i;
1107    hwaddr base = vms->memmap[VIRT_SMMU].base;
1108    hwaddr size = vms->memmap[VIRT_SMMU].size;
1109    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1110    DeviceState *dev;
1111
1112    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1113        return;
1114    }
1115
1116    dev = qdev_create(NULL, "arm-smmuv3");
1117
1118    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1119                             &error_abort);
1120    qdev_init_nofail(dev);
1121    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1122    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1123        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1124    }
1125
1126    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1127    qemu_fdt_add_subnode(vms->fdt, node);
1128    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1129    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1130
1131    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1132            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1133            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1134            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1135            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1136
1137    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1138                     sizeof(irq_names));
1139
1140    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1141    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1142    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1143
1144    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1145
1146    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1147    g_free(node);
1148}
1149
1150static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1151{
1152    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1153    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1154    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1155    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1156    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1157    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1158    hwaddr base_ecam, size_ecam;
1159    hwaddr base = base_mmio;
1160    int nr_pcie_buses;
1161    int irq = vms->irqmap[VIRT_PCIE];
1162    MemoryRegion *mmio_alias;
1163    MemoryRegion *mmio_reg;
1164    MemoryRegion *ecam_alias;
1165    MemoryRegion *ecam_reg;
1166    DeviceState *dev;
1167    char *nodename;
1168    int i, ecam_id;
1169    PCIHostState *pci;
1170
1171    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1172    qdev_init_nofail(dev);
1173
1174    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1175    base_ecam = vms->memmap[ecam_id].base;
1176    size_ecam = vms->memmap[ecam_id].size;
1177    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1178    /* Map only the first size_ecam bytes of ECAM space */
1179    ecam_alias = g_new0(MemoryRegion, 1);
1180    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1181    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1182                             ecam_reg, 0, size_ecam);
1183    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1184
1185    /* Map the MMIO window into system address space so as to expose
1186     * the section of PCI MMIO space which starts at the same base address
1187     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1188     * the window).
1189     */
1190    mmio_alias = g_new0(MemoryRegion, 1);
1191    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1192    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1193                             mmio_reg, base_mmio, size_mmio);
1194    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1195
1196    if (vms->highmem) {
1197        /* Map high MMIO space */
1198        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1199
1200        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1201                                 mmio_reg, base_mmio_high, size_mmio_high);
1202        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1203                                    high_mmio_alias);
1204    }
1205
1206    /* Map IO port space */
1207    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1208
1209    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1210        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1211        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1212    }
1213
1214    pci = PCI_HOST_BRIDGE(dev);
1215    if (pci->bus) {
1216        for (i = 0; i < nb_nics; i++) {
1217            NICInfo *nd = &nd_table[i];
1218
1219            if (!nd->model) {
1220                nd->model = g_strdup("virtio");
1221            }
1222
1223            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1224        }
1225    }
1226
1227    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1228    qemu_fdt_add_subnode(vms->fdt, nodename);
1229    qemu_fdt_setprop_string(vms->fdt, nodename,
1230                            "compatible", "pci-host-ecam-generic");
1231    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1232    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1233    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1234    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1235    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1236                           nr_pcie_buses - 1);
1237    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1238
1239    if (vms->msi_phandle) {
1240        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1241                               vms->msi_phandle);
1242    }
1243
1244    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1245                                 2, base_ecam, 2, size_ecam);
1246
1247    if (vms->highmem) {
1248        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1249                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1250                                     2, base_pio, 2, size_pio,
1251                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1252                                     2, base_mmio, 2, size_mmio,
