qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "hw/sysbus.h"
  26#include "exec/address-spaces.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/i386/pc.h"
  31#include "hw/i386/apic-msidef.h"
  32#include "hw/boards.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "hw/i386/apic_internal.h"
  37#include "kvm_i386.h"
  38#include "trace.h"
  39
  40/* context entry operations */
  41#define VTD_CE_GET_RID2PASID(ce) \
  42    ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  43#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  44    ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  45
  46/* pe operations */
  47#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  48#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  49#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  50    if (ret_fr) {                                                             \
  51        ret_fr = -ret_fr;                                                     \
  52        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
  53            trace_vtd_fault_disabled();                                       \
  54        } else {                                                              \
  55            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
  56        }                                                                     \
  57        goto error;                                                           \
  58    }                                                                         \
  59}
  60
  61static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  62static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  63
  64static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  65                            uint64_t wmask, uint64_t w1cmask)
  66{
  67    stq_le_p(&s->csr[addr], val);
  68    stq_le_p(&s->wmask[addr], wmask);
  69    stq_le_p(&s->w1cmask[addr], w1cmask);
  70}
  71
  72static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  73{
  74    stq_le_p(&s->womask[addr], mask);
  75}
  76
  77static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  78                            uint32_t wmask, uint32_t w1cmask)
  79{
  80    stl_le_p(&s->csr[addr], val);
  81    stl_le_p(&s->wmask[addr], wmask);
  82    stl_le_p(&s->w1cmask[addr], w1cmask);
  83}
  84
  85static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  86{
  87    stl_le_p(&s->womask[addr], mask);
  88}
  89
  90/* "External" get/set operations */
  91static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  92{
  93    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  94    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  95    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  96    stq_le_p(&s->csr[addr],
  97             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  98}
  99
 100static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
 101{
 102    uint32_t oldval = ldl_le_p(&s->csr[addr]);
 103    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
 104    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
 105    stl_le_p(&s->csr[addr],
 106             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
 107}
 108
 109static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
 110{
 111    uint64_t val = ldq_le_p(&s->csr[addr]);
 112    uint64_t womask = ldq_le_p(&s->womask[addr]);
 113    return val & ~womask;
 114}
 115
 116static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
 117{
 118    uint32_t val = ldl_le_p(&s->csr[addr]);
 119    uint32_t womask = ldl_le_p(&s->womask[addr]);
 120    return val & ~womask;
 121}
 122
 123/* "Internal" get/set operations */
 124static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 125{
 126    return ldq_le_p(&s->csr[addr]);
 127}
 128
 129static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 130{
 131    return ldl_le_p(&s->csr[addr]);
 132}
 133
 134static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 135{
 136    stq_le_p(&s->csr[addr], val);
 137}
 138
 139static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 140                                        uint32_t clear, uint32_t mask)
 141{
 142    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 143    stl_le_p(&s->csr[addr], new_val);
 144    return new_val;
 145}
 146
 147static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 148                                        uint64_t clear, uint64_t mask)
 149{
 150    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 151    stq_le_p(&s->csr[addr], new_val);
 152    return new_val;
 153}
 154
 155static inline void vtd_iommu_lock(IntelIOMMUState *s)
 156{
 157    qemu_mutex_lock(&s->iommu_lock);
 158}
 159
 160static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 161{
 162    qemu_mutex_unlock(&s->iommu_lock);
 163}
 164
 165static void vtd_update_scalable_state(IntelIOMMUState *s)
 166{
 167    uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 168
 169    if (s->scalable_mode) {
 170        s->root_scalable = val & VTD_RTADDR_SMT;
 171    }
 172}
 173
 174/* Whether the address space needs to notify new mappings */
 175static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 176{
 177    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 178}
 179
 180/* GHashTable functions */
 181static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 182{
 183    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 184}
 185
 186static guint vtd_uint64_hash(gconstpointer v)
 187{
 188    return (guint)*(const uint64_t *)v;
 189}
 190
 191static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 192                                          gpointer user_data)
 193{
 194    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 195    uint16_t domain_id = *(uint16_t *)user_data;
 196    return entry->domain_id == domain_id;
 197}
 198
 199/* The shift of an addr for a certain level of paging structure */
 200static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 201{
 202    assert(level != 0);
 203    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 204}
 205
 206static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 207{
 208    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 209}
 210
 211static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 212                                        gpointer user_data)
 213{
 214    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 215    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 216    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 217    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 218    return (entry->domain_id == info->domain_id) &&
 219            (((entry->gfn & info->mask) == gfn) ||
 220             (entry->gfn == gfn_tlb));
 221}
 222
 223/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 224 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 225 */
 226static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 227{
 228    VTDAddressSpace *vtd_as;
 229    VTDBus *vtd_bus;
 230    GHashTableIter bus_it;
 231    uint32_t devfn_it;
 232
 233    trace_vtd_context_cache_reset();
 234
 235    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 236
 237    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 238        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 239            vtd_as = vtd_bus->dev_as[devfn_it];
 240            if (!vtd_as) {
 241                continue;
 242            }
 243            vtd_as->context_cache_entry.context_cache_gen = 0;
 244        }
 245    }
 246    s->context_cache_gen = 1;
 247}
 248
 249/* Must be called with IOMMU lock held. */
 250static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 251{
 252    assert(s->iotlb);
 253    g_hash_table_remove_all(s->iotlb);
 254}
 255
 256static void vtd_reset_iotlb(IntelIOMMUState *s)
 257{
 258    vtd_iommu_lock(s);
 259    vtd_reset_iotlb_locked(s);
 260    vtd_iommu_unlock(s);
 261}
 262
 263static void vtd_reset_caches(IntelIOMMUState *s)
 264{
 265    vtd_iommu_lock(s);
 266    vtd_reset_iotlb_locked(s);
 267    vtd_reset_context_cache_locked(s);
 268    vtd_iommu_unlock(s);
 269}
 270
 271static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 272                                  uint32_t level)
 273{
 274    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 275           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 276}
 277
 278static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 279{
 280    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 281}
 282
 283/* Must be called with IOMMU lock held */
 284static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 285                                       hwaddr addr)
 286{
 287    VTDIOTLBEntry *entry;
 288    uint64_t key;
 289    int level;
 290
 291    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 292        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 293                                source_id, level);
 294        entry = g_hash_table_lookup(s->iotlb, &key);
 295        if (entry) {
 296            goto out;
 297        }
 298    }
 299
 300out:
 301    return entry;
 302}
 303
 304/* Must be with IOMMU lock held */
 305static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 306                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 307                             uint8_t access_flags, uint32_t level)
 308{
 309    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 310    uint64_t *key = g_malloc(sizeof(*key));
 311    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 312
 313    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 314    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 315        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 316        vtd_reset_iotlb_locked(s);
 317    }
 318
 319    entry->gfn = gfn;
 320    entry->domain_id = domain_id;
 321    entry->slpte = slpte;
 322    entry->access_flags = access_flags;
 323    entry->mask = vtd_slpt_level_page_mask(level);
 324    *key = vtd_get_iotlb_key(gfn, source_id, level);
 325    g_hash_table_replace(s->iotlb, key, entry);
 326}
 327
 328/* Given the reg addr of both the message data and address, generate an
 329 * interrupt via MSI.
 330 */
 331static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 332                                   hwaddr mesg_data_reg)
 333{
 334    MSIMessage msi;
 335
 336    assert(mesg_data_reg < DMAR_REG_SIZE);
 337    assert(mesg_addr_reg < DMAR_REG_SIZE);
 338
 339    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 340    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 341
 342    trace_vtd_irq_generate(msi.address, msi.data);
 343
 344    apic_get_class()->send_msi(&msi);
 345}
 346
 347/* Generate a fault event to software via MSI if conditions are met.
 348 * Notice that the value of FSTS_REG being passed to it should be the one
 349 * before any update.
 350 */
 351static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 352{
 353    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 354        pre_fsts & VTD_FSTS_IQE) {
 355        error_report_once("There are previous interrupt conditions "
 356                          "to be serviced by software, fault event "
 357                          "is not generated");
 358        return;
 359    }
 360    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 361    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 362        error_report_once("Interrupt Mask set, irq is not generated");
 363    } else {
 364        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 365        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 366    }
 367}
 368
 369/* Check if the Fault (F) field of the Fault Recording Register referenced by
 370 * @index is Set.
 371 */
 372static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 373{
 374    /* Each reg is 128-bit */
 375    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 376    addr += 8; /* Access the high 64-bit half */
 377
 378    assert(index < DMAR_FRCD_REG_NR);
 379
 380    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 381}
 382
 383/* Update the PPF field of Fault Status Register.
 384 * Should be called whenever change the F field of any fault recording
 385 * registers.
