qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "qemu/units.h"
  26#include "hw/hw.h"
  27#include "sysemu/block-backend.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "qemu/error-report.h"
  33#include "qapi/error.h"
  34
  35#ifndef M25P80_ERR_DEBUG
  36#define M25P80_ERR_DEBUG 0
  37#endif
  38
  39#define DB_PRINT_L(level, ...) do { \
  40    if (M25P80_ERR_DEBUG > (level)) { \
  41        fprintf(stderr,  ": %s: ", __func__); \
  42        fprintf(stderr, ## __VA_ARGS__); \
  43    } \
  44} while (0)
  45
  46/* Fields for FlashPartInfo->flags */
  47
  48/* erase capabilities */
  49#define ER_4K 1
  50#define ER_32K 2
  51/* set to allow the page program command to write 0s back to 1. Useful for
  52 * modelling EEPROM with SPI flash command set
  53 */
  54#define EEPROM 0x100
  55
  56/* 16 MiB max in 3 byte address mode */
  57#define MAX_3BYTES_SIZE 0x1000000
  58
  59#define SPI_NOR_MAX_ID_LEN 6
  60
  61typedef struct FlashPartInfo {
  62    const char *part_name;
  63    /*
  64     * This array stores the ID bytes.
  65     * The first three bytes are the JEDIC ID.
  66     * JEDEC ID zero means "no ID" (mostly older chips).
  67     */
  68    uint8_t id[SPI_NOR_MAX_ID_LEN];
  69    uint8_t id_len;
  70    /* there is confusion between manufacturers as to what a sector is. In this
  71     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  72     * command (opcode 0xd8).
  73     */
  74    uint32_t sector_size;
  75    uint32_t n_sectors;
  76    uint32_t page_size;
  77    uint16_t flags;
  78    /*
  79     * Big sized spi nor are often stacked devices, thus sometime
  80     * replace chip erase with die erase.
  81     * This field inform how many die is in the chip.
  82     */
  83    uint8_t die_cnt;
  84} FlashPartInfo;
  85
  86/* adapted from linux */
  87/* Used when the "_ext_id" is two bytes at most */
  88#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  89    .part_name = _part_name,\
  90    .id = {\
  91        ((_jedec_id) >> 16) & 0xff,\
  92        ((_jedec_id) >> 8) & 0xff,\
  93        (_jedec_id) & 0xff,\
  94        ((_ext_id) >> 8) & 0xff,\
  95        (_ext_id) & 0xff,\
  96          },\
  97    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  98    .sector_size = (_sector_size),\
  99    .n_sectors = (_n_sectors),\
 100    .page_size = 256,\
 101    .flags = (_flags),\
 102    .die_cnt = 0
 103
 104#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
 105    .part_name = _part_name,\
 106    .id = {\
 107        ((_jedec_id) >> 16) & 0xff,\
 108        ((_jedec_id) >> 8) & 0xff,\
 109        (_jedec_id) & 0xff,\
 110        ((_ext_id) >> 16) & 0xff,\
 111        ((_ext_id) >> 8) & 0xff,\
 112        (_ext_id) & 0xff,\
 113          },\
 114    .id_len = 6,\
 115    .sector_size = (_sector_size),\
 116    .n_sectors = (_n_sectors),\
 117    .page_size = 256,\
 118    .flags = (_flags),\
 119    .die_cnt = 0
 120
 121#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 122                    _flags, _die_cnt)\
 123    .part_name = _part_name,\
 124    .id = {\
 125        ((_jedec_id) >> 16) & 0xff,\
 126        ((_jedec_id) >> 8) & 0xff,\
 127        (_jedec_id) & 0xff,\
 128        ((_ext_id) >> 8) & 0xff,\
 129        (_ext_id) & 0xff,\
 130          },\
 131    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 132    .sector_size = (_sector_size),\
 133    .n_sectors = (_n_sectors),\
 134    .page_size = 256,\
 135    .flags = (_flags),\
 136    .die_cnt = _die_cnt
 137
 138#define JEDEC_NUMONYX 0x20
 139#define JEDEC_WINBOND 0xEF
 140#define JEDEC_SPANSION 0x01
 141
 142/* Numonyx (Micron) Configuration register macros */
 143#define VCFG_DUMMY 0x1
 144#define VCFG_WRAP_SEQUENTIAL 0x2
 145#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 146#define NVCFG_XIP_MODE_MASK (7 << 9)
 147#define VCFG_XIP_MODE_ENABLED (1 << 3)
 148#define CFG_DUMMY_CLK_LEN 4
 149#define NVCFG_DUMMY_CLK_POS 12
 150#define VCFG_DUMMY_CLK_POS 4
 151#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 152#define EVCFG_VPP_ACCELERATOR (1 << 3)
 153#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 154#define NVCFG_DUAL_IO_MASK (1 << 2)
 155#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 156#define NVCFG_QUAD_IO_MASK (1 << 3)
 157#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 158#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 159#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 160
 161/* Numonyx (Micron) Flag Status Register macros */
 162#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 163#define FSR_FLASH_READY (1 << 7)
 164
 165/* Spansion configuration registers macros. */
 166#define SPANSION_QUAD_CFG_POS 0
 167#define SPANSION_QUAD_CFG_LEN 1
 168#define SPANSION_DUMMY_CLK_POS 0
 169#define SPANSION_DUMMY_CLK_LEN 4
 170#define SPANSION_ADDR_LEN_POS 7
 171#define SPANSION_ADDR_LEN_LEN 1
 172
 173/*
 174 * Spansion read mode command length in bytes,
 175 * the mode is currently not supported.