1253                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1254                                     2, base_mmio_high,
1255                                     2, base_mmio_high, 2, size_mmio_high);
1256    } else {
1257        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1258                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1259                                     2, base_pio, 2, size_pio,
1260                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1261                                     2, base_mmio, 2, size_mmio);
1262    }
1263
1264    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1265    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1266
1267    if (vms->iommu) {
1268        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1269
1270        create_smmu(vms, pic, pci->bus);
1271
1272        qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1273                               0x0, vms->iommu_phandle, 0x0, 0x10000);
1274    }
1275
1276    g_free(nodename);
1277}
1278
1279static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1280{
1281    DeviceState *dev;
1282    SysBusDevice *s;
1283    int i;
1284    MemoryRegion *sysmem = get_system_memory();
1285
1286    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1287    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1288    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1289    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1290    qdev_init_nofail(dev);
1291    vms->platform_bus_dev = dev;
1292
1293    s = SYS_BUS_DEVICE(dev);
1294    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1295        int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1296        sysbus_connect_irq(s, i, pic[irqn]);
1297    }
1298
1299    memory_region_add_subregion(sysmem,
1300                                vms->memmap[VIRT_PLATFORM_BUS].base,
1301                                sysbus_mmio_get_region(s, 0));
1302}
1303
1304static void create_secure_ram(VirtMachineState *vms,
1305                              MemoryRegion *secure_sysmem)
1306{
1307    MemoryRegion *secram = g_new(MemoryRegion, 1);
1308    char *nodename;
1309    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1310    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1311
1312    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1313                           &error_fatal);
1314    memory_region_add_subregion(secure_sysmem, base, secram);
1315
1316    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1317    qemu_fdt_add_subnode(vms->fdt, nodename);
1318    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1319    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1320    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1321    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1322
1323    g_free(nodename);
1324}
1325
1326static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1327{
1328    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1329                                                 bootinfo);
1330
1331    *fdt_size = board->fdt_size;
1332    return board->fdt;
1333}
1334
1335static void virt_build_smbios(VirtMachineState *vms)
1336{
1337    MachineClass *mc = MACHINE_GET_CLASS(vms);
1338    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1339    uint8_t *smbios_tables, *smbios_anchor;
1340    size_t smbios_tables_len, smbios_anchor_len;
1341    const char *product = "QEMU Virtual Machine";
1342
1343    if (kvm_enabled()) {
1344        product = "KVM Virtual Machine";
1345    }
1346
1347    smbios_set_defaults("QEMU", product,
1348                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1349                        true, SMBIOS_ENTRY_POINT_30);
1350
1351    smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1352                      &smbios_anchor, &smbios_anchor_len);
1353
1354    if (smbios_anchor) {
1355        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1356                        smbios_tables, smbios_tables_len);
1357        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1358                        smbios_anchor, smbios_anchor_len);
1359    }
1360}
1361
1362static
1363void virt_machine_done(Notifier *notifier, void *data)
1364{
1365    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1366                                         machine_done);
1367    ARMCPU *cpu = ARM_CPU(first_cpu);
1368    struct arm_boot_info *info = &vms->bootinfo;
1369    AddressSpace *as = arm_boot_address_space(cpu, info);
1370
1371    /*
1372     * If the user provided a dtb, we assume the dynamic sysbus nodes
1373     * already are integrated there. This corresponds to a use case where
1374     * the dynamic sysbus nodes are complex and their generation is not yet
1375     * supported. In that case the user can take charge of the guest dt
1376     * while qemu takes charge of the qom stuff.
1377     */
1378    if (info->dtb_filename == NULL) {
1379        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1380                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1381                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1382                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1383    }
1384    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1385        exit(1);
1386    }
1387
1388    virt_acpi_setup(vms);
1389    virt_build_smbios(vms);
1390}
1391
1392static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1393{
1394    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1395    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1396
1397    if (!vmc->disallow_affinity_adjustment) {
1398        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1399         * GIC's target-list limitations. 32-bit KVM hosts currently
1400         * always create clusters of 4 CPUs, but that is expected to
1401         * change when they gain support for gicv3. When KVM is enabled
1402         * it will override the changes we make here, therefore our
1403         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1404         * and to improve SGI efficiency.