 386 */
 387static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 388{
 389    uint32_t i;
 390    uint32_t ppf_mask = 0;
 391
 392    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 393        if (vtd_is_frcd_set(s, i)) {
 394            ppf_mask = VTD_FSTS_PPF;
 395            break;
 396        }
 397    }
 398    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 399    trace_vtd_fsts_ppf(!!ppf_mask);
 400}
 401
 402static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 403{
 404    /* Each reg is 128-bit */
 405    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 406    addr += 8; /* Access the high 64-bit half */
 407
 408    assert(index < DMAR_FRCD_REG_NR);
 409
 410    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 411    vtd_update_fsts_ppf(s);
 412}
 413
 414/* Must not update F field now, should be done later */
 415static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 416                            uint16_t source_id, hwaddr addr,
 417                            VTDFaultReason fault, bool is_write)
 418{
 419    uint64_t hi = 0, lo;
 420    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 421
 422    assert(index < DMAR_FRCD_REG_NR);
 423
 424    lo = VTD_FRCD_FI(addr);
 425    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 426    if (!is_write) {
 427        hi |= VTD_FRCD_T;
 428    }
 429    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 430    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 431
 432    trace_vtd_frr_new(index, hi, lo);
 433}
 434
 435/* Try to collapse multiple pending faults from the same requester */
 436static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 437{
 438    uint32_t i;
 439    uint64_t frcd_reg;
 440    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 441
 442    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 443        frcd_reg = vtd_get_quad_raw(s, addr);
 444        if ((frcd_reg & VTD_FRCD_F) &&
 445            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 446            return true;
 447        }
 448        addr += 16; /* 128-bit for each */
 449    }
 450    return false;
 451}
 452
 453/* Log and report an DMAR (address translation) fault to software */
 454static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 455                                  hwaddr addr, VTDFaultReason fault,
 456                                  bool is_write)
 457{
 458    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 459
 460    assert(fault < VTD_FR_MAX);
 461
 462    if (fault == VTD_FR_RESERVED_ERR) {
 463        /* This is not a normal fault reason case. Drop it. */
 464        return;
 465    }
 466
 467    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 468
 469    if (fsts_reg & VTD_FSTS_PFO) {
 470        error_report_once("New fault is not recorded due to "
 471                          "Primary Fault Overflow");
 472        return;
 473    }
 474
 475    if (vtd_try_collapse_fault(s, source_id)) {
 476        error_report_once("New fault is not recorded due to "
 477                          "compression of faults");
 478        return;
 479    }
 480
 481    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 482        error_report_once("Next Fault Recording Reg is used, "
 483                          "new fault is not recorded, set PFO field");
 484        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 485        return;
 486    }
 487
 488    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 489
 490    if (fsts_reg & VTD_FSTS_PPF) {
 491        error_report_once("There are pending faults already, "
 492                          "fault event is not generated");
 493        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 494        s->next_frcd_reg++;
 495        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 496            s->next_frcd_reg = 0;
 497        }
 498    } else {
 499        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 500                                VTD_FSTS_FRI(s->next_frcd_reg));
 501        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 502        s->next_frcd_reg++;
 503        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 504            s->next_frcd_reg = 0;
 505        }
 506        /* This case actually cause the PPF to be Set.
 507         * So generate fault event (interrupt).
 508         */
 509         vtd_generate_fault_event(s, fsts_reg);
 510    }
 511}
 512
 513/* Handle Invalidation Queue Errors of queued invalidation interface error
 514 * conditions.
 515 */
 516static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 517{
 518    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 519
 520    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 521    vtd_generate_fault_event(s, fsts_reg);
 522}
 523
 524/* Set the IWC field and try to generate an invalidation completion interrupt */
 525static void vtd_generate_completion_event(IntelIOMMUState *s)
 526{
 527    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 528        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 529        return;
 530    }
 531    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 532    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 533    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 534        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 535                                    "new event not generated");
 536        return;
 537    } else {
 538        /* Generate the interrupt event */
 539        trace_vtd_inv_desc_wait_irq("Generating complete event");
 540        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 541        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 542    }
 543}
 544
 545static inline bool vtd_root_entry_present(IntelIOMMUState *s,
 546                                          VTDRootEntry *re,
 547                                          uint8_t devfn)
 548{
 549    if (s->root_scalable && devfn > UINT8_MAX / 2) {
 550        return re->hi & VTD_ROOT_ENTRY_P;
 551    }
 552
 553    return re->lo & VTD_ROOT_ENTRY_P;
 554}
 555
 556static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 557                              VTDRootEntry *re)
 558{
 559    dma_addr_t addr;
 560
 561    addr = s->root + index * sizeof(*re);
 562    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 563        re->lo = 0;
 564        return -VTD_FR_ROOT_TABLE_INV;
 565    }
 566    re->lo = le64_to_cpu(re->lo);
 567    re->hi = le64_to_cpu(re->hi);
 568    return 0;
 569}
 570
 571static inline bool vtd_ce_present(VTDContextEntry *context)
 572{
 573    return context->lo & VTD_CONTEXT_ENTRY_P;
 574}
 575
 576static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
 577                                           VTDRootEntry *re,
 578                                           uint8_t index,
 579                                           VTDContextEntry *ce)
 580{
 581    dma_addr_t addr, ce_size;
 582
 583    /* we have checked that root entry is present */
 584    ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
 585              VTD_CTX_ENTRY_LEGACY_SIZE;
 586
 587    if (s->root_scalable && index > UINT8_MAX / 2) {
 588        index = index & (~VTD_DEVFN_CHECK_MASK);
 589        addr = re->hi & VTD_ROOT_ENTRY_CTP;
 590    } else {
 591        addr = re->lo & VTD_ROOT_ENTRY_CTP;
 592    }
 593
 594    addr = addr + index * ce_size;
 595    if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
 596        return -VTD_FR_CONTEXT_TABLE_INV;
 597    }
 598
 599    ce->lo = le64_to_cpu(ce->lo);
 600    ce->hi = le64_to_cpu(ce->hi);
 601    if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
 602        ce->val[2] = le64_to_cpu(ce->val[2]);
 603        ce->val[3] = le64_to_cpu(ce->val[3]);
 604    }
 605    return 0;
 606}
 607
 608static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 609{
 610    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 611}
 612
 613static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 614{
 615    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 616}
 617
 618/* Whether the pte indicates the address of the page frame */
 619static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 620{
 621    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 622}
 623
 624/* Get the content of a spte located in @base_addr[@index] */
 625static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 626{
 627    uint64_t slpte;
 628
 629    assert(index < VTD_SL_PT_ENTRY_NR);
 630
 631    if (dma_memory_read(&address_space_memory,
 632                        base_addr + index * sizeof(slpte), &slpte,
 633                        sizeof(slpte))) {
 634        slpte = (uint64_t)-1;
 635        return slpte;
 636    }
 637    slpte = le64_to_cpu(slpte);
 638    return slpte;
 639}
 640
 641/* Given an iova and the level of paging structure, return the offset
 642 * of current level.
 643 */
 644static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 645{
 646    return (iova >> vtd_slpt_level_shift(level)) &
 647            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 648}
 649
 650/* Check Capability Register to see if the @level of page-table is supported */
 651static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 652{
 653    return VTD_CAP_SAGAW_MASK & s->cap &
 654           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 655}
 656
 657/* Return true if check passed, otherwise false */
 658static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
 659                                     VTDPASIDEntry *pe)
 660{
 661    switch (VTD_PE_GET_TYPE(pe)) {
 662    case VTD_SM_PASID_ENTRY_FLT:
 663    case VTD_SM_PASID_ENTRY_SLT:
 664    case VTD_SM_PASID_ENTRY_NESTED:
 665        break;
 666    case VTD_SM_PASID_ENTRY_PT:
 667        if (!x86_iommu->pt_supported) {
 668            return false;
 669        }
 670        break;
 671    default:
 672        /* Unknwon type */
 673        return false;
 674    }
 675    return true;
 676}
 677
 678static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
 679                              uint32_t pasid,
 680                              VTDPASIDDirEntry *pdire)
 681{
 682    uint32_t index;
 683    dma_addr_t addr, entry_size;
 684
 685    index = VTD_PASID_DIR_INDEX(pasid);
 686    entry_size = VTD_PASID_DIR_ENTRY_SIZE;
 687    addr = pasid_dir_base + index * entry_size;
 688    if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
 689        return -VTD_FR_PASID_TABLE_INV;
 690    }
 691
 692    return 0;
 693}
 694
 695static int vtd_get_pasid_entry(IntelIOMMUState *s,
 696                               uint32_t pasid,
 697                               VTDPASIDDirEntry *pdire,
 698                               VTDPASIDEntry *pe)
 699{
 700    uint32_t index;
 701    dma_addr_t addr, entry_size;
 702    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 703
 704    index = VTD_PASID_TABLE_INDEX(pasid);
 705    entry_size = VTD_PASID_ENTRY_SIZE;
 706    addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
 707    addr = addr + index * entry_size;
 708    if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
 709        return -VTD_FR_PASID_TABLE_INV;
 710    }
 711
 712    /* Do translation type check */
 713    if (!vtd_pe_type_check(x86_iommu, pe)) {
 714        return -VTD_FR_PASID_TABLE_INV;
 715    }
 716
 717    if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
 718        return -VTD_FR_PASID_TABLE_INV;
 719    }
 720
 721    return 0;
 722}
 723
 724static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
 725                                          dma_addr_t pasid_dir_base,
 726                                          uint32_t pasid,
 727                                          VTDPASIDEntry *pe)
 728{
 729    int ret;
 730    VTDPASIDDirEntry pdire;
 731
 732    ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
 733    if (ret) {
 734        return ret;
 735    }
 736
 737    ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
 738    if (ret) {
 739        return ret;
 740    }
 741
 742    return ret;
 743}
 744
 745static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
 746                                      VTDContextEntry *ce,
 747                                      VTDPASIDEntry *pe)
 748{
 749    uint32_t pasid;
 750    dma_addr_t pasid_dir_base;
 751    int ret = 0;
 752
 753    pasid = VTD_CE_GET_RID2PASID(ce);
 754    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 755    ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
 756
 757    return ret;
 758}
 759
 760static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
 761                                VTDContextEntry *ce,
 762                                bool *pe_fpd_set)
 763{
 764    int ret;
 765    uint32_t pasid;
 766    dma_addr_t pasid_dir_base;
 767    VTDPASIDDirEntry pdire;
 768    VTDPASIDEntry pe;
 769
 770    pasid = VTD_CE_GET_RID2PASID(ce);
 771    pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
 772
 773    ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
 774    if (ret) {
 775        return ret;
 776    }
 777
 778    if (pdire.val & VTD_PASID_DIR_FPD) {
 779        *pe_fpd_set = true;
 780        return 0;
 781    }
 782
 783    ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
 784    if (ret) {
 785        return ret;
 786    }
 787
 788    if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
 789        *pe_fpd_set = true;
 790    }
 791
 792    return 0;
 793}
 794
 795/* Get the page-table level that hardware should use for the second-level
 796 * page-table walk from the Address Width field of context-entry.