 176*/
 177
 178#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 179#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 180
 181static const FlashPartInfo known_devices[] = {
 182    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 183    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 184    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 185
 186    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 187    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 188    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 189
 190    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 191    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 192    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 193    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 194
 195    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 196
 197    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 198     * is set to 0. Block protection is not supported.
 199     */
 200    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 201    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 202
 203    /* EON -- en25xxx */
 204    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 205    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 206    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 207    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 208    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 209
 210    /* GigaDevice */
 211    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 212    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 213
 214    /* Intel/Numonyx -- xxxs33b */
 215    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 216    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 217    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 218    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 219
 220    /* Macronix */
 221    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 222    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 223    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 224    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 225    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 226    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 227    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 228    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 229    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
 230    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 231    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 232    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 233    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 234
 235    /* Micron */
 236    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 237    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 238    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 239    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 240    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 241    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 242    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 243    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 244    { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
 245    { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 246    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 247    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 248    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 249    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 250    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 251    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 252    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 253
 254    /* Spansion -- single (large) sector size only, at least
 255     * for the chips listed here (without boot sectors).
 256     */
 257    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 258    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 259    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 260    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 261    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 262    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 263    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 264    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 265    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 266    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 267    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 268    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 269    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 270    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 271    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 272    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 273    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 274
 275    /* Spansion --  boot sectors support  */
 276    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 277    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 278
 279    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 280    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 281    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 282    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 283    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 284    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 285    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 286    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 287    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 288    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 289