1405         */
1406        if (vms->gic_version == 3) {
1407            clustersz = GICV3_TARGETLIST_BITS;
1408        } else {
1409            clustersz = GIC_TARGETLIST_BITS;
1410        }
1411    }
1412    return arm_cpu_mp_affinity(idx, clustersz);
1413}
1414
1415static void virt_set_memmap(VirtMachineState *vms)
1416{
1417    MachineState *ms = MACHINE(vms);
1418    hwaddr base, device_memory_base, device_memory_size;
1419    int i;
1420
1421    vms->memmap = extended_memmap;
1422
1423    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1424        vms->memmap[i] = base_memmap[i];
1425    }
1426
1427    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1428        error_report("unsupported number of memory slots: %"PRIu64,
1429                     ms->ram_slots);
1430        exit(EXIT_FAILURE);
1431    }
1432
1433    /*
1434     * We compute the base of the high IO region depending on the
1435     * amount of initial and device memory. The device memory start/size
1436     * is aligned on 1GiB. We never put the high IO region below 256GiB
1437     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1438     * The device region size assumes 1GiB page max alignment per slot.
1439     */
1440    device_memory_base =
1441        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1442    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1443
1444    /* Base address of the high IO region */
1445    base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1446    if (base < device_memory_base) {
1447        error_report("maxmem/slots too huge");
1448        exit(EXIT_FAILURE);
1449    }
1450    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1451        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1452    }
1453
1454    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1455        hwaddr size = extended_memmap[i].size;
1456
1457        base = ROUND_UP(base, size);
1458        vms->memmap[i].base = base;
1459        vms->memmap[i].size = size;
1460        base += size;
1461    }
1462    vms->highest_gpa = base - 1;
1463    if (device_memory_size > 0) {
1464        ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1465        ms->device_memory->base = device_memory_base;
1466        memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1467                           "device-memory", device_memory_size);
1468    }
1469}
1470
1471static void machvirt_init(MachineState *machine)
1472{
1473    VirtMachineState *vms = VIRT_MACHINE(machine);
1474    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1475    MachineClass *mc = MACHINE_GET_CLASS(machine);
1476    const CPUArchIdList *possible_cpus;
1477    qemu_irq pic[NUM_IRQS];
1478    MemoryRegion *sysmem = get_system_memory();
1479    MemoryRegion *secure_sysmem = NULL;
1480    int n, virt_max_cpus;
1481    MemoryRegion *ram = g_new(MemoryRegion, 1);
1482    bool firmware_loaded;
1483    bool aarch64 = true;
1484    unsigned int smp_cpus = machine->smp.cpus;
1485    unsigned int max_cpus = machine->smp.max_cpus;
1486
1487    /*
1488     * In accelerated mode, the memory map is computed earlier in kvm_type()
1489     * to create a VM with the right number of IPA bits.
1490     */
1491    if (!vms->memmap) {
1492        virt_set_memmap(vms);
1493    }
1494
1495    /* We can probe only here because during property set
1496     * KVM is not available yet
1497     */
1498    if (vms->gic_version <= 0) {
1499        /* "host" or "max" */
1500        if (!kvm_enabled()) {
1501            if (vms->gic_version == 0) {
1502                error_report("gic-version=host requires KVM");
1503                exit(1);
1504            } else {
1505                /* "max": currently means 3 for TCG */
1506                vms->gic_version = 3;
1507            }
1508        } else {
1509            vms->gic_version = kvm_arm_vgic_probe();
1510            if (!vms->gic_version) {
1511                error_report(
1512                    "Unable to determine GIC version supported by host");
1513                exit(1);
1514            }
1515        }
1516    }
1517
1518    if (!cpu_type_valid(machine->cpu_type)) {
1519        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1520        exit(1);
1521    }
1522
1523    if (vms->secure) {
1524        if (kvm_enabled()) {
1525            error_report("mach-virt: KVM does not support Security extensions");
1526            exit(1);
1527        }
1528
1529        /*
1530         * The Secure view of the world is the same as the NonSecure,
1531         * but with a few extra devices. Create it as a container region
1532         * containing the system memory at low priority; any secure-only
1533         * devices go in at higher priority and take precedence.