 797 */
 798static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 799{
 800    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 801}
 802
 803static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
 804                                   VTDContextEntry *ce)
 805{
 806    VTDPASIDEntry pe;
 807
 808    if (s->root_scalable) {
 809        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 810        return VTD_PE_GET_LEVEL(&pe);
 811    }
 812
 813    return vtd_ce_get_level(ce);
 814}
 815
 816static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 817{
 818    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 819}
 820
 821static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
 822                                  VTDContextEntry *ce)
 823{
 824    VTDPASIDEntry pe;
 825
 826    if (s->root_scalable) {
 827        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 828        return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
 829    }
 830
 831    return vtd_ce_get_agaw(ce);
 832}
 833
 834static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 835{
 836    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 837}
 838
 839/* Only for Legacy Mode. Return true if check passed, otherwise false */
 840static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 841                                     VTDContextEntry *ce)
 842{
 843    switch (vtd_ce_get_type(ce)) {
 844    case VTD_CONTEXT_TT_MULTI_LEVEL:
 845        /* Always supported */
 846        break;
 847    case VTD_CONTEXT_TT_DEV_IOTLB:
 848        if (!x86_iommu->dt_supported) {
 849            error_report_once("%s: DT specified but not supported", __func__);
 850            return false;
 851        }
 852        break;
 853    case VTD_CONTEXT_TT_PASS_THROUGH:
 854        if (!x86_iommu->pt_supported) {
 855            error_report_once("%s: PT specified but not supported", __func__);
 856            return false;
 857        }
 858        break;
 859    default:
 860        /* Unknown type */
 861        error_report_once("%s: unknown ce type: %"PRIu32, __func__,
 862                          vtd_ce_get_type(ce));
 863        return false;
 864    }
 865    return true;
 866}
 867
 868static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
 869                                      VTDContextEntry *ce, uint8_t aw)
 870{
 871    uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
 872    return 1ULL << MIN(ce_agaw, aw);
 873}
 874
 875/* Return true if IOVA passes range check, otherwise false. */
 876static inline bool vtd_iova_range_check(IntelIOMMUState *s,
 877                                        uint64_t iova, VTDContextEntry *ce,
 878                                        uint8_t aw)
 879{
 880    /*
 881     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 882     * in CAP_REG and AW in context-entry.
 883     */
 884    return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
 885}
 886
 887static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
 888                                          VTDContextEntry *ce)
 889{
 890    VTDPASIDEntry pe;
 891
 892    if (s->root_scalable) {
 893        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
 894        return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
 895    }
 896
 897    return vtd_ce_get_slpt_base(ce);
 898}
 899
 900/*
 901 * Rsvd field masks for spte:
 902 *     Index [1] to [4] 4k pages
 903 *     Index [5] to [8] large pages
 904 */
 905static uint64_t vtd_paging_entry_rsvd_field[9];
 906
 907static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 908{
 909    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 910        /* Maybe large page */
 911        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 912    } else {
 913        return slpte & vtd_paging_entry_rsvd_field[level];
 914    }
 915}
 916
 917/* Find the VTD address space associated with a given bus number */
 918static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 919{
 920    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 921    if (!vtd_bus) {
 922        /*
 923         * Iterate over the registered buses to find the one which
 924         * currently hold this bus number, and update the bus_num
 925         * lookup table:
 926         */
 927        GHashTableIter iter;
 928
 929        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 930        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 931            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 932                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 933                return vtd_bus;
 934            }
 935        }
 936    }
 937    return vtd_bus;
 938}
 939
 940/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
 941 * of the translation, can be used for deciding the size of large page.
 942 */
 943static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
 944                             uint64_t iova, bool is_write,
 945                             uint64_t *slptep, uint32_t *slpte_level,
 946                             bool *reads, bool *writes, uint8_t aw_bits)
 947{
 948    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
 949    uint32_t level = vtd_get_iova_level(s, ce);
 950    uint32_t offset;
 951    uint64_t slpte;
 952    uint64_t access_right_check;
 953
 954    if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
 955        error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
 956                          __func__, iova);
 957        return -VTD_FR_ADDR_BEYOND_MGAW;
 958    }
 959
 960    /* FIXME: what is the Atomics request here? */
 961    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 962
 963    while (true) {
 964        offset = vtd_iova_level_offset(iova, level);
 965        slpte = vtd_get_slpte(addr, offset);
 966
 967        if (slpte == (uint64_t)-1) {
 968            error_report_once("%s: detected read error on DMAR slpte "
 969                              "(iova=0x%" PRIx64 ")", __func__, iova);
 970            if (level == vtd_get_iova_level(s, ce)) {
 971                /* Invalid programming of context-entry */
 972                return -VTD_FR_CONTEXT_ENTRY_INV;
 973            } else {
 974                return -VTD_FR_PAGING_ENTRY_INV;
 975            }
 976        }
 977        *reads = (*reads) && (slpte & VTD_SL_R);
 978        *writes = (*writes) && (slpte & VTD_SL_W);
 979        if (!(slpte & access_right_check)) {
 980            error_report_once("%s: detected slpte permission error "
 981                              "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
 982                              "slpte=0x%" PRIx64 ", write=%d)", __func__,
 983                              iova, level, slpte, is_write);
 984            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 985        }
 986        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 987            error_report_once("%s: detected splte reserve non-zero "
 988                              "iova=0x%" PRIx64 ", level=0x%" PRIx32
 989                              "slpte=0x%" PRIx64 ")", __func__, iova,
 990                              level, slpte);
 991            return -VTD_FR_PAGING_ENTRY_RSVD;
 992        }
 993
 994        if (vtd_is_last_slpte(slpte, level)) {
 995            *slptep = slpte;
 996            *slpte_level = level;
 997            return 0;
 998        }
 999        addr = vtd_get_slpte_addr(slpte, aw_bits);
1000        level--;
1001    }
1002}
1003
1004typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1005
1006/**
1007 * Constant information used during page walking
1008 *
1009 * @hook_fn: hook func to be called when detected page
1010 * @private: private data to be passed into hook func
1011 * @notify_unmap: whether we should notify invalid entries
1012 * @as: VT-d address space of the device
1013 * @aw: maximum address width
1014 * @domain: domain ID of the page walk
1015 */
1016typedef struct {
1017    VTDAddressSpace *as;
1018    vtd_page_walk_hook hook_fn;
1019    void *private;
1020    bool notify_unmap;
1021    uint8_t aw;
1022    uint16_t domain_id;
1023} vtd_page_walk_info;
1024
1025static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1026{
1027    VTDAddressSpace *as = info->as;
1028    vtd_page_walk_hook hook_fn = info->hook_fn;
1029    void *private = info->private;
1030    DMAMap target = {
1031        .iova = entry->iova,
1032        .size = entry->addr_mask,
1033        .translated_addr = entry->translated_addr,
1034        .perm = entry->perm,
1035    };
1036    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1037
1038    if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1039        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1040        return 0;
1041    }
1042
1043    assert(hook_fn);
1044
1045    /* Update local IOVA mapped ranges */
1046    if (entry->perm) {
1047        if (mapped) {
1048            /* If it's exactly the same translation, skip */
1049            if (!memcmp(mapped, &target, sizeof(target))) {
1050                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1051                                                 entry->translated_addr);
1052                return 0;
1053            } else {
1054                /*
1055                 * Translation changed.  Normally this should not
1056                 * happen, but it can happen when with buggy guest
1057                 * OSes.  Note that there will be a small window that
1058                 * we don't have map at all.  But that's the best
1059                 * effort we can do.  The ideal way to emulate this is
1060                 * atomically modify the PTE to follow what has
1061                 * changed, but we can't.  One example is that vfio
1062                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1063                 * interface to modify a mapping (meanwhile it seems
1064                 * meaningless to even provide one).  Anyway, let's
1065                 * mark this as a TODO in case one day we'll have
1066                 * a better solution.
1067                 */
1068                IOMMUAccessFlags cache_perm = entry->perm;
1069                int ret;
1070
1071                /* Emulate an UNMAP */
1072                entry->perm = IOMMU_NONE;
1073                trace_vtd_page_walk_one(info->domain_id,
1074                                        entry->iova,
1075                                        entry->translated_addr,
1076                                        entry->addr_mask,
1077                                        entry->perm);
1078                ret = hook_fn(entry, private);
1079                if (ret) {
1080                    return ret;
1081                }
1082                /* Drop any existing mapping */
1083                iova_tree_remove(as->iova_tree, &target);
1084                /* Recover the correct permission */
1085                entry->perm = cache_perm;
1086            }
1087        }
1088        iova_tree_insert(as->iova_tree, &target);
1089    } else {
1090        if (!mapped) {
1091            /* Skip since we didn't map this range at all */
1092            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1093            return 0;
1094        }
1095        iova_tree_remove(as->iova_tree, &target);
1096    }
1097
1098    trace_vtd_page_walk_one(info->domain_id, entry->iova,
1099                            entry->translated_addr, entry->addr_mask,
1100                            entry->perm);
1101    return hook_fn(entry, private);
1102}
1103
1104/**
1105 * vtd_page_walk_level - walk over specific level for IOVA range
1106 *
1107 * @addr: base GPA addr to start the walk
1108 * @start: IOVA range start address
1109 * @end: IOVA range end address (start <= addr < end)
1110 * @read: whether parent level has read permission
1111 * @write: whether parent level has write permission
1112 * @info: constant information for the page walk
1113 */
1114static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1115                               uint64_t end, uint32_t level, bool read,
1116                               bool write, vtd_page_walk_info *info)
1117{
1118    bool read_cur, write_cur, entry_valid;
1119    uint32_t offset;
1120    uint64_t slpte;
1121    uint64_t subpage_size, subpage_mask;
1122    IOMMUTLBEntry entry;
1123    uint64_t iova = start;
1124    uint64_t iova_next;
1125    int ret = 0;
1126
1127    trace_vtd_page_walk_level(addr, level, start, end);
1128
1129    subpage_size = 1ULL << vtd_slpt_level_shift(level);
1130    subpage_mask = vtd_slpt_level_page_mask(level);
1131
1132    while (iova < end) {
1133        iova_next = (iova & subpage_mask) + subpage_size;
1134
1135        offset = vtd_iova_level_offset(iova, level);
1136        slpte = vtd_get_slpte(addr, offset);
1137
1138        if (slpte == (uint64_t)-1) {
1139            trace_vtd_page_walk_skip_read(iova, iova_next);
1140            goto next;
1141        }
1142
1143        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1144            trace_vtd_page_walk_skip_reserve(iova, iova_next);
1145            goto next;
1146        }
1147
1148        /* Permissions are stacked with parents' */
1149        read_cur = read && (slpte & VTD_SL_R);
1150        write_cur = write && (slpte & VTD_SL_W);
1151
1152        /*
1153         * As long as we have either read/write permission, this is a
1154         * valid entry. The rule works for both page entries and page
1155         * table entries.