 290    /* ST Microelectronics -- newer production may have feature updates */
 291    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 292    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 293    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 294    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 295    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 296    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 297    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 298    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 299    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 300    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 301
 302    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 303    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 304    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 305
 306    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 307    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 308    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 309
 310    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 311    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 312    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 313    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 314
 315    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 316    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 317    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 318    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 319    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 320    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 321    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 322    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 323    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 324    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 325    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 326    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 327    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 328    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 329};
 330
 331typedef enum {
 332    NOP = 0,
 333    WRSR = 0x1,
 334    WRDI = 0x4,
 335    RDSR = 0x5,
 336    WREN = 0x6,
 337    BRRD = 0x16,
 338    BRWR = 0x17,
 339    JEDEC_READ = 0x9f,
 340    BULK_ERASE_60 = 0x60,
 341    BULK_ERASE = 0xc7,
 342    READ_FSR = 0x70,
 343    RDCR = 0x15,
 344
 345    READ = 0x03,
 346    READ4 = 0x13,
 347    FAST_READ = 0x0b,
 348    FAST_READ4 = 0x0c,
 349    DOR = 0x3b,
 350    DOR4 = 0x3c,
 351    QOR = 0x6b,
 352    QOR4 = 0x6c,
 353    DIOR = 0xbb,
 354    DIOR4 = 0xbc,
 355    QIOR = 0xeb,
 356    QIOR4 = 0xec,
 357
 358    PP = 0x02,
 359    PP4 = 0x12,
 360    PP4_4 = 0x3e,
 361    DPP = 0xa2,
 362    QPP = 0x32,
 363    QPP_4 = 0x34,
 364    RDID_90 = 0x90,
 365    RDID_AB = 0xab,
 366
 367    ERASE_4K = 0x20,
 368    ERASE4_4K = 0x21,
 369    ERASE_32K = 0x52,
 370    ERASE4_32K = 0x5c,
 371    ERASE_SECTOR = 0xd8,
 372    ERASE4_SECTOR = 0xdc,
 373
 374    EN_4BYTE_ADDR = 0xB7,
 375    EX_4BYTE_ADDR = 0xE9,
 376
 377    EXTEND_ADDR_READ = 0xC8,
 378    EXTEND_ADDR_WRITE = 0xC5,
 379
 380    RESET_ENABLE = 0x66,
 381    RESET_MEMORY = 0x99,
 382
 383    /*
 384     * Micron: 0x35 - enable QPI
 385     * Spansion: 0x35 - read control register
 386     */
 387    RDCR_EQIO = 0x35,
 388    RSTQIO = 0xf5,
 389
 390    RNVCR = 0xB5,
 391    WNVCR = 0xB1,
 392
 393    RVCR = 0x85,
 394    WVCR = 0x81,
 395
 396    REVCR = 0x65,
 397    WEVCR = 0x61,
 398
 399    DIE_ERASE = 0xC4,
 400} FlashCMD;
 401
 402typedef enum {
 403    STATE_IDLE,
 404    STATE_PAGE_PROGRAM,
 405    STATE_READ,
 406    STATE_COLLECTING_DATA,
 407    STATE_COLLECTING_VAR_LEN_DATA,
 408    STATE_READING_DATA,
 409} CMDState;
 410
 411typedef enum {
 412    MAN_SPANSION,
 413    MAN_MACRONIX,
 414    MAN_NUMONYX,
 415    MAN_WINBOND,
 416    MAN_SST,
 417    MAN_GENERIC,
 418} Manufacturer;
 419
 420#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 421
 422typedef struct Flash {
 423    SSISlave parent_obj;
 424
 425    BlockBackend *blk;
 426
 427    uint8_t *storage;
 428    uint32_t size;
 429    int page_size;
 430
 431    uint8_t state;
 432    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 433    uint32_t len;
 434    uint32_t pos;
 435    bool data_read_loop;
 436    uint8_t needed_bytes;
 437    uint8_t cmd_in_progress;
 438    uint32_t cur_addr;
 439    uint32_t nonvolatile_cfg;
 440    /* Configuration register for Macronix */
 441    uint32_t volatile_cfg;
 442    uint32_t enh_volatile_cfg;
 443    /* Spansion cfg registers. */
 444    uint8_t spansion_cr1nv;
 445    uint8_t spansion_cr2nv;
 446    uint8_t spansion_cr3nv;
 447    uint8_t spansion_cr4nv;
 448    uint8_t spansion_cr1v;
 449    uint8_t spansion_cr2v;
 450    uint8_t spansion_cr3v;
 451    uint8_t spansion_cr4v;
 452    bool write_enable;
 453    bool four_bytes_address_mode;
 454    bool reset_enable;
 455    bool quad_enable;
 456    uint8_t ear;
 457
 458    int64_t dirty_page;
 459
 460    const FlashPartInfo *pi;
 461
 462} Flash;
 463
 464typedef struct M25P80Class {
 465    SSISlaveClass parent_class;
 466    FlashPartInfo *pi;
 467} M25P80Class;
 468
 469#define TYPE_M25P80 "m25p80-generic"
 470#define M25P80(obj) \
 471     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 472#define M25P80_CLASS(klass) \
 473     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 474#define M25P80_GET_CLASS(obj) \
 475     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 476
 477static inline Manufacturer get_man(Flash *s)
