qemu/hw/i2c/smbus_eeprom.c
<<
>>
Prefs
   1/*
   2 * QEMU SMBus EEPROM device
   3 *
   4 * Copyright (c) 2007 Arastra, Inc.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qapi/error.h"
  28#include "hw/hw.h"
  29#include "hw/boards.h"
  30#include "hw/i2c/i2c.h"
  31#include "hw/i2c/smbus_slave.h"
  32#include "hw/i2c/smbus_eeprom.h"
  33
  34//#define DEBUG
  35
  36#define TYPE_SMBUS_EEPROM "smbus-eeprom"
  37
  38#define SMBUS_EEPROM(obj) \
  39    OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
  40
  41#define SMBUS_EEPROM_SIZE 256
  42
  43typedef struct SMBusEEPROMDevice {
  44    SMBusDevice smbusdev;
  45    uint8_t data[SMBUS_EEPROM_SIZE];
  46    void *init_data;
  47    uint8_t offset;
  48    bool accessed;
  49} SMBusEEPROMDevice;
  50
  51static uint8_t eeprom_receive_byte(SMBusDevice *dev)
  52{
  53    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
  54    uint8_t *data = eeprom->data;
  55    uint8_t val = data[eeprom->offset++];
  56
  57    eeprom->accessed = true;
  58#ifdef DEBUG
  59    printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
  60           dev->i2c.address, val);
  61#endif
  62    return val;
  63}
  64
  65static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
  66{
  67    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
  68    uint8_t *data = eeprom->data;
  69
  70    eeprom->accessed = true;
  71#ifdef DEBUG
  72    printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
  73           dev->i2c.address, buf[0], buf[1]);
  74#endif
  75    /* len is guaranteed to be > 0 */
  76    eeprom->offset = buf[0];
  77    buf++;
  78    len--;
  79
  80    for (; len > 0; len--) {
  81        data[eeprom->offset] = *buf++;
  82        eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
  83    }
  84
  85    return 0;
  86}
  87
  88static bool smbus_eeprom_vmstate_needed(void *opaque)
  89{
  90    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
  91    SMBusEEPROMDevice *eeprom = opaque;
  92
  93    return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
  94        !mc->smbus_no_migration_support;
  95}
  96
  97static const VMStateDescription vmstate_smbus_eeprom = {
  98    .name = "smbus-eeprom",
  99    .version_id = 1,
 100    .minimum_version_id = 1,
 101    .needed = smbus_eeprom_vmstate_needed,
 102    .fields      = (VMStateField[]) {
 103        VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
 104        VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
 105        VMSTATE_UINT8(offset, SMBusEEPROMDevice),
 106        VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
 107        VMSTATE_END_OF_LIST()
 108    }
 109};
 110
 111/*
 112 * Reset the EEPROM contents to the initial state on a reset.  This
 113 * isn't really how an EEPROM works, of course, but the general
 114 * principle of QEMU is to restore function on reset to what it would
 115 * be if QEMU was stopped and started.
 116 *
 117 * The proper thing to do would be to have a backing blockdev to hold
 118 * the contents and restore that on startup, and not do this on reset.
 119 * But until that time, act as if we had been stopped and restarted.
 120 */
 121static void smbus_eeprom_reset(DeviceState *dev)
 122{
 123    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 124
 125    memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
 126    eeprom->offset = 0;
 127}
 128
 129static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
 130{
 131    smbus_eeprom_reset(dev);
 132}
 133
 134static Property smbus_eeprom_properties[] = {
 135    DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data),
 136    DEFINE_PROP_END_OF_LIST(),
 137};
 138
 139static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
 140{
 141    DeviceClass *dc = DEVICE_CLASS(klass);
 142    SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
 143
 144    dc->realize = smbus_eeprom_realize;
 145    dc->reset = smbus_eeprom_reset;
 146    sc->receive_byte = eeprom_receive_byte;
 147    sc->write_data = eeprom_write_data;
 148    dc->props = smbus_eeprom_properties;
 149    dc->vmsd = &vmstate_smbus_eeprom;
 150    /* Reason: pointer property "data" */
 151    dc->user_creatable = false;
 152}
 153
 154static const TypeInfo smbus_eeprom_info = {
 155    .name          = TYPE_SMBUS_EEPROM,
 156    .parent        = TYPE_SMBUS_DEVICE,
 157    .instance_size = sizeof(SMBusEEPROMDevice),
 158    .class_init    = smbus_eeprom_class_initfn,
 159};
 160
 161static void smbus_eeprom_register_types(void)
 162{
 163    type_register_static(&smbus_eeprom_info);
 164}
 165
 166type_init(smbus_eeprom_register_types)
 167
 168void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
 169{
 170    DeviceState *dev;
 171
 172    dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
 173    qdev_prop_set_uint8(dev, "address", address);
 174    qdev_prop_set_ptr(dev, "data", eeprom_buf);
 175    qdev_init_nofail(dev);
 176}
 177