1156         */
1157        entry_valid = read_cur | write_cur;
1158
1159        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1160            /*
1161             * This is a valid PDE (or even bigger than PDE).  We need
1162             * to walk one further level.
1163             */
1164            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1165                                      iova, MIN(iova_next, end), level - 1,
1166                                      read_cur, write_cur, info);
1167        } else {
1168            /*
1169             * This means we are either:
1170             *
1171             * (1) the real page entry (either 4K page, or huge page)
1172             * (2) the whole range is invalid
1173             *
1174             * In either case, we send an IOTLB notification down.
1175             */
1176            entry.target_as = &address_space_memory;
1177            entry.iova = iova & subpage_mask;
1178            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1179            entry.addr_mask = ~subpage_mask;
1180            /* NOTE: this is only meaningful if entry_valid == true */
1181            entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1182            ret = vtd_page_walk_one(&entry, info);
1183        }
1184
1185        if (ret < 0) {
1186            return ret;
1187        }
1188
1189next:
1190        iova = iova_next;
1191    }
1192
1193    return 0;
1194}
1195
1196/**
1197 * vtd_page_walk - walk specific IOVA range, and call the hook
1198 *
1199 * @s: intel iommu state
1200 * @ce: context entry to walk upon
1201 * @start: IOVA address to start the walk
1202 * @end: IOVA range end address (start <= addr < end)
1203 * @info: page walking information struct
1204 */
1205static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1206                         uint64_t start, uint64_t end,
1207                         vtd_page_walk_info *info)
1208{
1209    dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1210    uint32_t level = vtd_get_iova_level(s, ce);
1211
1212    if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1213        return -VTD_FR_ADDR_BEYOND_MGAW;
1214    }
1215
1216    if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1217        /* Fix end so that it reaches the maximum */
1218        end = vtd_iova_limit(s, ce, info->aw);
1219    }
1220
1221    return vtd_page_walk_level(addr, start, end, level, true, true, info);
1222}
1223
1224static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1225                                          VTDRootEntry *re)
1226{
1227    /* Legacy Mode reserved bits check */
1228    if (!s->root_scalable &&
1229        (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1230        goto rsvd_err;
1231
1232    /* Scalable Mode reserved bits check */
1233    if (s->root_scalable &&
1234        ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1235         (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1236        goto rsvd_err;
1237
1238    return 0;
1239
1240rsvd_err:
1241    error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1242                      ", lo=0x%"PRIx64,
1243                      __func__, re->hi, re->lo);
1244    return -VTD_FR_ROOT_ENTRY_RSVD;
1245}
1246
1247static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1248                                                    VTDContextEntry *ce)
1249{
1250    if (!s->root_scalable &&
1251        (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1252         ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1253        error_report_once("%s: invalid context entry: hi=%"PRIx64
1254                          ", lo=%"PRIx64" (reserved nonzero)",
1255                          __func__, ce->hi, ce->lo);
1256        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1257    }
1258
1259    if (s->root_scalable &&
1260        (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1261         ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1262         ce->val[2] ||
1263         ce->val[3])) {
1264        error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1265                          ", val[2]=%"PRIx64
1266                          ", val[1]=%"PRIx64
1267                          ", val[0]=%"PRIx64" (reserved nonzero)",
1268                          __func__, ce->val[3], ce->val[2],
1269                          ce->val[1], ce->val[0]);
1270        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1271    }
1272
1273    return 0;
1274}
1275
1276static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1277                                  VTDContextEntry *ce)
1278{
1279    VTDPASIDEntry pe;
1280
1281    /*
1282     * Make sure in Scalable Mode, a present context entry
1283     * has valid rid2pasid setting, which includes valid
1284     * rid2pasid field and corresponding pasid entry setting
1285     */
1286    return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1287}
1288
1289/* Map a device to its corresponding domain (context-entry) */
1290static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1291                                    uint8_t devfn, VTDContextEntry *ce)
1292{
1293    VTDRootEntry re;
1294    int ret_fr;
1295    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1296
1297    ret_fr = vtd_get_root_entry(s, bus_num, &re);
1298    if (ret_fr) {
1299        return ret_fr;
1300    }
1301
1302    if (!vtd_root_entry_present(s, &re, devfn)) {
1303        /* Not error - it's okay we don't have root entry. */
1304        trace_vtd_re_not_present(bus_num);
1305        return -VTD_FR_ROOT_ENTRY_P;
1306    }
1307
1308    ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1309    if (ret_fr) {
1310        return ret_fr;
1311    }
1312
1313    ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1314    if (ret_fr) {
1315        return ret_fr;
1316    }
1317
1318    if (!vtd_ce_present(ce)) {
1319        /* Not error - it's okay we don't have context entry. */
1320        trace_vtd_ce_not_present(bus_num, devfn);
1321        return -VTD_FR_CONTEXT_ENTRY_P;
1322    }
1323
1324    ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1325    if (ret_fr) {
1326        return ret_fr;
1327    }
1328
1329    /* Check if the programming of context-entry is valid */
1330    if (!s->root_scalable &&
1331        !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1332        error_report_once("%s: invalid context entry: hi=%"PRIx64
1333                          ", lo=%"PRIx64" (level %d not supported)",
1334                          __func__, ce->hi, ce->lo,
1335                          vtd_ce_get_level(ce));
1336        return -VTD_FR_CONTEXT_ENTRY_INV;
1337    }
1338
1339    if (!s->root_scalable) {
1340        /* Do translation type check */
1341        if (!vtd_ce_type_check(x86_iommu, ce)) {
1342            /* Errors dumped in vtd_ce_type_check() */
1343            return -VTD_FR_CONTEXT_ENTRY_INV;
1344        }
1345    } else {
1346        /*
1347         * Check if the programming of context-entry.rid2pasid
1348         * and corresponding pasid setting is valid, and thus
1349         * avoids to check pasid entry fetching result in future
1350         * helper function calling.
1351         */
1352        ret_fr = vtd_ce_rid2pasid_check(s, ce);
1353        if (ret_fr) {
1354            return ret_fr;
1355        }
1356    }
1357
1358    return 0;
1359}
1360
1361static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1362                                     void *private)
1363{
1364    memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1365    return 0;
1366}
1367
1368static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1369                                  VTDContextEntry *ce)
1370{
1371    VTDPASIDEntry pe;
1372
1373    if (s->root_scalable) {
1374        vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1375        return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1376    }
1377
1378    return VTD_CONTEXT_ENTRY_DID(ce->hi);
1379}
1380
1381static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1382                                            VTDContextEntry *ce,
1383                                            hwaddr addr, hwaddr size)
1384{
1385    IntelIOMMUState *s = vtd_as->iommu_state;
1386    vtd_page_walk_info info = {
1387        .hook_fn = vtd_sync_shadow_page_hook,
1388        .private = (void *)&vtd_as->iommu,
1389        .notify_unmap = true,
1390        .aw = s->aw_bits,
1391        .as = vtd_as,
1392        .domain_id = vtd_get_domain_id(s, ce),
1393    };
1394
1395    return vtd_page_walk(s, ce, addr, addr + size, &info);
1396}
1397
1398static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1399{
1400    int ret;
1401    VTDContextEntry ce;
1402    IOMMUNotifier *n;
1403
1404    ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1405                                   pci_bus_num(vtd_as->bus),
1406                                   vtd_as->devfn, &ce);
1407    if (ret) {
1408        if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1409            /*
1410             * It's a valid scenario to have a context entry that is
1411             * not present.  For example, when a device is removed
1412             * from an existing domain then the context entry will be
1413             * zeroed by the guest before it was put into another
1414             * domain.  When this happens, instead of synchronizing
1415             * the shadow pages we should invalidate all existing
1416             * mappings and notify the backends.
1417             */
1418            IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1419                vtd_address_space_unmap(vtd_as, n);
1420            }
1421            ret = 0;
1422        }
1423        return ret;
1424    }
1425
1426    return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1427}
1428
1429/*
1430 * Check if specific device is configed to bypass address
1431 * translation for DMA requests. In Scalable Mode, bypass
1432 * 1st-level translation or 2nd-level translation, it depends
1433 * on PGTT setting.
1434 */
1435static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1436{
1437    IntelIOMMUState *s;
1438    VTDContextEntry ce;
1439    VTDPASIDEntry pe;
1440    int ret;
1441
1442    assert(as);
1443
1444    s = as->iommu_state;
1445    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1446                                   as->devfn, &ce);
1447    if (ret) {
1448        /*
1449         * Possibly failed to parse the context entry for some reason
1450         * (e.g., during init, or any guest configuration errors on
1451         * context entries). We should assume PT not enabled for
1452         * safety.
1453         */
1454        return false;
1455    }
1456
1457    if (s->root_scalable) {
1458        ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1459        if (ret) {
1460            error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1461                              __func__, ret);
1462            return false;
1463        }
1464        return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1465    }
1466
1467    return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1468}
1469
1470/* Return whether the device is using IOMMU translation. */
1471static bool vtd_switch_address_space(VTDAddressSpace *as)
1472{
1473    bool use_iommu;
1474    /* Whether we need to take the BQL on our own */
1475    bool take_bql = !qemu_mutex_iothread_locked();
1476
1477    assert(as);
1478
1479    use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1480
1481    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1482                                   VTD_PCI_SLOT(as->devfn),
1483                                   VTD_PCI_FUNC(as->devfn),
1484                                   use_iommu);
1485
1486    /*
1487     * It's possible that we reach here without BQL, e.g., when called
1488     * from vtd_pt_enable_fast_path(). However the memory APIs need
1489     * it. We'd better make sure we have had it already, or, take it.