1534         */
1535        secure_sysmem = g_new(MemoryRegion, 1);
1536        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1537                           UINT64_MAX);
1538        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1539    }
1540
1541    firmware_loaded = virt_firmware_init(vms, sysmem,
1542                                         secure_sysmem ?: sysmem);
1543
1544    /* If we have an EL3 boot ROM then the assumption is that it will
1545     * implement PSCI itself, so disable QEMU's internal implementation
1546     * so it doesn't get in the way. Instead of starting secondary
1547     * CPUs in PSCI powerdown state we will start them all running and
1548     * let the boot ROM sort them out.
1549     * The usual case is that we do use QEMU's PSCI implementation;
1550     * if the guest has EL2 then we will use SMC as the conduit,
1551     * and otherwise we will use HVC (for backwards compatibility and
1552     * because if we're using KVM then we must use HVC).
1553     */
1554    if (vms->secure && firmware_loaded) {
1555        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1556    } else if (vms->virt) {
1557        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1558    } else {
1559        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1560    }
1561
1562    /* The maximum number of CPUs depends on the GIC version, or on how
1563     * many redistributors we can fit into the memory map.
1564     */
1565    if (vms->gic_version == 3) {
1566        virt_max_cpus =
1567            vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1568        virt_max_cpus +=
1569            vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1570    } else {
1571        virt_max_cpus = GIC_NCPU;
1572    }
1573
1574    if (max_cpus > virt_max_cpus) {
1575        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1576                     "supported by machine 'mach-virt' (%d)",
1577                     max_cpus, virt_max_cpus);
1578        exit(1);
1579    }
1580
1581    vms->smp_cpus = smp_cpus;
1582
1583    if (vms->virt && kvm_enabled()) {
1584        error_report("mach-virt: KVM does not support providing "
1585                     "Virtualization extensions to the guest CPU");
1586        exit(1);
1587    }
1588
1589    create_fdt(vms);
1590
1591    possible_cpus = mc->possible_cpu_arch_ids(machine);
1592    for (n = 0; n < possible_cpus->len; n++) {
1593        Object *cpuobj;
1594        CPUState *cs;
1595
1596        if (n >= smp_cpus) {
1597            break;
1598        }
1599
1600        cpuobj = object_new(possible_cpus->cpus[n].type);
1601        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1602                                "mp-affinity", NULL);
1603
1604        cs = CPU(cpuobj);
1605        cs->cpu_index = n;
1606
1607        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1608                          &error_fatal);
1609
1610        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1611
1612        if (!vms->secure) {
1613            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1614        }
1615
1616        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1617            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1618        }
1619
1620        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1621            object_property_set_int(cpuobj, vms->psci_conduit,
1622                                    "psci-conduit", NULL);
1623
1624            /* Secondary CPUs start in PSCI powered-down state */
1625            if (n > 0) {
1626                object_property_set_bool(cpuobj, true,
1627                                         "start-powered-off", NULL);
1628            }
1629        }
1630
1631        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1632            object_property_set_bool(cpuobj, false, "pmu", NULL);
1633        }
1634
1635        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1636            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1637                                    "reset-cbar", &error_abort);
1638        }
1639
1640        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1641                                 &error_abort);
1642        if (vms->secure) {
1643            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1644                                     "secure-memory", &error_abort);
1645        }
1646
1647        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1648        object_unref(cpuobj);
1649    }
1650    fdt_add_timer_nodes(vms);
1651    fdt_add_cpu_nodes(vms);
1652
1653   if (!kvm_enabled()) {
1654        ARMCPU *cpu = ARM_CPU(first_cpu);
1655        bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1656
1657        if (aarch64 && vms->highmem) {
1658            int requested_pa_size, pamax = arm_pamax(cpu);
1659
1660            requested_pa_size = 64 - clz64(vms->highest_gpa);
1661            if (pamax < requested_pa_size) {
1662                error_report("VCPU supports less PA bits (%d) than requested "
1663                            "by the memory map (%d)", pamax, requested_pa_size);
1664                exit(1);
1665            }
1666        }
1667    }
1668
1669    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1670                                         machine->ram_size);
1671    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1672    if (machine->device_memory) {
1673        memory_region_add_subregion(sysmem, machine->device_memory->base,
1674                                    &machine->device_memory->mr);
1675    }
1676
1677    virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1678
1679    create_gic(vms, pic);
1680
1681    fdt_add_pmu_nodes(vms);
1682
1683    create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1684
1685    if (vms->secure) {
1686        create_secure_ram(vms, secure_sysmem);
1687        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1688    }
1689
1690    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1691
1692    create_rtc(vms, pic);
1693
1694    create_pcie(vms, pic);
1695
1696    create_gpio(vms, pic);
1697
1698    /* Create mmio transports, so the user can create virtio backends
1699     * (which will be automatically plugged in to the transports). If
1700     * no backend is created the transport will just sit harmlessly idle.