 478{
 479    switch (s->pi->id[0]) {
 480    case 0x20:
 481        return MAN_NUMONYX;
 482    case 0xEF:
 483        return MAN_WINBOND;
 484    case 0x01:
 485        return MAN_SPANSION;
 486    case 0xC2:
 487        return MAN_MACRONIX;
 488    case 0xBF:
 489        return MAN_SST;
 490    default:
 491        return MAN_GENERIC;
 492    }
 493}
 494
 495static void blk_sync_complete(void *opaque, int ret)
 496{
 497    QEMUIOVector *iov = opaque;
 498
 499    qemu_iovec_destroy(iov);
 500    g_free(iov);
 501
 502    /* do nothing. Masters do not directly interact with the backing store,
 503     * only the working copy so no mutexing required.
 504     */
 505}
 506
 507static void flash_sync_page(Flash *s, int page)
 508{
 509    QEMUIOVector *iov;
 510
 511    if (!s->blk || blk_is_read_only(s->blk)) {
 512        return;
 513    }
 514
 515    iov = g_new(QEMUIOVector, 1);
 516    qemu_iovec_init(iov, 1);
 517    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 518                   s->pi->page_size);
 519    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 520                    blk_sync_complete, iov);
 521}
 522
 523static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 524{
 525    QEMUIOVector *iov;
 526
 527    if (!s->blk || blk_is_read_only(s->blk)) {
 528        return;
 529    }
 530
 531    assert(!(len % BDRV_SECTOR_SIZE));
 532    iov = g_new(QEMUIOVector, 1);
 533    qemu_iovec_init(iov, 1);
 534    qemu_iovec_add(iov, s->storage + off, len);
 535    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 536}
 537
 538static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 539{
 540    uint32_t len;
 541    uint8_t capa_to_assert = 0;
 542
 543    switch (cmd) {
 544    case ERASE_4K:
 545    case ERASE4_4K:
 546        len = 4 * KiB;
 547        capa_to_assert = ER_4K;
 548        break;
 549    case ERASE_32K:
 550    case ERASE4_32K:
 551        len = 32 * KiB;
 552        capa_to_assert = ER_32K;
 553        break;
 554    case ERASE_SECTOR:
 555    case ERASE4_SECTOR:
 556        len = s->pi->sector_size;
 557        break;
 558    case BULK_ERASE:
 559        len = s->size;
 560        break;
 561    case DIE_ERASE:
 562        if (s->pi->die_cnt) {
 563            len = s->size / s->pi->die_cnt;
 564            offset = offset & (~(len - 1));
 565        } else {
 566            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 567                          " by device\n");
 568            return;
 569        }
 570        break;
 571    default:
 572        abort();
 573    }
 574
 575    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 576    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 577        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 578                      " device\n", len);
 579    }
 580
 581    if (!s->write_enable) {
 582        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 583        return;
 584    }
 585    memset(s->storage + offset, 0xff, len);
 586    flash_sync_area(s, offset, len);
 587}
 588
 589static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 590{
 591    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 592        flash_sync_page(s, s->dirty_page);
 593        s->dirty_page = newpage;
 594    }
 595}
 596
 597static inline
 598void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 599{
 600    uint32_t page = addr / s->pi->page_size;
 601    uint8_t prev = s->storage[s->cur_addr];
 602
 603    if (!s->write_enable) {
 604        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 605    }
 606
 607    if ((prev ^ data) & data) {
 608        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
 609                   " -> %" PRIx8 "\n", addr, prev, data);
 610    }
 611
 612    if (s->pi->flags & EEPROM) {
 613        s->storage[s->cur_addr] = data;
 614    } else {
 615        s->storage[s->cur_addr] &= data;
 616    }
 617
 618    flash_sync_dirty(s, page);
 619    s->dirty_page = page;
 620}
 621
 622static inline int get_addr_length(Flash *s)
 623{
 624   /* check if eeprom is in use */
 625    if (s->pi->flags == EEPROM) {
 626        return 2;
 627    }
 628
 629   switch (s->cmd_in_progress) {
 630   case PP4:
 631   case PP4_4:
 632   case QPP_4:
 633   case READ4:
 634   case QIOR4:
 635   case ERASE4_4K:
 636   case ERASE4_32K:
 637   case ERASE4_SECTOR:
 638   case FAST_READ4:
 639   case DOR4:
 640   case QOR4:
 641   case DIOR4:
 642       return 4;
 643   default:
 644       return s->four_bytes_address_mode ? 4 : 3;
 645   }
 646}
 647
 648static void complete_collecting_data(Flash *s)
 649{
 650    int i, n;
 651
 652    n = get_addr_length(s);
 653    s->cur_addr = (n == 3 ? s->ear : 0);
 654    for (i = 0; i < n; ++i) {
 655        s->cur_addr <<= 8;
 656        s->cur_addr |= s->data[i];
 657    }
 658
 659    s->cur_addr &= s->size - 1;
 660
 661    s->state = STATE_IDLE;
 662
 663    switch (s->cmd_in_progress) {
 664    case DPP:
 665    case QPP:
 666    case QPP_4:
 667    case PP:
 668    case PP4:
 669    case PP4_4:
 670        s->state = STATE_PAGE_PROGRAM;
 671        break;
 672    case READ:
 673    case READ4:
 674    case FAST_READ:
 675    case FAST_READ4:
 676    case DOR:
 677    case DOR4:
 678    case QOR:
 679    case QOR4:
 680    case DIOR:
 681    case DIOR4:
 682    case QIOR:
 683    case QIOR4:
 684        s->state = STATE_READ;
 685        break;
 686    case ERASE_4K:
 687    case ERASE4_4K:
 688    case ERASE_32K:
 689    case ERASE4_32K:
 690    case ERASE_SECTOR:
 691    case ERASE4_SECTOR:
 692    case DIE_ERASE:
 693        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 694        break;
 695    case WRSR:
 696        switch (get_man(s)) {
 697        case MAN_SPANSION:
 698            s->quad_enable = !!(s->data[1] & 0x02);
 699            break;
 700        case MAN_MACRONIX:
 701            s->quad_enable = extract32(s->data[0], 6, 1);
 702            if (s->len > 1) {
 703                s->volatile_cfg = s->data[1];
 704                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 705            }
 706            break;
 707        default:
 708            break;
 709        }
 710        if (s->write_enable) {
 711            s->write_enable = false;
 712        }
 713        break;
 714    case BRWR:
 715    case EXTEND_ADDR_WRITE:
 716        s->ear = s->data[0];
 717        break;
 718    case WNVCR:
 719        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 720        break;
 721    case WVCR:
 722        s->volatile_cfg = s->data[0];
 723        break;
 724    case WEVCR:
 725        s->enh_volatile_cfg = s->data[0];
 726        break;
 727    case RDID_90:
 728    case RDID_AB:
 729        if (get_man(s) == MAN_SST) {
 730            if (s->cur_addr <= 1) {
 731                if (s->cur_addr) {
 732                    s->data[0] = s->pi->id[2];
 733                    s->data[1] = s->pi->id[0];
 734                } else {
 735                    s->data[0] = s->pi->id[0];
 736                    s->data[1] = s->pi->id[2];
 737                }
 738                s->pos = 0;
 739                s->len = 2;
 740                s->data_read_loop = true;
 741                s->state = STATE_READING_DATA;
 742            } else {
 743                qemu_log_mask(LOG_GUEST_ERROR,
 744                              "M25P80: Invalid read id address\n");
 745            }
 746        } else {
 747            qemu_log_mask(LOG_GUEST_ERROR,
 748                          "M25P80: Read id (command 0x90/0xAB) is not supported"
 749                          " by device\n");
 750        }
 751        break;
 752    default:
 753        break;
 754    }
 755}
 756
 757static void reset_memory(Flash *s)
 758{
 759    s->cmd_in_progress = NOP;
 760    s->cur_addr = 0;
 761    s->ear = 0;
 762    s->four_bytes_address_mode = false;
 763    s->len = 0;
 764    s->needed_bytes = 0;
 765    s->pos = 0;
 766    s->state = STATE_IDLE;
 767    s->write_enable = false;
 768    s->reset_enable = false;
 769    s->quad_enable = false;
 770
 771    switch (get_man(s)) {
 772    case MAN_NUMONYX:
 773        s->volatile_cfg = 0;
 774        s->volatile_cfg |= VCFG_DUMMY;
 775        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 776        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 777                                != NVCFG_XIP_MODE_DISABLED) {
 778            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 779        }
 780        s->volatile_cfg |= deposit32(s->volatile_cfg,
 781                            VCFG_DUMMY_CLK_POS,
 782                            CFG_DUMMY_CLK_LEN,
 783                            extract32(s->nonvolatile_cfg,
 784                                        NVCFG_DUMMY_CLK_POS,
 785                                        CFG_DUMMY_CLK_LEN)
 786                            );
 787
 788        s->enh_volatile_cfg = 0;
 789        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 790        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 791        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 792        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 793            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 794        }
 795        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 796            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 797        }
 798        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 799            s->four_bytes_address_mode = true;
 800        }
 801        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 802            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 803        }
 804        break;
 805    case MAN_MACRONIX:
 806        s->volatile_cfg = 0x7;
 807        break;
 808    case MAN_SPANSION:
 809        s->spansion_cr1v = s->spansion_cr1nv;
 810        s->spansion_cr2v = s->spansion_cr2nv;
 811        s->spansion_cr3v = s->spansion_cr3nv;
 812        s->spansion_cr4v = s->spansion_cr4nv;
 813        s->quad_enable = extract32(s->spansion_cr1v,
 814                                   SPANSION_QUAD_CFG_POS,
 815                                   SPANSION_QUAD_CFG_LEN
 816                                   );
 817        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 818                SPANSION_ADDR_LEN_POS,
 819                SPANSION_ADDR_LEN_LEN
 820                );
 821        break;
 822    default:
 823        break;
 824    }
 825
 826    DB_PRINT_L(0, "Reset done.\n");
 827}
 828
 829static void decode_fast_read_cmd(Flash *s)
 830{
 831    s->needed_bytes = get_addr_length(s);
 832    switch (get_man(s)) {
 833    /* Dummy cycles - modeled with bytes writes instead of bits */
 834    case MAN_WINBOND:
 835        s->needed_bytes += 8;
 836        break;
 837    case MAN_NUMONYX:
 838        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 839        break;
 840    case MAN_MACRONIX:
 841        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 842            s->needed_bytes += 6;
 843        } else {
 844            s->needed_bytes += 8;
 845        }
 846        break;
 847    case MAN_SPANSION:
 848        s->needed_bytes += extract32(s->spansion_cr2v,
 849                                    SPANSION_DUMMY_CLK_POS,
 850                                    SPANSION_DUMMY_CLK_LEN
 851                                    );
 852        break;