1490     */
1491    if (take_bql) {
1492        qemu_mutex_lock_iothread();
1493    }
1494
1495    /* Turn off first then on the other */
1496    if (use_iommu) {
1497        memory_region_set_enabled(&as->nodmar, false);
1498        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1499    } else {
1500        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1501        memory_region_set_enabled(&as->nodmar, true);
1502    }
1503
1504    if (take_bql) {
1505        qemu_mutex_unlock_iothread();
1506    }
1507
1508    return use_iommu;
1509}
1510
1511static void vtd_switch_address_space_all(IntelIOMMUState *s)
1512{
1513    GHashTableIter iter;
1514    VTDBus *vtd_bus;
1515    int i;
1516
1517    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1518    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1519        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1520            if (!vtd_bus->dev_as[i]) {
1521                continue;
1522            }
1523            vtd_switch_address_space(vtd_bus->dev_as[i]);
1524        }
1525    }
1526}
1527
1528static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1529{
1530    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1531}
1532
1533static const bool vtd_qualified_faults[] = {
1534    [VTD_FR_RESERVED] = false,
1535    [VTD_FR_ROOT_ENTRY_P] = false,
1536    [VTD_FR_CONTEXT_ENTRY_P] = true,
1537    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1538    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1539    [VTD_FR_WRITE] = true,
1540    [VTD_FR_READ] = true,
1541    [VTD_FR_PAGING_ENTRY_INV] = true,
1542    [VTD_FR_ROOT_TABLE_INV] = false,
1543    [VTD_FR_CONTEXT_TABLE_INV] = false,
1544    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1545    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1546    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1547    [VTD_FR_PASID_TABLE_INV] = false,
1548    [VTD_FR_RESERVED_ERR] = false,
1549    [VTD_FR_MAX] = false,
1550};
1551
1552/* To see if a fault condition is "qualified", which is reported to software
1553 * only if the FPD field in the context-entry used to process the faulting
1554 * request is 0.
1555 */
1556static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1557{
1558    return vtd_qualified_faults[fault];
1559}
1560
1561static inline bool vtd_is_interrupt_addr(hwaddr addr)
1562{
1563    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1564}
1565
1566static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1567{
1568    VTDBus *vtd_bus;
1569    VTDAddressSpace *vtd_as;
1570    bool success = false;
1571
1572    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1573    if (!vtd_bus) {
1574        goto out;
1575    }
1576
1577    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1578    if (!vtd_as) {
1579        goto out;
1580    }
1581
1582    if (vtd_switch_address_space(vtd_as) == false) {
1583        /* We switched off IOMMU region successfully. */
1584        success = true;
1585    }
1586
1587out:
1588    trace_vtd_pt_enable_fast_path(source_id, success);
1589}
1590
1591/* Map dev to context-entry then do a paging-structures walk to do a iommu
1592 * translation.
1593 *
1594 * Called from RCU critical section.
1595 *
1596 * @bus_num: The bus number
1597 * @devfn: The devfn, which is the  combined of device and function number
1598 * @is_write: The access is a write operation
1599 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1600 *
1601 * Returns true if translation is successful, otherwise false.
1602 */
1603static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1604                                   uint8_t devfn, hwaddr addr, bool is_write,
1605                                   IOMMUTLBEntry *entry)
1606{
1607    IntelIOMMUState *s = vtd_as->iommu_state;
1608    VTDContextEntry ce;
1609    uint8_t bus_num = pci_bus_num(bus);
1610    VTDContextCacheEntry *cc_entry;
1611    uint64_t slpte, page_mask;
1612    uint32_t level;
1613    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1614    int ret_fr;
1615    bool is_fpd_set = false;
1616    bool reads = true;
1617    bool writes = true;
1618    uint8_t access_flags;
1619    VTDIOTLBEntry *iotlb_entry;
1620
1621    /*
1622     * We have standalone memory region for interrupt addresses, we
1623     * should never receive translation requests in this region.
1624     */
1625    assert(!vtd_is_interrupt_addr(addr));
1626
1627    vtd_iommu_lock(s);
1628
1629    cc_entry = &vtd_as->context_cache_entry;
1630
1631    /* Try to fetch slpte form IOTLB */
1632    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1633    if (iotlb_entry) {
1634        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1635                                 iotlb_entry->domain_id);
1636        slpte = iotlb_entry->slpte;
1637        access_flags = iotlb_entry->access_flags;
1638        page_mask = iotlb_entry->mask;
1639        goto out;
1640    }
1641
1642    /* Try to fetch context-entry from cache first */
1643    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1644        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1645                               cc_entry->context_entry.lo,
1646                               cc_entry->context_cache_gen);
1647        ce = cc_entry->context_entry;
1648        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1649        if (!is_fpd_set && s->root_scalable) {
1650            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1651            VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1652        }
1653    } else {
1654        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1655        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1656        if (!ret_fr && !is_fpd_set && s->root_scalable) {
1657            ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1658        }
1659        VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1660        /* Update context-cache */
1661        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1662                                  cc_entry->context_cache_gen,
1663                                  s->context_cache_gen);
1664        cc_entry->context_entry = ce;
1665        cc_entry->context_cache_gen = s->context_cache_gen;
1666    }
1667
1668    /*
1669     * We don't need to translate for pass-through context entries.
1670     * Also, let's ignore IOTLB caching as well for PT devices.
1671     */
1672    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1673        entry->iova = addr & VTD_PAGE_MASK_4K;
1674        entry->translated_addr = entry->iova;
1675        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1676        entry->perm = IOMMU_RW;
1677        trace_vtd_translate_pt(source_id, entry->iova);
1678
1679        /*
1680         * When this happens, it means firstly caching-mode is not
1681         * enabled, and this is the first passthrough translation for
1682         * the device. Let's enable the fast path for passthrough.
1683         *
1684         * When passthrough is disabled again for the device, we can
1685         * capture it via the context entry invalidation, then the
1686         * IOMMU region can be swapped back.
1687         */
1688        vtd_pt_enable_fast_path(s, source_id);
1689        vtd_iommu_unlock(s);
1690        return true;
1691    }
1692
1693    ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1694                               &reads, &writes, s->aw_bits);
1695    VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1696
1697    page_mask = vtd_slpt_level_page_mask(level);
1698    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1699    vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1700                     access_flags, level);
1701out:
1702    vtd_iommu_unlock(s);
1703    entry->iova = addr & page_mask;
1704    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1705    entry->addr_mask = ~page_mask;
1706    entry->perm = access_flags;
1707    return true;
1708
1709error:
1710    vtd_iommu_unlock(s);
1711    entry->iova = 0;
1712    entry->translated_addr = 0;
1713    entry->addr_mask = 0;
1714    entry->perm = IOMMU_NONE;
1715    return false;
1716}
1717
1718static void vtd_root_table_setup(IntelIOMMUState *s)
1719{
1720    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1721    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1722
1723    vtd_update_scalable_state(s);
1724
1725    trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1726}
1727
1728static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1729                               uint32_t index, uint32_t mask)
1730{
1731    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1732}
1733
1734static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1735{
1736    uint64_t value = 0;
1737    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1738    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1739    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1740    s->intr_eime = value & VTD_IRTA_EIME;
1741
1742    /* Notify global invalidation */
1743    vtd_iec_notify_all(s, true, 0, 0);
1744
1745    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1746}
1747
1748static void vtd_iommu_replay_all(IntelIOMMUState *s)
1749{
1750    VTDAddressSpace *vtd_as;
1751
1752    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1753        vtd_sync_shadow_page_table(vtd_as);
1754    }
1755}
1756
1757static void vtd_context_global_invalidate(IntelIOMMUState *s)
1758{
1759    trace_vtd_inv_desc_cc_global();
1760    /* Protects context cache */
1761    vtd_iommu_lock(s);
1762    s->context_cache_gen++;
1763    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1764        vtd_reset_context_cache_locked(s);
1765    }
1766    vtd_iommu_unlock(s);
1767    vtd_address_space_refresh_all(s);
1768    /*
1769     * From VT-d spec 6.5.2.1, a global context entry invalidation
1770     * should be followed by a IOTLB global invalidation, so we should
1771     * be safe even without this. Hoewever, let's replay the region as
1772     * well to be safer, and go back here when we need finer tunes for
1773     * VT-d emulation codes.
1774     */
1775    vtd_iommu_replay_all(s);
1776}
1777
1778/* Do a context-cache device-selective invalidation.
1779 * @func_mask: FM field after shifting
1780 */
1781static void vtd_context_device_invalidate(IntelIOMMUState *s,
1782                                          uint16_t source_id,
1783                                          uint16_t func_mask)
1784{
1785    uint16_t mask;
1786    VTDBus *vtd_bus;
1787    VTDAddressSpace *vtd_as;
1788    uint8_t bus_n, devfn;
1789    uint16_t devfn_it;
1790
1791    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1792
1793    switch (func_mask & 3) {
1794    case 0:
1795        mask = 0;   /* No bits in the SID field masked */
1796        break;
1797    case 1:
1798        mask = 4;   /* Mask bit 2 in the SID field */
1799        break;
1800    case 2:
1801        mask = 6;   /* Mask bit 2:1 in the SID field */
1802        break;
1803    case 3:
1804        mask = 7;   /* Mask bit 2:0 in the SID field */
1805        break;
1806    }
1807    mask = ~mask;
1808
1809    bus_n = VTD_SID_TO_BUS(source_id);
1810    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1811    if (vtd_bus) {
1812        devfn = VTD_SID_TO_DEVFN(source_id);
1813        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1814            vtd_as = vtd_bus->dev_as[devfn_it];
1815            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1816                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1817                                             VTD_PCI_FUNC(devfn_it));
1818                vtd_iommu_lock(s);
1819                vtd_as->context_cache_entry.context_cache_gen = 0;
1820                vtd_iommu_unlock(s);
1821                /*
1822                 * Do switch address space when needed, in case if the
1823                 * device passthrough bit is switched.