1701     */
1702    create_virtio_devices(vms, pic);
1703
1704    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1705    rom_set_fw(vms->fw_cfg);
1706
1707    create_platform_bus(vms, pic);
1708
1709    vms->bootinfo.ram_size = machine->ram_size;
1710    vms->bootinfo.kernel_filename = machine->kernel_filename;
1711    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1712    vms->bootinfo.initrd_filename = machine->initrd_filename;
1713    vms->bootinfo.nb_cpus = smp_cpus;
1714    vms->bootinfo.board_id = -1;
1715    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1716    vms->bootinfo.get_dtb = machvirt_dtb;
1717    vms->bootinfo.skip_dtb_autoload = true;
1718    vms->bootinfo.firmware_loaded = firmware_loaded;
1719    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1720
1721    vms->machine_done.notify = virt_machine_done;
1722    qemu_add_machine_init_done_notifier(&vms->machine_done);
1723}
1724
1725static bool virt_get_secure(Object *obj, Error **errp)
1726{
1727    VirtMachineState *vms = VIRT_MACHINE(obj);
1728
1729    return vms->secure;
1730}
1731
1732static void virt_set_secure(Object *obj, bool value, Error **errp)
1733{
1734    VirtMachineState *vms = VIRT_MACHINE(obj);
1735
1736    vms->secure = value;
1737}
1738
1739static bool virt_get_virt(Object *obj, Error **errp)
1740{
1741    VirtMachineState *vms = VIRT_MACHINE(obj);
1742
1743    return vms->virt;
1744}
1745
1746static void virt_set_virt(Object *obj, bool value, Error **errp)
1747{
1748    VirtMachineState *vms = VIRT_MACHINE(obj);
1749
1750    vms->virt = value;
1751}
1752
1753static bool virt_get_highmem(Object *obj, Error **errp)
1754{
1755    VirtMachineState *vms = VIRT_MACHINE(obj);
1756
1757    return vms->highmem;
1758}
1759
1760static void virt_set_highmem(Object *obj, bool value, Error **errp)
1761{
1762    VirtMachineState *vms = VIRT_MACHINE(obj);
1763
1764    vms->highmem = value;
1765}
1766
1767static bool virt_get_its(Object *obj, Error **errp)
1768{
1769    VirtMachineState *vms = VIRT_MACHINE(obj);
1770
1771    return vms->its;
1772}
1773
1774static void virt_set_its(Object *obj, bool value, Error **errp)
1775{
1776    VirtMachineState *vms = VIRT_MACHINE(obj);
1777
1778    vms->its = value;
1779}
1780
1781static char *virt_get_gic_version(Object *obj, Error **errp)
1782{
1783    VirtMachineState *vms = VIRT_MACHINE(obj);
1784    const char *val = vms->gic_version == 3 ? "3" : "2";
1785
1786    return g_strdup(val);
1787}
1788
1789static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1790{
1791    VirtMachineState *vms = VIRT_MACHINE(obj);
1792
1793    if (!strcmp(value, "3")) {
1794        vms->gic_version = 3;
1795    } else if (!strcmp(value, "2")) {
1796        vms->gic_version = 2;
1797    } else if (!strcmp(value, "host")) {
1798        vms->gic_version = 0; /* Will probe later */
1799    } else if (!strcmp(value, "max")) {
1800        vms->gic_version = -1; /* Will probe later */
1801    } else {
1802        error_setg(errp, "Invalid gic-version value");
1803        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1804    }
1805}
1806
1807static char *virt_get_iommu(Object *obj, Error **errp)
1808{
1809    VirtMachineState *vms = VIRT_MACHINE(obj);
1810
1811    switch (vms->iommu) {
1812    case VIRT_IOMMU_NONE:
1813        return g_strdup("none");
1814    case VIRT_IOMMU_SMMUV3:
1815        return g_strdup("smmuv3");
1816    default:
1817        g_assert_not_reached();
1818    }
1819}
1820
1821static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1822{
1823    VirtMachineState *vms = VIRT_MACHINE(obj);
1824
1825    if (!strcmp(value, "smmuv3")) {
1826        vms->iommu = VIRT_IOMMU_SMMUV3;
1827    } else if (!strcmp(value, "none")) {
1828        vms->iommu = VIRT_IOMMU_NONE;
1829    } else {