 853    default:
 854        break;
 855    }
 856    s->pos = 0;
 857    s->len = 0;
 858    s->state = STATE_COLLECTING_DATA;
 859}
 860
 861static void decode_dio_read_cmd(Flash *s)
 862{
 863    s->needed_bytes = get_addr_length(s);
 864    /* Dummy cycles modeled with bytes writes instead of bits */
 865    switch (get_man(s)) {
 866    case MAN_WINBOND:
 867        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 868        break;
 869    case MAN_SPANSION:
 870        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 871        s->needed_bytes += extract32(s->spansion_cr2v,
 872                                    SPANSION_DUMMY_CLK_POS,
 873                                    SPANSION_DUMMY_CLK_LEN
 874                                    );
 875        break;
 876    case MAN_NUMONYX:
 877        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 878        break;
 879    case MAN_MACRONIX:
 880        switch (extract32(s->volatile_cfg, 6, 2)) {
 881        case 1:
 882            s->needed_bytes += 6;
 883            break;
 884        case 2:
 885            s->needed_bytes += 8;
 886            break;
 887        default:
 888            s->needed_bytes += 4;
 889            break;
 890        }
 891        break;
 892    default:
 893        break;
 894    }
 895    s->pos = 0;
 896    s->len = 0;
 897    s->state = STATE_COLLECTING_DATA;
 898}
 899
 900static void decode_qio_read_cmd(Flash *s)
 901{
 902    s->needed_bytes = get_addr_length(s);
 903    /* Dummy cycles modeled with bytes writes instead of bits */
 904    switch (get_man(s)) {
 905    case MAN_WINBOND:
 906        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 907        s->needed_bytes += 4;
 908        break;
 909    case MAN_SPANSION:
 910        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 911        s->needed_bytes += extract32(s->spansion_cr2v,
 912                                    SPANSION_DUMMY_CLK_POS,
 913                                    SPANSION_DUMMY_CLK_LEN
 914                                    );
 915        break;
 916    case MAN_NUMONYX:
 917        s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
 918        break;
 919    case MAN_MACRONIX:
 920        switch (extract32(s->volatile_cfg, 6, 2)) {
 921        case 1:
 922            s->needed_bytes += 4;
 923            break;
 924        case 2:
 925            s->needed_bytes += 8;
 926            break;
 927        default:
 928            s->needed_bytes += 6;
 929            break;
 930        }
 931        break;
 932    default:
 933        break;
 934    }
 935    s->pos = 0;
 936    s->len = 0;
 937    s->state = STATE_COLLECTING_DATA;
 938}
 939
 940static void decode_new_cmd(Flash *s, uint32_t value)
 941{
 942    s->cmd_in_progress = value;
 943    int i;
 944    DB_PRINT_L(0, "decoded new command:%x\n", value);
 945
 946    if (value != RESET_MEMORY) {
 947        s->reset_enable = false;
 948    }
 949
 950    switch (value) {
 951
 952    case ERASE_4K:
 953    case ERASE4_4K:
 954    case ERASE_32K:
 955    case ERASE4_32K:
 956    case ERASE_SECTOR:
 957    case ERASE4_SECTOR:
 958    case READ:
 959    case READ4:
 960    case DPP:
 961    case QPP:
 962    case QPP_4:
 963    case PP:
 964    case PP4:
 965    case PP4_4:
 966    case DIE_ERASE:
 967    case RDID_90:
 968    case RDID_AB:
 969        s->needed_bytes = get_addr_length(s);
 970        s->pos = 0;
 971        s->len = 0;
 972        s->state = STATE_COLLECTING_DATA;
 973        break;
 974
 975    case FAST_READ:
 976    case FAST_READ4:
 977    case DOR:
 978    case DOR4:
 979    case QOR:
 980    case QOR4:
 981        decode_fast_read_cmd(s);
 982        break;
 983
 984    case DIOR:
 985    case DIOR4:
 986        decode_dio_read_cmd(s);
 987        break;
 988
 989    case QIOR:
 990    case QIOR4:
 991        decode_qio_read_cmd(s);
 992        break;
 993
 994    case WRSR:
 995        if (s->write_enable) {
 996            switch (get_man(s)) {
 997            case MAN_SPANSION:
 998                s->needed_bytes = 2;
 999                s->state = STATE_COLLECTING_DATA;
1000                break;
1001            case MAN_MACRONIX:
1002                s->needed_bytes = 2;
1003                s->state = STATE_COLLECTING_VAR_LEN_DATA;
1004                break;
1005            default:
1006                s->needed_bytes = 1;
1007                s->state = STATE_COLLECTING_DATA;
1008            }
1009            s->pos = 0;
1010        }
1011        break;
1012
1013    case WRDI:
1014        s->write_enable = false;
1015        break;
1016    case WREN:
1017        s->write_enable = true;
1018        break;
1019
1020    case RDSR:
1021        s->data[0] = (!!s->write_enable) << 1;
1022        if (get_man(s) == MAN_MACRONIX) {
1023            s->data[0] |= (!!s->quad_enable) << 6;
1024        }
1025        s->pos = 0;
1026        s->len = 1;
1027        s->data_read_loop = true;
1028        s->state = STATE_READING_DATA;
1029        break;
1030
1031    case READ_FSR:
1032        s->data[0] = FSR_FLASH_READY;
1033        if (s->four_bytes_address_mode) {
1034            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1035        }
1036        s->pos = 0;
1037        s->len = 1;
1038        s->data_read_loop = true;
1039        s->state = STATE_READING_DATA;
1040        break;
1041
1042    case JEDEC_READ:
1043        DB_PRINT_L(0, "populated jedec code\n");
1044        for (i = 0; i < s->pi->id_len; i++) {
1045            s->data[i] = s->pi->id[i];
1046        }
1047
1048        s->len = s->pi->id_len;
1049        s->pos = 0;
1050        s->state = STATE_READING_DATA;
1051        break;
1052
1053    case RDCR:
1054        s->data[0] = s->volatile_cfg & 0xFF;