1824                 */
1825                vtd_switch_address_space(vtd_as);
1826                /*
1827                 * So a device is moving out of (or moving into) a
1828                 * domain, resync the shadow page table.
1829                 * This won't bring bad even if we have no such
1830                 * notifier registered - the IOMMU notification
1831                 * framework will skip MAP notifications if that
1832                 * happened.
1833                 */
1834                vtd_sync_shadow_page_table(vtd_as);
1835            }
1836        }
1837    }
1838}
1839
1840/* Context-cache invalidation
1841 * Returns the Context Actual Invalidation Granularity.
1842 * @val: the content of the CCMD_REG
1843 */
1844static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1845{
1846    uint64_t caig;
1847    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1848
1849    switch (type) {
1850    case VTD_CCMD_DOMAIN_INVL:
1851        /* Fall through */
1852    case VTD_CCMD_GLOBAL_INVL:
1853        caig = VTD_CCMD_GLOBAL_INVL_A;
1854        vtd_context_global_invalidate(s);
1855        break;
1856
1857    case VTD_CCMD_DEVICE_INVL:
1858        caig = VTD_CCMD_DEVICE_INVL_A;
1859        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1860        break;
1861
1862    default:
1863        error_report_once("%s: invalid context: 0x%" PRIx64,
1864                          __func__, val);
1865        caig = 0;
1866    }
1867    return caig;
1868}
1869
1870static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1871{
1872    trace_vtd_inv_desc_iotlb_global();
1873    vtd_reset_iotlb(s);
1874    vtd_iommu_replay_all(s);
1875}
1876
1877static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1878{
1879    VTDContextEntry ce;
1880    VTDAddressSpace *vtd_as;
1881
1882    trace_vtd_inv_desc_iotlb_domain(domain_id);
1883
1884    vtd_iommu_lock(s);
1885    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1886                                &domain_id);
1887    vtd_iommu_unlock(s);
1888
1889    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1890        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1891                                      vtd_as->devfn, &ce) &&
1892            domain_id == vtd_get_domain_id(s, &ce)) {
1893            vtd_sync_shadow_page_table(vtd_as);
1894        }
1895    }
1896}
1897
1898static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1899                                           uint16_t domain_id, hwaddr addr,
1900                                           uint8_t am)
1901{
1902    VTDAddressSpace *vtd_as;
1903    VTDContextEntry ce;
1904    int ret;
1905    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1906
1907    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1908        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1909                                       vtd_as->devfn, &ce);
1910        if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1911            if (vtd_as_has_map_notifier(vtd_as)) {
1912                /*
1913                 * As long as we have MAP notifications registered in
1914                 * any of our IOMMU notifiers, we need to sync the
1915                 * shadow page table.
1916                 */
1917                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1918            } else {
1919                /*
1920                 * For UNMAP-only notifiers, we don't need to walk the
1921                 * page tables.  We just deliver the PSI down to
1922                 * invalidate caches.
1923                 */
1924                IOMMUTLBEntry entry = {
1925                    .target_as = &address_space_memory,
1926                    .iova = addr,
1927                    .translated_addr = 0,
1928                    .addr_mask = size - 1,
1929                    .perm = IOMMU_NONE,
1930                };
1931                memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1932            }
1933        }
1934    }
1935}
1936
1937static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1938                                      hwaddr addr, uint8_t am)
1939{
1940    VTDIOTLBPageInvInfo info;
1941
1942    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1943
1944    assert(am <= VTD_MAMV);
1945    info.domain_id = domain_id;
1946    info.addr = addr;
1947    info.mask = ~((1 << am) - 1);
1948    vtd_iommu_lock(s);
1949    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1950    vtd_iommu_unlock(s);
1951    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1952}
1953
1954/* Flush IOTLB
1955 * Returns the IOTLB Actual Invalidation Granularity.
1956 * @val: the content of the IOTLB_REG
1957 */
1958static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1959{
1960    uint64_t iaig;
1961    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1962    uint16_t domain_id;
1963    hwaddr addr;
1964    uint8_t am;
1965
1966    switch (type) {
1967    case VTD_TLB_GLOBAL_FLUSH:
1968        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1969        vtd_iotlb_global_invalidate(s);
1970        break;
1971
1972    case VTD_TLB_DSI_FLUSH:
1973        domain_id = VTD_TLB_DID(val);
1974        iaig = VTD_TLB_DSI_FLUSH_A;
1975        vtd_iotlb_domain_invalidate(s, domain_id);
1976        break;
1977
1978    case VTD_TLB_PSI_FLUSH:
1979        domain_id = VTD_TLB_DID(val);
1980        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1981        am = VTD_IVA_AM(addr);
1982        addr = VTD_IVA_ADDR(addr);
1983        if (am > VTD_MAMV) {
1984            error_report_once("%s: address mask overflow: 0x%" PRIx64,
1985                              __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1986            iaig = 0;
1987            break;
1988        }
1989        iaig = VTD_TLB_PSI_FLUSH_A;
1990        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1991        break;
1992
1993    default:
1994        error_report_once("%s: invalid granularity: 0x%" PRIx64,
1995                          __func__, val);
1996        iaig = 0;
1997    }
1998    return iaig;
1999}
2000
2001static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2002
2003static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2004{
2005    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2006           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2007}
2008
2009static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2010{
2011    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2012
2013    trace_vtd_inv_qi_enable(en);
2014
2015    if (en) {
2016        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2017        /* 2^(x+8) entries */
2018        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2019        s->qi_enabled = true;
2020        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2021        /* Ok - report back to driver */
2022        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2023
2024        if (s->iq_tail != 0) {
2025            /*
2026             * This is a spec violation but Windows guests are known to set up
2027             * Queued Invalidation this way so we allow the write and process
2028             * Invalidation Descriptors right away.
2029             */
2030            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2031            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2032                vtd_fetch_inv_desc(s);
2033            }
2034        }
2035    } else {
2036        if (vtd_queued_inv_disable_check(s)) {
2037            /* disable Queued Invalidation */
2038            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2039            s->iq_head = 0;
2040            s->qi_enabled = false;
2041            /* Ok - report back to driver */
2042            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2043        } else {
2044            error_report_once("%s: detected improper state when disable QI "
2045                              "(head=0x%x, tail=0x%x, last_type=%d)",
2046                              __func__,
2047                              s->iq_head, s->iq_tail, s->iq_last_desc_type);
2048        }
2049    }
2050}
2051
2052/* Set Root Table Pointer */
2053static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2054{
2055    vtd_root_table_setup(s);
2056    /* Ok - report back to driver */
2057    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2058    vtd_reset_caches(s);
2059    vtd_address_space_refresh_all(s);
2060}
2061
2062/* Set Interrupt Remap Table Pointer */
2063static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2064{
2065    vtd_interrupt_remap_table_setup(s);
2066    /* Ok - report back to driver */
2067    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2068}
2069
2070/* Handle Translation Enable/Disable */
2071static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2072{
2073    if (s->dmar_enabled == en) {
2074        return;
2075    }
2076
2077    trace_vtd_dmar_enable(en);
2078
2079    if (en) {
2080        s->dmar_enabled = true;
2081        /* Ok - report back to driver */
2082        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2083    } else {
2084        s->dmar_enabled = false;
2085
2086        /* Clear the index of Fault Recording Register */
2087        s->next_frcd_reg = 0;
2088        /* Ok - report back to driver */
2089        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2090    }
2091
2092    vtd_reset_caches(s);
2093    vtd_address_space_refresh_all(s);
2094}
2095
2096/* Handle Interrupt Remap Enable/Disable */
2097static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2098{
2099    trace_vtd_ir_enable(en);
2100
2101    if (en) {
2102        s->intr_enabled = true;
2103        /* Ok - report back to driver */
2104        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2105    } else {
2106        s->intr_enabled = false;
2107        /* Ok - report back to driver */
2108        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2109    }
2110}
2111
2112/* Handle write to Global Command Register */
2113static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2114{
2115    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2116    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2117    uint32_t changed = status ^ val;
2118
2119    trace_vtd_reg_write_gcmd(status, val);
2120    if (changed & VTD_GCMD_TE) {
2121        /* Translation enable/disable */
2122        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2123    }
2124    if (val & VTD_GCMD_SRTP) {
2125        /* Set/update the root-table pointer */
2126        vtd_handle_gcmd_srtp(s);
2127    }
2128    if (changed & VTD_GCMD_QIE) {
2129        /* Queued Invalidation Enable */
2130        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2131    }
2132    if (val & VTD_GCMD_SIRTP) {
2133        /* Set/update the interrupt remapping root-table pointer */
2134        vtd_handle_gcmd_sirtp(s);
2135    }
2136    if (changed & VTD_GCMD_IRE) {
2137        /* Interrupt remap enable/disable */
2138        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2139    }
2140}
2141
2142/* Handle write to Context Command Register */
2143static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2144{
2145    uint64_t ret;
2146    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2147
2148    /* Context-cache invalidation request */
2149    if (val & VTD_CCMD_ICC) {
2150        if (s->qi_enabled) {
2151            error_report_once("Queued Invalidation enabled, "
2152                              "should not use register-based invalidation");
2153            return;
2154        }
2155        ret = vtd_context_cache_invalidate(s, val);
2156        /* Invalidation completed. Change something to show */
2157        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2158        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2159                                      ret);
2160    }
2161}
2162
2163/* Handle write to IOTLB Invalidation Register */
2164static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2165{
2166    uint64_t ret;
2167    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2168
2169    /* IOTLB invalidation request */
2170    if (val & VTD_TLB_IVT) {
2171        if (s->qi_enabled) {
2172            error_report_once("Queued Invalidation enabled, "
2173                              "should not use register-based invalidation");
2174            return;
2175        }
2176        ret = vtd_iotlb_flush(s, val);
2177        /* Invalidation completed. Change something to show */
2178        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2179        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2180                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2181    }