1830        error_setg(errp, "Invalid iommu value");
1831        error_append_hint(errp, "Valid values are none, smmuv3.\n");
1832    }
1833}
1834
1835static CpuInstanceProperties
1836virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1837{
1838    MachineClass *mc = MACHINE_GET_CLASS(ms);
1839    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1840
1841    assert(cpu_index < possible_cpus->len);
1842    return possible_cpus->cpus[cpu_index].props;
1843}
1844
1845static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1846{
1847    return idx % nb_numa_nodes;
1848}
1849
1850static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1851{
1852    int n;
1853    unsigned int max_cpus = ms->smp.max_cpus;
1854    VirtMachineState *vms = VIRT_MACHINE(ms);
1855
1856    if (ms->possible_cpus) {
1857        assert(ms->possible_cpus->len == max_cpus);
1858        return ms->possible_cpus;
1859    }
1860
1861    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1862                                  sizeof(CPUArchId) * max_cpus);
1863    ms->possible_cpus->len = max_cpus;
1864    for (n = 0; n < ms->possible_cpus->len; n++) {
1865        ms->possible_cpus->cpus[n].type = ms->cpu_type;
1866        ms->possible_cpus->cpus[n].arch_id =
1867            virt_cpu_mp_affinity(vms, n);
1868        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1869        ms->possible_cpus->cpus[n].props.thread_id = n;
1870    }
1871    return ms->possible_cpus;
1872}
1873
1874static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1875                                        DeviceState *dev, Error **errp)
1876{
1877    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1878
1879    if (vms->platform_bus_dev) {
1880        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1881            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1882                                     SYS_BUS_DEVICE(dev));
1883        }
1884    }
1885}
1886
1887static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1888                                                        DeviceState *dev)
1889{
1890    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1891        return HOTPLUG_HANDLER(machine);
1892    }
1893
1894    return NULL;
1895}
1896
1897/*
1898 * for arm64 kvm_type [7-0] encodes the requested number of bits
1899 * in the IPA address space
1900 */
1901static int virt_kvm_type(MachineState *ms, const char *type_str)
1902{
1903    VirtMachineState *vms = VIRT_MACHINE(ms);
1904    int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1905    int requested_pa_size;
1906
1907    /* we freeze the memory map to compute the highest gpa */
1908    virt_set_memmap(vms);
1909
1910    requested_pa_size = 64 - clz64(vms->highest_gpa);
1911
1912    if (requested_pa_size > max_vm_pa_size) {
1913        error_report("-m and ,maxmem option values "
1914                     "require an IPA range (%d bits) larger than "
1915                     "the one supported by the host (%d bits)",
1916                     requested_pa_size, max_vm_pa_size);
1917       exit(1);
1918    }
1919    /*
1920     * By default we return 0 which corresponds to an implicit legacy
1921     * 40b IPA setting. Otherwise we return the actual requested PA
1922     * logsize
1923     */
1924    return requested_pa_size > 40 ? requested_pa_size : 0;
1925}
1926
1927static void virt_machine_class_init(ObjectClass *oc, void *data)
1928{
1929    MachineClass *mc = MACHINE_CLASS(oc);
1930    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1931
1932    mc->init = machvirt_init;
1933    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1934     * The value may be reduced later when we have more information about the
1935     * configuration of the particular instance.
