qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8#include "qemu/osdep.h"
   9#include "hw/hw.h"
  10#include "qemu/timer.h"
  11#include "hw/ptimer.h"
  12#include "qemu/host-utils.h"
  13#include "sysemu/replay.h"
  14#include "sysemu/qtest.h"
  15#include "block/aio.h"
  16#include "sysemu/cpus.h"
  17
  18#define DELTA_ADJUST     1
  19#define DELTA_NO_ADJUST -1
  20
  21struct ptimer_state
  22{
  23    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  24    uint64_t limit;
  25    uint64_t delta;
  26    uint32_t period_frac;
  27    int64_t period;
  28    int64_t last_event;
  29    int64_t next_event;
  30    uint8_t policy_mask;
  31    QEMUBH *bh;
  32    QEMUTimer *timer;
  33};
  34
  35/* Use a bottom-half routine to avoid reentrancy issues.  */
  36static void ptimer_trigger(ptimer_state *s)
  37{
  38    if (s->bh) {
  39        replay_bh_schedule_event(s->bh);
  40    }
  41}
  42
  43static void ptimer_reload(ptimer_state *s, int delta_adjust)
  44{
  45    uint32_t period_frac = s->period_frac;
  46    uint64_t period = s->period;
  47    uint64_t delta = s->delta;
  48    bool suppress_trigger = false;
  49
  50    /*
  51     * Note that if delta_adjust is 0 then we must be here because of
  52     * a count register write or timer start, not because of timer expiry.
  53     * In that case the policy might require us to suppress the timer trigger
  54     * that we would otherwise generate for a zero delta.
  55     */
  56    if (delta_adjust == 0 &&
  57        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
  58        suppress_trigger = true;
  59    }
  60    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
  61        && !suppress_trigger) {
  62        ptimer_trigger(s);
  63    }
  64
  65    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  66        delta = s->delta = s->limit;
  67    }
  68
  69    if (s->period == 0) {
  70        if (!qtest_enabled()) {
  71            fprintf(stderr, "Timer with period zero, disabling\n");
  72        }
  73        timer_del(s->timer);
  74        s->enabled = 0;
  75        return;
  76    }
  77
  78    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
  79        if (delta_adjust != DELTA_NO_ADJUST) {
  80            delta += delta_adjust;
  81        }
  82    }
  83
  84    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
  85        if (s->enabled == 1 && s->limit == 0) {
  86            delta = 1;
  87        }
  88    }
  89
  90    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
  91        if (delta_adjust != DELTA_NO_ADJUST) {
  92            delta = 1;
  93        }
  94    }
  95
  96    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  97        if (s->enabled == 1 && s->limit != 0) {
  98            delta = 1;
  99        }
 100    }
 101
 102    if (delta == 0) {
 103        if (!qtest_enabled()) {
 104            fprintf(stderr, "Timer with delta zero, disabling\n");
 105        }
 106        timer_del(s->timer);
 107        s->enabled = 0;
 108        return;
 109    }
 110
 111    /*
 112     * Artificially limit timeout rate to something
 113     * achievable under QEMU.  Otherwise, QEMU spends all
 114     * its time generating timer interrupts, and there
 115     * is no forward progress.
 116     * About ten microseconds is the fastest that really works
 117     * on the current generation of host machines.
 118     */
 119
 120    if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
 121        period = 10000 / delta;
 122        period_frac = 0;
 123    }
 124
 125    s->last_event = s->next_event;
 126    s->next_event = s->last_event + delta * period;
 127    if (period_frac) {
 128        s->next_event += ((int64_t)period_frac * delta) >> 32;
 129    }
 130    timer_mod(s->timer, s->next_event);
 131}
 132
 133static void ptimer_tick(void *opaque)
 134{
 135    ptimer_state *s = (ptimer_state *)opaque;
 136    bool trigger = true;
 137
 138    if (s->enabled == 2) {
 139        s->delta = 0;
 140        s->enabled = 0;
 141    } else {
 142        int delta_adjust = DELTA_ADJUST;
 143
 144        if (s->delta == 0 || s->limit == 0) {
 145            /* If a "continuous trigger" policy is not used and limit == 0,
 146               we should error out. delta == 0 means that this tick is
 147               caused by a "no immediate reload" policy, so it shouldn't
 148               be adjusted.  */
 149            delta_adjust = DELTA_NO_ADJUST;
 150        }
 151
 152        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 153            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 154               policy isn't used.  */
 155            trigger = (delta_adjust == DELTA_ADJUST);
 156        }
 157
 158        s->delta = s->limit;
 159
 160        ptimer_reload(s, delta_adjust);
 161    }
 162
 163    if (trigger) {
 164        ptimer_trigger(s);
 165    }
 166}
 167
 168uint64_t ptimer_get_count(ptimer_state *s)
 169{
 170    uint64_t counter;
 171
 172    if (s->enabled && s->delta != 0) {
 173        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 174        int64_t next = s->next_event;
 175        int64_t last = s->last_event;
 176        bool expired = (now - next >= 0);
 177        bool oneshot = (s->enabled == 2);
 178
 179        /* Figure out the current counter value.  */
 180        if (expired) {
 181            /* Prevent timer underflowing if it should already have
 182               triggered.  */
 183            counter = 0;
 184        } else {
 185            uint64_t rem;
 186            uint64_t div;
 187            int clz1, clz2;
 188            int shift;
 189            uint32_t period_frac = s->period_frac;
 190            uint64_t period = s->period;
 191
 192            if (!oneshot && (s->delta * period < 10000) && !use_icount) {
 193                period = 10000 / s->delta;
 194                period_frac = 0;
 195            }
 196
 197            /* We need to divide time by period, where time is stored in
 198               rem (64-bit integer) and period is stored in period/period_frac
 199               (64.32 fixed point).