2182}
2183
2184/* Fetch an Invalidation Descriptor from the Invalidation Queue */
2185static bool vtd_get_inv_desc(IntelIOMMUState *s,
2186                             VTDInvDesc *inv_desc)
2187{
2188    dma_addr_t base_addr = s->iq;
2189    uint32_t offset = s->iq_head;
2190    uint32_t dw = s->iq_dw ? 32 : 16;
2191    dma_addr_t addr = base_addr + offset * dw;
2192
2193    if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2194        error_report_once("Read INV DESC failed.");
2195        return false;
2196    }
2197    inv_desc->lo = le64_to_cpu(inv_desc->lo);
2198    inv_desc->hi = le64_to_cpu(inv_desc->hi);
2199    if (dw == 32) {
2200        inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2201        inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2202    }
2203    return true;
2204}
2205
2206static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2207{
2208    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2209        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2210        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2211                          " (reserved nonzero)", __func__, inv_desc->hi,
2212                          inv_desc->lo);
2213        return false;
2214    }
2215    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2216        /* Status Write */
2217        uint32_t status_data = (uint32_t)(inv_desc->lo >>
2218                               VTD_INV_DESC_WAIT_DATA_SHIFT);
2219
2220        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2221
2222        /* FIXME: need to be masked with HAW? */
2223        dma_addr_t status_addr = inv_desc->hi;
2224        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2225        status_data = cpu_to_le32(status_data);
2226        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2227                             sizeof(status_data))) {
2228            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2229            return false;
2230        }
2231    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2232        /* Interrupt flag */
2233        vtd_generate_completion_event(s);
2234    } else {
2235        error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2236                          " (unknown type)", __func__, inv_desc->hi,
2237                          inv_desc->lo);
2238        return false;
2239    }
2240    return true;
2241}
2242
2243static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2244                                           VTDInvDesc *inv_desc)
2245{
2246    uint16_t sid, fmask;
2247
2248    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2249        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2250                          " (reserved nonzero)", __func__, inv_desc->hi,
2251                          inv_desc->lo);
2252        return false;
2253    }
2254    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2255    case VTD_INV_DESC_CC_DOMAIN:
2256        trace_vtd_inv_desc_cc_domain(
2257            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2258        /* Fall through */
2259    case VTD_INV_DESC_CC_GLOBAL:
2260        vtd_context_global_invalidate(s);
2261        break;
2262
2263    case VTD_INV_DESC_CC_DEVICE:
2264        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2265        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2266        vtd_context_device_invalidate(s, sid, fmask);
2267        break;
2268
2269    default:
2270        error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2271                          " (invalid type)", __func__, inv_desc->hi,
2272                          inv_desc->lo);
2273        return false;
2274    }
2275    return true;
2276}
2277
2278static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2279{
2280    uint16_t domain_id;
2281    uint8_t am;
2282    hwaddr addr;
2283
2284    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2285        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2286        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2287                          ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2288                          __func__, inv_desc->hi, inv_desc->lo);
2289        return false;
2290    }
2291
2292    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2293    case VTD_INV_DESC_IOTLB_GLOBAL:
2294        vtd_iotlb_global_invalidate(s);
2295        break;
2296
2297    case VTD_INV_DESC_IOTLB_DOMAIN:
2298        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2299        vtd_iotlb_domain_invalidate(s, domain_id);
2300        break;
2301
2302    case VTD_INV_DESC_IOTLB_PAGE:
2303        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2304        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2305        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2306        if (am > VTD_MAMV) {
2307            error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2308                              ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2309                              __func__, inv_desc->hi, inv_desc->lo,
2310                              am, (unsigned)VTD_MAMV);
2311            return false;
2312        }
2313        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2314        break;
2315
2316    default:
2317        error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2318                          ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2319                          __func__, inv_desc->hi, inv_desc->lo,
2320                          inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2321        return false;
2322    }
2323    return true;
2324}
2325
2326static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2327                                     VTDInvDesc *inv_desc)
2328{
2329    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2330                           inv_desc->iec.index,
2331                           inv_desc->iec.index_mask);
2332
2333    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2334                       inv_desc->iec.index,
2335                       inv_desc->iec.index_mask);
2336    return true;
2337}
2338
2339static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2340                                          VTDInvDesc *inv_desc)
2341{
2342    VTDAddressSpace *vtd_dev_as;
2343    IOMMUTLBEntry entry;
2344    struct VTDBus *vtd_bus;
2345    hwaddr addr;
2346    uint64_t sz;
2347    uint16_t sid;
2348    uint8_t devfn;
2349    bool size;
2350    uint8_t bus_num;
2351
2352    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2353    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2354    devfn = sid & 0xff;
2355    bus_num = sid >> 8;
2356    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2357
2358    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2359        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2360        error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2361                          ", lo=%"PRIx64" (reserved nonzero)", __func__,
2362                          inv_desc->hi, inv_desc->lo);
2363        return false;
2364    }
2365
2366    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2367    if (!vtd_bus) {
2368        goto done;
2369    }
2370
2371    vtd_dev_as = vtd_bus->dev_as[devfn];
2372    if (!vtd_dev_as) {
2373        goto done;
2374    }
2375
2376    /* According to ATS spec table 2.4:
2377     * S = 0, bits 15:12 = xxxx     range size: 4K
2378     * S = 1, bits 15:12 = xxx0     range size: 8K
2379     * S = 1, bits 15:12 = xx01     range size: 16K
2380     * S = 1, bits 15:12 = x011     range size: 32K
2381     * S = 1, bits 15:12 = 0111     range size: 64K
2382     * ...
2383     */
2384    if (size) {
2385        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2386        addr &= ~(sz - 1);
2387    } else {
2388        sz = VTD_PAGE_SIZE;
2389    }
2390
2391    entry.target_as = &vtd_dev_as->as;
2392    entry.addr_mask = sz - 1;
2393    entry.iova = addr;
2394    entry.perm = IOMMU_NONE;
2395    entry.translated_addr = 0;
2396    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2397
2398done:
2399    return true;
2400}
2401
2402static bool vtd_process_inv_desc(IntelIOMMUState *s)
2403{
2404    VTDInvDesc inv_desc;
2405    uint8_t desc_type;
2406
2407    trace_vtd_inv_qi_head(s->iq_head);
2408    if (!vtd_get_inv_desc(s, &inv_desc)) {
2409        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2410        return false;
2411    }
2412
2413    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2414    /* FIXME: should update at first or at last? */
2415    s->iq_last_desc_type = desc_type;
2416
2417    switch (desc_type) {
2418    case VTD_INV_DESC_CC:
2419        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2420        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2421            return false;
2422        }
2423        break;
2424
2425    case VTD_INV_DESC_IOTLB:
2426        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2427        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2428            return false;
2429        }
2430        break;
2431
2432    /*
2433     * TODO: the entity of below two cases will be implemented in future series.
2434     * To make guest (which integrates scalable mode support patch set in
2435     * iommu driver) work, just return true is enough so far.
2436     */
2437    case VTD_INV_DESC_PC:
2438        break;
2439
2440    case VTD_INV_DESC_PIOTLB:
2441        break;
2442
2443    case VTD_INV_DESC_WAIT:
2444        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2445        if (!vtd_process_wait_desc(s, &inv_desc)) {
2446            return false;
2447        }
2448        break;
2449
2450    case VTD_INV_DESC_IEC:
2451        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2452        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2453            return false;
2454        }
2455        break;
2456
2457    case VTD_INV_DESC_DEVICE:
2458        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2459        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2460            return false;
2461        }
2462        break;
2463
2464    default:
2465        error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2466                          " (unknown type)", __func__, inv_desc.hi,
2467                          inv_desc.lo);
2468        return false;
2469    }
2470    s->iq_head++;
2471    if (s->iq_head == s->iq_size) {
2472        s->iq_head = 0;
2473    }
2474    return true;
2475}
2476
2477/* Try to fetch and process more Invalidation Descriptors */
2478static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2479{
2480    trace_vtd_inv_qi_fetch();
2481
2482    if (s->iq_tail >= s->iq_size) {
2483        /* Detects an invalid Tail pointer */
2484        error_report_once("%s: detected invalid QI tail "
2485                          "(tail=0x%x, size=0x%x)",
2486                          __func__, s->iq_tail, s->iq_size);
2487        vtd_handle_inv_queue_error(s);
2488        return;
2489    }
2490    while (s->iq_head != s->iq_tail) {
2491        if (!vtd_process_inv_desc(s)) {
2492            /* Invalidation Queue Errors */
2493            vtd_handle_inv_queue_error(s);
2494            break;
2495        }
2496        /* Must update the IQH_REG in time */
2497        vtd_set_quad_raw(s, DMAR_IQH_REG,
2498                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2499                         VTD_IQH_QH_MASK);
2500    }
2501}
2502
2503/* Handle write to Invalidation Queue Tail Register */
2504static void vtd_handle_iqt_write(IntelIOMMUState *s)
2505{
2506    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2507
2508    if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2509        error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2510                          __func__, val);
2511        return;
2512    }
2513    s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2514    trace_vtd_inv_qi_tail(s->iq_tail);
2515
2516    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2517        /* Process Invalidation Queue here */
2518        vtd_fetch_inv_desc(s);
2519    }
2520}
2521
2522static void vtd_handle_fsts_write(IntelIOMMUState *s)
2523{
2524    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2525    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2526    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2527
2528    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2529        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2530        trace_vtd_fsts_clear_ip();
2531    }
2532    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2533     * Descriptors if there are any when Queued Invalidation is enabled?