1936     */
1937    mc->max_cpus = 512;
1938    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1939    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1940    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1941    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1942    mc->block_default_type = IF_VIRTIO;
1943    mc->no_cdrom = 1;
1944    mc->pci_allow_0_address = true;
1945    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1946    mc->minimum_page_bits = 12;
1947    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1948    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1949    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1950    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1951    mc->kvm_type = virt_kvm_type;
1952    assert(!mc->get_hotplug_handler);
1953    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1954    hc->plug = virt_machine_device_plug_cb;
1955    mc->numa_mem_supported = true;
1956}
1957
1958static void virt_instance_init(Object *obj)
1959{
1960    VirtMachineState *vms = VIRT_MACHINE(obj);
1961    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1962
1963    /* EL3 is disabled by default on virt: this makes us consistent
1964     * between KVM and TCG for this board, and it also allows us to
1965     * boot UEFI blobs which assume no TrustZone support.
1966     */
1967    vms->secure = false;
1968    object_property_add_bool(obj, "secure", virt_get_secure,
1969                             virt_set_secure, NULL);
1970    object_property_set_description(obj, "secure",
1971                                    "Set on/off to enable/disable the ARM "
1972                                    "Security Extensions (TrustZone)",
1973                                    NULL);
1974
1975    /* EL2 is also disabled by default, for similar reasons */
1976    vms->virt = false;
1977    object_property_add_bool(obj, "virtualization", virt_get_virt,
1978                             virt_set_virt, NULL);
1979    object_property_set_description(obj, "virtualization",
1980                                    "Set on/off to enable/disable emulating a "
1981                                    "guest CPU which implements the ARM "
1982                                    "Virtualization Extensions",
1983                                    NULL);
1984
1985    /* High memory is enabled by default */
1986    vms->highmem = true;
1987    object_property_add_bool(obj, "highmem", virt_get_highmem,
1988                             virt_set_highmem, NULL);
1989    object_property_set_description(obj, "highmem",
1990                                    "Set on/off to enable/disable using "
1991                                    "physical address space above 32 bits",
1992                                    NULL);
1993    /* Default GIC type is v2 */
1994    vms->gic_version = 2;
1995    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1996                        virt_set_gic_version, NULL);
1997    object_property_set_description(obj, "gic-version",
1998                                    "Set GIC version. "
1999                                    "Valid values are 2, 3 and host", NULL);
2000
2001    vms->highmem_ecam = !vmc->no_highmem_ecam;
2002
2003    if (vmc->no_its) {
2004        vms->its = false;
2005    } else {
2006        /* Default allows ITS instantiation */
2007        vms->its = true;
2008        object_property_add_bool(obj, "its", virt_get_its,
2009                                 virt_set_its, NULL);
2010        object_property_set_description(obj, "its",
2011                                        "Set on/off to enable/disable "
2012                                        "ITS instantiation",
2013                                        NULL);
2014    }
2015
2016    /* Default disallows iommu instantiation */
2017    vms->iommu = VIRT_IOMMU_NONE;
2018    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2019    object_property_set_description(obj, "iommu",
2020                                    "Set the IOMMU type. "