 200
 201               Doing full precision division is hard, so scale values and
 202               do a 64-bit division.  The result should be rounded down,
 203               so that the rounding error never causes the timer to go
 204               backwards.
 205            */
 206
 207            rem = next - now;
 208            div = period;
 209
 210            clz1 = clz64(rem);
 211            clz2 = clz64(div);
 212            shift = clz1 < clz2 ? clz1 : clz2;
 213
 214            rem <<= shift;
 215            div <<= shift;
 216            if (shift >= 32) {
 217                div |= ((uint64_t)period_frac << (shift - 32));
 218            } else {
 219                if (shift != 0)
 220                    div |= (period_frac >> (32 - shift));
 221                /* Look at remaining bits of period_frac and round div up if 
 222                   necessary.  */
 223                if ((uint32_t)(period_frac << shift))
 224                    div += 1;
 225            }
 226            counter = rem / div;
 227
 228            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 229                /* Before wrapping around, timer should stay with counter = 0
 230                   for a one period.  */
 231                if (!oneshot && s->delta == s->limit) {
 232                    if (now == last) {
 233                        /* Counter == delta here, check whether it was
 234                           adjusted and if it was, then right now it is
 235                           that "one period".  */
 236                        if (counter == s->limit + DELTA_ADJUST) {
 237                            return 0;
 238                        }
 239                    } else if (counter == s->limit) {
 240                        /* Since the counter is rounded down and now != last,
 241                           the counter == limit means that delta was adjusted
 242                           by +1 and right now it is that adjusted period.  */
 243                        return 0;
 244                    }
 245                }
 246            }
 247        }
 248
 249        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 250            /* If now == last then delta == limit, i.e. the counter already
 251               represents the correct value. It would be rounded down a 1ns
 252               later.  */
 253            if (now != last) {
 254                counter += 1;
 255            }
 256        }
 257    } else {
 258        counter = s->delta;
 259    }
 260    return counter;
 261}
 262
 263void ptimer_set_count(ptimer_state *s, uint64_t count)
 264{
 265    s->delta = count;
 266    if (s->enabled) {
 267        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 268        ptimer_reload(s, 0);
 269    }
 270}
 271
 272void ptimer_run(ptimer_state *s, int oneshot)
 273{
 274    bool was_disabled = !s->enabled;
 275
 276    if (was_disabled && s->period == 0) {
 277        if (!qtest_enabled()) {
 278            fprintf(stderr, "Timer with period zero, disabling\n");
 279        }
 280        return;
 281    }
 282    s->enabled = oneshot ? 2 : 1;
 283    if (was_disabled) {
 284        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 285        ptimer_reload(s, 0);
 286    }
 287}
 288
 289/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 290   is immediately restarted.  */
 291void ptimer_stop(ptimer_state *s)
 292{
 293    if (!s->enabled)
 294        return;
 295
 296    s->delta = ptimer_get_count(s);
 297    timer_del(s->timer);
 298    s->enabled = 0;
 299}
 300
 301/* Set counter increment interval in nanoseconds.  */
 302void ptimer_set_period(ptimer_state *s, int64_t period)
 303{
 304    s->delta = ptimer_get_count(s);
 305    s->period = period;
 306    s->period_frac = 0;
 307    if (s->enabled) {
 308        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 309        ptimer_reload(s, 0);
 310    }
 311}
 312
 313/* Set counter frequency in Hz.  */
 314void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 315{
 316    s->delta = ptimer_get_count(s);
 317    s->period = 1000000000ll / freq;
 318    s->period_frac = (1000000000ll << 32) / freq;
 319    if (s->enabled) {
 320        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 321        ptimer_reload(s, 0);
 322    }
 323}
 324
 325/* Set the initial countdown value.  If reload is nonzero then also set
 326   count = limit.  */
 327void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 328{
 329    s->limit = limit;
 330    if (reload)
 331        s->delta = limit;
 332    if (s->enabled && reload) {
 333        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 334        ptimer_reload(s, 0);
 335    }
 336}
 337
 338uint64_t ptimer_get_limit(ptimer_state *s)
 339{
 340    return s->limit;
 341}
 342
 343const VMStateDescription vmstate_ptimer = {
 344    .name = "ptimer",
 345    .version_id = 1,
 346    .minimum_version_id = 1,
 347    .fields = (VMStateField[]) {
 348        VMSTATE_UINT8(enabled, ptimer_state),
 349        VMSTATE_UINT64(limit, ptimer_state),
 350        VMSTATE_UINT64(delta, ptimer_state),
 351        VMSTATE_UINT32(period_frac, ptimer_state),
 352        VMSTATE_INT64(period, ptimer_state),
 353        VMSTATE_INT64(last_event, ptimer_state),
 354        VMSTATE_INT64(next_event, ptimer_state),
 355        VMSTATE_TIMER_PTR(timer, ptimer_state),
 356        VMSTATE_END_OF_LIST()
 357    }
 358};
 359
 360ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
 361{
 362    ptimer_state *s;
 363
 364    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 365    s->bh = bh;
 366    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 367    s->policy_mask = policy_mask;
 368
 369    /*
 370     * These two policies are incompatible -- trigger-on-decrement implies
 371     * a timer trigger when the count becomes 0, but no-immediate-trigger
 372     * implies a trigger when the count stops being 0.
 373     */
 374    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 375             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 376    return s;
 377}
 378
 379void ptimer_free(ptimer_state *s)
 380{
 381    qemu_bh_delete(s->bh);
 382    timer_free(s->timer);
 383    g_free(s);
 384}
 385