1055        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1056        s->pos = 0;
1057        s->len = 1;
1058        s->state = STATE_READING_DATA;
1059        break;
1060
1061    case BULK_ERASE_60:
1062    case BULK_ERASE:
1063        if (s->write_enable) {
1064            DB_PRINT_L(0, "chip erase\n");
1065            flash_erase(s, 0, BULK_ERASE);
1066        } else {
1067            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1068                          "protect!\n");
1069        }
1070        break;
1071    case NOP:
1072        break;
1073    case EN_4BYTE_ADDR:
1074        s->four_bytes_address_mode = true;
1075        break;
1076    case EX_4BYTE_ADDR:
1077        s->four_bytes_address_mode = false;
1078        break;
1079    case BRRD:
1080    case EXTEND_ADDR_READ:
1081        s->data[0] = s->ear;
1082        s->pos = 0;
1083        s->len = 1;
1084        s->state = STATE_READING_DATA;
1085        break;
1086    case BRWR:
1087    case EXTEND_ADDR_WRITE:
1088        if (s->write_enable) {
1089            s->needed_bytes = 1;
1090            s->pos = 0;
1091            s->len = 0;
1092            s->state = STATE_COLLECTING_DATA;
1093        }
1094        break;
1095    case RNVCR:
1096        s->data[0] = s->nonvolatile_cfg & 0xFF;
1097        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1098        s->pos = 0;
1099        s->len = 2;
1100        s->state = STATE_READING_DATA;
1101        break;
1102    case WNVCR:
1103        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1104            s->needed_bytes = 2;
1105            s->pos = 0;
1106            s->len = 0;
1107            s->state = STATE_COLLECTING_DATA;
1108        }
1109        break;
1110    case RVCR:
1111        s->data[0] = s->volatile_cfg & 0xFF;
1112        s->pos = 0;
1113        s->len = 1;
1114        s->state = STATE_READING_DATA;
1115        break;
1116    case WVCR:
1117        if (s->write_enable) {
1118            s->needed_bytes = 1;
1119            s->pos = 0;
1120            s->len = 0;
1121            s->state = STATE_COLLECTING_DATA;
1122        }
1123        break;
1124    case REVCR:
1125        s->data[0] = s->enh_volatile_cfg & 0xFF;
1126        s->pos = 0;
1127        s->len = 1;
1128        s->state = STATE_READING_DATA;
1129        break;
1130    case WEVCR:
1131        if (s->write_enable) {
1132            s->needed_bytes = 1;
1133            s->pos = 0;
1134            s->len = 0;
1135            s->state = STATE_COLLECTING_DATA;
1136        }
1137        break;
1138    case RESET_ENABLE:
1139        s->reset_enable = true;
1140        break;
1141    case RESET_MEMORY:
1142        if (s->reset_enable) {
1143            reset_memory(s);
1144        }
1145        break;
1146    case RDCR_EQIO:
1147        switch (get_man(s)) {
1148        case MAN_SPANSION:
1149            s->data[0] = (!!s->quad_enable) << 1;
1150            s->pos = 0;
1151            s->len = 1;
1152            s->state = STATE_READING_DATA;
1153            break;
1154        case MAN_MACRONIX:
1155            s->quad_enable = true;
1156            break;
1157        default:
1158            break;
1159        }
1160        break;
1161    case RSTQIO:
1162        s->quad_enable = false;
1163        break;
1164    default:
1165        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1166        break;
1167    }
1168}
1169
1170static int m25p80_cs(SSISlave *ss, bool select)
1171{
1172    Flash *s = M25P80(ss);
1173
1174    if (select) {
1175        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1176            complete_collecting_data(s);
1177        }
1178        s->len = 0;
1179        s->pos = 0;
1180        s->state = STATE_IDLE;
1181        flash_sync_dirty(s, -1);
1182        s->data_read_loop = false;
1183    }
1184
1185    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1186
1187    return 0;
1188}
1189
1190static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1191{
1192    Flash *s = M25P80(ss);
1193    uint32_t r = 0;
1194
1195    switch (s->state) {
1196
1197    case STATE_PAGE_PROGRAM:
1198        DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1199                   s->cur_addr, (uint8_t)tx);
1200        flash_write8(s, s->cur_addr, (uint8_t)tx);
1201        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1202        break;
1203
1204    case STATE_READ:
1205        r = s->storage[s->cur_addr];
1206        DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1207                   (uint8_t)r);
1208        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1209        break;
1210
1211    case STATE_COLLECTING_DATA:
1212    case STATE_COLLECTING_VAR_LEN_DATA:
1213
1214        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1215            qemu_log_mask(LOG_GUEST_ERROR,
1216                          "M25P80: Write overrun internal data buffer. "
1217                          "SPI controller (QEMU emulator or guest driver) "
1218                          "is misbehaving\n");
1219            s->len = s->pos = 0;
1220            s->state = STATE_IDLE;
1221            break;
1222        }
1223
1224        s->data[s->len] = (uint8_t)tx;
1225        s->len++;
1226
1227        if (s->len == s->needed_bytes) {
1228            complete_collecting_data(s);
1229        }
1230        break;
1231
1232    case STATE_READING_DATA:
1233
1234        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1235            qemu_log_mask(LOG_GUEST_ERROR,
1236                          "M25P80: Read overrun internal data buffer. "
1237                          "SPI controller (QEMU emulator or guest driver) "
1238                          "is misbehaving\n");