2021                                    "Valid values are none and smmuv3",
2022                                    NULL);
2023
2024    vms->irqmap = a15irqmap;
2025
2026    virt_flash_create(vms);
2027}
2028
2029static const TypeInfo virt_machine_info = {
2030    .name          = TYPE_VIRT_MACHINE,
2031    .parent        = TYPE_MACHINE,
2032    .abstract      = true,
2033    .instance_size = sizeof(VirtMachineState),
2034    .class_size    = sizeof(VirtMachineClass),
2035    .class_init    = virt_machine_class_init,
2036    .instance_init = virt_instance_init,
2037    .interfaces = (InterfaceInfo[]) {
2038         { TYPE_HOTPLUG_HANDLER },
2039         { }
2040    },
2041};
2042
2043static void machvirt_machine_init(void)
2044{
2045    type_register_static(&virt_machine_info);
2046}
2047type_init(machvirt_machine_init);
2048
2049static void virt_machine_4_1_options(MachineClass *mc)
2050{
2051}
2052DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2053
2054static void virt_machine_4_0_options(MachineClass *mc)
2055{
2056    virt_machine_4_1_options(mc);
2057    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2058}
2059DEFINE_VIRT_MACHINE(4, 0)
2060
2061static void virt_machine_3_1_options(MachineClass *mc)
2062{
2063    virt_machine_4_0_options(mc);
2064    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2065}
2066DEFINE_VIRT_MACHINE(3, 1)
2067
2068static void virt_machine_3_0_options(MachineClass *mc)
2069{
2070    virt_machine_3_1_options(mc);
2071    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2072}
2073DEFINE_VIRT_MACHINE(3, 0)
2074
2075static void virt_machine_2_12_options(MachineClass *mc)
2076{
2077    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2078
2079    virt_machine_3_0_options(mc);
2080    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2081    vmc->no_highmem_ecam = true;
2082    mc->max_cpus = 255;
2083}
2084DEFINE_VIRT_MACHINE(2, 12)
2085
2086static void virt_machine_2_11_options(MachineClass *mc)
2087{
2088    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2089
2090    virt_machine_2_12_options(mc);
2091    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2092    vmc->smbios_old_sys_ver = true;
2093}
2094DEFINE_VIRT_MACHINE(2, 11)
2095
2096static void virt_machine_2_10_options(MachineClass *mc)
2097{
2098    virt_machine_2_11_options(mc);
2099    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2100    /* before 2.11 we never faulted accesses to bad addresses */
2101    mc->ignore_memory_transaction_failures = true;
2102}
2103DEFINE_VIRT_MACHINE(2, 10)
2104
2105static void virt_machine_2_9_options(MachineClass *mc)
2106{
2107    virt_machine_2_10_options(mc);
2108    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2109}
2110DEFINE_VIRT_MACHINE(2, 9)
2111
2112static void virt_machine_2_8_options(MachineClass *mc)
2113{
2114    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2115
2116    virt_machine_2_9_options(mc);
2117    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2118    /* For 2.8 and earlier we falsely claimed in the DT that
2119     * our timers were edge-triggered, not level-triggered.
2120     */
2121    vmc->claim_edge_triggered_timers = true;
2122}
2123DEFINE_VIRT_MACHINE(2, 8)
2124
2125static void virt_machine_2_7_options(MachineClass *mc)
2126{
2127    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2128
2129    virt_machine_2_8_options(mc);
2130    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2131    /* ITS was introduced with 2.8 */
2132    vmc->no_its = true;
2133    /* Stick with 1K pages for migration compatibility */
2134    mc->minimum_page_bits = 0;
2135}
2136DEFINE_VIRT_MACHINE(2, 7)
2137
2138static void virt_machine_2_6_options(MachineClass *mc)
2139{
2140    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2141
2142    virt_machine_2_7_options(mc);
2143    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2144    vmc->disallow_affinity_adjustment = true;
2145    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2146    vmc->no_pmu = true;
2147}
2148DEFINE_VIRT_MACHINE(2, 6)
2149