 178void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
 179                       const uint8_t *eeprom_spd, int eeprom_spd_size)
 180{
 181    int i;
 182     /* XXX: make this persistent */
 183
 184    assert(nb_eeprom <= 8);
 185    uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
 186    if (eeprom_spd_size > 0) {
 187        memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
 188    }
 189
 190    for (i = 0; i < nb_eeprom; i++) {
 191        smbus_eeprom_init_one(smbus, 0x50 + i,
 192                              eeprom_buf + (i * SMBUS_EEPROM_SIZE));
 193    }
 194}
 195
 196/* Generate SDRAM SPD EEPROM data describing a module of type and size */
 197uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
 198                           Error **errp)
 199{
 200    uint8_t *spd;
 201    uint8_t nbanks;
 202    uint16_t density;
 203    uint32_t size;
 204    int min_log2, max_log2, sz_log2;
 205    int i;
 206
 207    switch (type) {
 208    case SDR:
 209        min_log2 = 2;
 210        max_log2 = 9;
 211        break;
 212    case DDR:
 213        min_log2 = 5;
 214        max_log2 = 12;
 215        break;
 216    case DDR2:
 217        min_log2 = 7;
 218        max_log2 = 14;
 219        break;
 220    default:
 221        g_assert_not_reached();
 222    }
 223    size = ram_size >> 20; /* work in terms of megabytes */
 224    if (size < 4) {
 225        error_setg(errp, "SDRAM size is too small");
 226        return NULL;
 227    }
 228    sz_log2 = 31 - clz32(size);
 229    size = 1U << sz_log2;
 230    if (ram_size > size * MiB) {
 231        error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
 232                   "truncating to %u MB", ram_size, size);
 233    }
 234    if (sz_log2 < min_log2) {
 235        error_setg(errp,
 236                   "Memory size is too small for SDRAM type, adjusting type");
 237        if (size >= 32) {
 238            type = DDR;
 239            min_log2 = 5;
 240            max_log2 = 12;
 241        } else {
 242            type = SDR;
 243            min_log2 = 2;
 244            max_log2 = 9;
 245        }
 246    }
 247
 248    nbanks = 1;
 249    while (sz_log2 > max_log2 && nbanks < 8) {
 250        sz_log2--;
 251        nbanks++;
 252    }
 253
 254    if (size > (1ULL << sz_log2) * nbanks) {
 255        error_setg(errp, "Memory size is too big for SDRAM, truncating");
 256    }
 257
 258    /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
 259    if (nbanks == 1 && sz_log2 > min_log2) {
 260        sz_log2--;
 261        nbanks++;
 262    }
 263
 264    density = 1ULL << (sz_log2 - 2);
 265    switch (type) {
 266    case DDR2:
 267        density = (density & 0xe0) | (density >> 8 & 0x1f);
 268        break;
 269    case DDR:
 270        density = (density & 0xf8) | (density >> 8 & 0x07);
 271        break;
 272    case SDR:
 273    default:
 274        density &= 0xff;
 275        break;
 276    }
 277
 278    spd = g_malloc0(256);
 279    spd[0] = 128;   /* data bytes in EEPROM */
 280    spd[1] = 8;     /* log2 size of EEPROM */
 281    spd[2] = type;
 282    spd[3] = 13;    /* row address bits */
 283    spd[4] = 10;    /* column address bits */
 284    spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
 285    spd[6] = 64;    /* module data width */
 286                    /* reserved / data width high */
 287    spd[8] = 4;     /* interface voltage level */
 288    spd[9] = 0x25;  /* highest CAS latency */
 289    spd[10] = 1;    /* access time */
 290                    /* DIMM configuration 0 = non-ECC */
 291    spd[12] = 0x82; /* refresh requirements */
 292    spd[13] = 8;    /* primary SDRAM width */
 293                    /* ECC SDRAM width */
 294    spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
 295    spd[16] = 12;   /* burst lengths supported */
 296    spd[17] = 4;    /* banks per SDRAM device */
 297    spd[18] = 12;   /* ~CAS latencies supported */
 298    spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
 299    spd[20] = 2;    /* DIMM type / ~WE latencies */
 300                    /* module features */
 301                    /* memory chip features */
 302    spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
 303                    /* data access time */
 304                    /* clock cycle time @ short CAS latency */
 305                    /* data access time */
 306    spd[27] = 20;   /* min. row precharge time */
 307    spd[28] = 15;   /* min. row active row delay */
 308    spd[29] = 20;   /* min. ~RAS to ~CAS delay */
 309    spd[30] = 45;   /* min. active to precharge time */
 310    spd[31] = density;
 311    spd[32] = 20;   /* addr/cmd setup time */
 312    spd[33] = 8;    /* addr/cmd hold time */
 313    spd[34] = 20;   /* data input setup time */
 314    spd[35] = 8;    /* data input hold time */
 315
 316    /* checksum */
 317    for (i = 0; i < 63; i++) {
 318        spd[63] += spd[i];
 319    }
 320    return spd;
 321}
 322