1239            s->len = s->pos = 0;
1240            s->state = STATE_IDLE;
1241            break;
1242        }
1243
1244        r = s->data[s->pos];
1245        s->pos++;
1246        if (s->pos == s->len) {
1247            s->pos = 0;
1248            if (!s->data_read_loop) {
1249                s->state = STATE_IDLE;
1250            }
1251        }
1252        break;
1253
1254    default:
1255    case STATE_IDLE:
1256        decode_new_cmd(s, (uint8_t)tx);
1257        break;
1258    }
1259
1260    return r;
1261}
1262
1263static void m25p80_realize(SSISlave *ss, Error **errp)
1264{
1265    Flash *s = M25P80(ss);
1266    M25P80Class *mc = M25P80_GET_CLASS(s);
1267    int ret;
1268
1269    s->pi = mc->pi;
1270
1271    s->size = s->pi->sector_size * s->pi->n_sectors;
1272    s->dirty_page = -1;
1273
1274    if (s->blk) {
1275        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1276                        (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1277        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1278        if (ret < 0) {
1279            return;
1280        }
1281
1282        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1283        s->storage = blk_blockalign(s->blk, s->size);
1284
1285        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1286            error_setg(errp, "failed to read the initial flash content");
1287            return;
1288        }
1289    } else {
1290        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1291        s->storage = blk_blockalign(NULL, s->size);
1292        memset(s->storage, 0xFF, s->size);
1293    }
1294}
1295
1296static void m25p80_reset(DeviceState *d)
1297{
1298    Flash *s = M25P80(d);
1299
1300    reset_memory(s);
1301}
1302
1303static int m25p80_pre_save(void *opaque)
1304{
1305    flash_sync_dirty((Flash *)opaque, -1);
1306
1307    return 0;
1308}
1309
1310static Property m25p80_properties[] = {
1311    /* This is default value for Micron flash */
1312    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1313    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1314    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1315    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1316    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1317    DEFINE_PROP_DRIVE("drive", Flash, blk),
1318    DEFINE_PROP_END_OF_LIST(),
1319};
1320
1321static int m25p80_pre_load(void *opaque)
1322{
1323    Flash *s = (Flash *)opaque;
1324
1325    s->data_read_loop = false;
1326    return 0;
1327}
1328
1329static bool m25p80_data_read_loop_needed(void *opaque)
1330{
1331    Flash *s = (Flash *)opaque;
1332
1333    return s->data_read_loop;
1334}
1335
1336static const VMStateDescription vmstate_m25p80_data_read_loop = {
1337    .name = "m25p80/data_read_loop",
1338    .version_id = 1,
1339    .minimum_version_id = 1,
1340    .needed = m25p80_data_read_loop_needed,
1341    .fields = (VMStateField[]) {
1342        VMSTATE_BOOL(data_read_loop, Flash),
1343        VMSTATE_END_OF_LIST()
1344    }
1345};
1346
1347static const VMStateDescription vmstate_m25p80 = {
1348    .name = "m25p80",
1349    .version_id = 0,
1350    .minimum_version_id = 0,
1351    .pre_save = m25p80_pre_save,
1352    .pre_load = m25p80_pre_load,
1353    .fields = (VMStateField[]) {
1354        VMSTATE_UINT8(state, Flash),
1355        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1356        VMSTATE_UINT32(len, Flash),
1357        VMSTATE_UINT32(pos, Flash),
1358        VMSTATE_UINT8(needed_bytes, Flash),
1359        VMSTATE_UINT8(cmd_in_progress, Flash),
1360        VMSTATE_UINT32(cur_addr, Flash),
1361        VMSTATE_BOOL(write_enable, Flash),
1362        VMSTATE_BOOL(reset_enable, Flash),
1363        VMSTATE_UINT8(ear, Flash),
1364        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1365        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1366        VMSTATE_UINT32(volatile_cfg, Flash),
1367        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1368        VMSTATE_BOOL(quad_enable, Flash),
1369        VMSTATE_UINT8(spansion_cr1nv, Flash),
1370        VMSTATE_UINT8(spansion_cr2nv, Flash),
1371        VMSTATE_UINT8(spansion_cr3nv, Flash),
1372        VMSTATE_UINT8(spansion_cr4nv, Flash),
1373        VMSTATE_END_OF_LIST()
1374    },
1375    .subsections = (const VMStateDescription * []) {
1376        &vmstate_m25p80_data_read_loop,
1377        NULL
1378    }
1379};
1380
1381static void m25p80_class_init(ObjectClass *klass, void *data)
1382{
1383    DeviceClass *dc = DEVICE_CLASS(klass);
1384    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1385    M25P80Class *mc = M25P80_CLASS(klass);
1386
1387    k->realize = m25p80_realize;
1388    k->transfer = m25p80_transfer8;
1389    k->set_cs = m25p80_cs;
1390    k->cs_polarity = SSI_CS_LOW;
1391    dc->vmsd = &vmstate_m25p80;
1392    dc->props = m25p80_properties;
1393    dc->reset = m25p80_reset;
1394    mc->pi = data;
1395}
1396
1397static const TypeInfo m25p80_info = {
1398    .name           = TYPE_M25P80,
1399    .parent         = TYPE_SSI_SLAVE,
1400    .instance_size  = sizeof(Flash),
1401    .class_size     = sizeof(M25P80Class),
1402    .abstract       = true,
1403};
1404
1405static void m25p80_register_types(void)
1406{
1407    int i;
1408
1409    type_register_static(&m25p80_info);
1410    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1411        TypeInfo ti = {
1412            .name       = known_devices[i].part_name,
1413            .parent     = TYPE_M25P80,
1414            .class_init = m25p80_class_init,
1415            .class_data = (void *)&known_devices[i],
1416        };
1417        type_register(&ti);
1418    }
1419}
1420
1421type_init(m25p80_register_types)
1422