2534     */
2535}
2536
2537static void vtd_handle_fectl_write(IntelIOMMUState *s)
2538{
2539    uint32_t fectl_reg;
2540    /* FIXME: when software clears the IM field, check the IP field. But do we
2541     * need to compare the old value and the new value to conclude that
2542     * software clears the IM field? Or just check if the IM field is zero?
2543     */
2544    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2545
2546    trace_vtd_reg_write_fectl(fectl_reg);
2547
2548    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2549        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2550        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2551    }
2552}
2553
2554static void vtd_handle_ics_write(IntelIOMMUState *s)
2555{
2556    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2557    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2558
2559    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2560        trace_vtd_reg_ics_clear_ip();
2561        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2562    }
2563}
2564
2565static void vtd_handle_iectl_write(IntelIOMMUState *s)
2566{
2567    uint32_t iectl_reg;
2568    /* FIXME: when software clears the IM field, check the IP field. But do we
2569     * need to compare the old value and the new value to conclude that
2570     * software clears the IM field? Or just check if the IM field is zero?
2571     */
2572    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2573
2574    trace_vtd_reg_write_iectl(iectl_reg);
2575
2576    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2577        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2578        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2579    }
2580}
2581
2582static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2583{
2584    IntelIOMMUState *s = opaque;
2585    uint64_t val;
2586
2587    trace_vtd_reg_read(addr, size);
2588
2589    if (addr + size > DMAR_REG_SIZE) {
2590        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2591                          " size=0x%u", __func__, addr, size);
2592        return (uint64_t)-1;
2593    }
2594
2595    switch (addr) {
2596    /* Root Table Address Register, 64-bit */
2597    case DMAR_RTADDR_REG:
2598        if (size == 4) {
2599            val = s->root & ((1ULL << 32) - 1);
2600        } else {
2601            val = s->root;
2602        }
2603        break;
2604
2605    case DMAR_RTADDR_REG_HI:
2606        assert(size == 4);
2607        val = s->root >> 32;
2608        break;
2609
2610    /* Invalidation Queue Address Register, 64-bit */
2611    case DMAR_IQA_REG:
2612        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2613        if (size == 4) {
2614            val = val & ((1ULL << 32) - 1);
2615        }
2616        break;
2617
2618    case DMAR_IQA_REG_HI:
2619        assert(size == 4);
2620        val = s->iq >> 32;
2621        break;
2622
2623    default:
2624        if (size == 4) {
2625            val = vtd_get_long(s, addr);
2626        } else {
2627            val = vtd_get_quad(s, addr);
2628        }
2629    }
2630
2631    return val;
2632}
2633
2634static void vtd_mem_write(void *opaque, hwaddr addr,
2635                          uint64_t val, unsigned size)
2636{
2637    IntelIOMMUState *s = opaque;
2638
2639    trace_vtd_reg_write(addr, size, val);
2640
2641    if (addr + size > DMAR_REG_SIZE) {
2642        error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2643                          " size=0x%u", __func__, addr, size);
2644        return;
2645    }
2646
2647    switch (addr) {
2648    /* Global Command Register, 32-bit */
2649    case DMAR_GCMD_REG:
2650        vtd_set_long(s, addr, val);
2651        vtd_handle_gcmd_write(s);
2652        break;
2653
2654    /* Context Command Register, 64-bit */
2655    case DMAR_CCMD_REG:
2656        if (size == 4) {
2657            vtd_set_long(s, addr, val);
2658        } else {
2659            vtd_set_quad(s, addr, val);
2660            vtd_handle_ccmd_write(s);
2661        }
2662        break;
2663
2664    case DMAR_CCMD_REG_HI:
2665        assert(size == 4);
2666        vtd_set_long(s, addr, val);
2667        vtd_handle_ccmd_write(s);
2668        break;
2669
2670    /* IOTLB Invalidation Register, 64-bit */
2671    case DMAR_IOTLB_REG:
2672        if (size == 4) {
2673            vtd_set_long(s, addr, val);
2674        } else {
2675            vtd_set_quad(s, addr, val);
2676            vtd_handle_iotlb_write(s);
2677        }
2678        break;
2679
2680    case DMAR_IOTLB_REG_HI:
2681        assert(size == 4);
2682        vtd_set_long(s, addr, val);
2683        vtd_handle_iotlb_write(s);
2684        break;
2685
2686    /* Invalidate Address Register, 64-bit */
2687    case DMAR_IVA_REG:
2688        if (size == 4) {
2689            vtd_set_long(s, addr, val);
2690        } else {
2691            vtd_set_quad(s, addr, val);
2692        }
2693        break;
2694
2695    case DMAR_IVA_REG_HI:
2696        assert(size == 4);
2697        vtd_set_long(s, addr, val);
2698        break;
2699
2700    /* Fault Status Register, 32-bit */
2701    case DMAR_FSTS_REG:
2702        assert(size == 4);
2703        vtd_set_long(s, addr, val);
2704        vtd_handle_fsts_write(s);
2705        break;
2706
2707    /* Fault Event Control Register, 32-bit */
2708    case DMAR_FECTL_REG:
2709        assert(size == 4);
2710        vtd_set_long(s, addr, val);
2711        vtd_handle_fectl_write(s);
2712        break;
2713
2714    /* Fault Event Data Register, 32-bit */
2715    case DMAR_FEDATA_REG:
2716        assert(size == 4);
2717        vtd_set_long(s, addr, val);
2718        break;
2719
2720    /* Fault Event Address Register, 32-bit */
2721    case DMAR_FEADDR_REG:
2722        if (size == 4) {
2723            vtd_set_long(s, addr, val);
2724        } else {
2725            /*
2726             * While the register is 32-bit only, some guests (Xen...) write to
2727             * it with 64-bit.
2728             */
2729            vtd_set_quad(s, addr, val);
2730        }
2731        break;
2732
2733    /* Fault Event Upper Address Register, 32-bit */
2734    case DMAR_FEUADDR_REG:
2735        assert(size == 4);
2736        vtd_set_long(s, addr, val);
2737        break;
2738
2739    /* Protected Memory Enable Register, 32-bit */
2740    case DMAR_PMEN_REG:
2741        assert(size == 4);
2742        vtd_set_long(s, addr, val);
2743        break;
2744
2745    /* Root Table Address Register, 64-bit */
2746    case DMAR_RTADDR_REG:
2747        if (size == 4) {
2748            vtd_set_long(s, addr, val);
2749        } else {
2750            vtd_set_quad(s, addr, val);
2751        }
2752        break;
2753
2754    case DMAR_RTADDR_REG_HI:
2755        assert(size == 4);
2756        vtd_set_long(s, addr, val);
2757        break;
2758
2759    /* Invalidation Queue Tail Register, 64-bit */
2760    case DMAR_IQT_REG:
2761        if (size == 4) {
2762            vtd_set_long(s, addr, val);
2763        } else {
2764            vtd_set_quad(s, addr, val);
2765        }
2766        vtd_handle_iqt_write(s);
2767        break;
2768
2769    case DMAR_IQT_REG_HI:
2770        assert(size == 4);
2771        vtd_set_long(s, addr, val);
2772        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2773        break;
2774
2775    /* Invalidation Queue Address Register, 64-bit */
2776    case DMAR_IQA_REG:
2777        if (size == 4) {
2778            vtd_set_long(s, addr, val);
2779        } else {
2780            vtd_set_quad(s, addr, val);
2781        }
2782        if (s->ecap & VTD_ECAP_SMTS &&
2783            val & VTD_IQA_DW_MASK) {
2784            s->iq_dw = true;
2785        } else {
2786            s->iq_dw = false;
2787        }
2788        break;
2789
2790    case DMAR_IQA_REG_HI:
2791        assert(size == 4);
2792        vtd_set_long(s, addr, val);
2793        break;
2794
2795    /* Invalidation Completion Status Register, 32-bit */
2796    case DMAR_ICS_REG:
2797        assert(size == 4);
2798        vtd_set_long(s, addr, val);
2799        vtd_handle_ics_write(s);
2800        break;
2801
2802    /* Invalidation Event Control Register, 32-bit */
2803    case DMAR_IECTL_REG:
2804        assert(size == 4);
2805        vtd_set_long(s, addr, val);
2806        vtd_handle_iectl_write(s);
2807        break;
2808
2809    /* Invalidation Event Data Register, 32-bit */
2810    case DMAR_IEDATA_REG:
2811        assert(size == 4);
2812        vtd_set_long(s, addr, val);
2813        break;
2814
2815    /* Invalidation Event Address Register, 32-bit */
2816    case DMAR_IEADDR_REG:
2817        assert(size == 4);
2818        vtd_set_long(s, addr, val);
2819        break;
2820
2821    /* Invalidation Event Upper Address Register, 32-bit */
2822    case DMAR_IEUADDR_REG:
2823        assert(size == 4);
2824        vtd_set_long(s, addr, val);
2825        break;
2826
2827    /* Fault Recording Registers, 128-bit */
2828    case DMAR_FRCD_REG_0_0:
2829        if (size == 4) {
2830            vtd_set_long(s, addr, val);
2831        } else {
2832            vtd_set_quad(s, addr, val);
2833        }
2834        break;
2835
2836    case DMAR_FRCD_REG_0_1:
2837        assert(size == 4);
2838        vtd_set_long(s, addr, val);
2839        break;
2840
2841    case DMAR_FRCD_REG_0_2:
2842        if (size == 4) {
2843            vtd_set_long(s, addr, val);
2844        } else {
2845            vtd_set_quad(s, addr, val);
2846            /* May clear bit 127 (Fault), update PPF */
2847            vtd_update_fsts_ppf(s);
2848        }
2849        break;
2850
2851    case DMAR_FRCD_REG_0_3:
2852        assert(size == 4);
2853        vtd_set_long(s, addr, val);
2854        /* May clear bit 127 (Fault), update PPF */
2855        vtd_update_fsts_ppf(s);
2856        break;
2857
2858    case DMAR_IRTA_REG:
2859        if (size == 4) {
2860            vtd_set_long(s, addr, val);
2861        } else {
2862            vtd_set_quad(s, addr, val);
2863        }
2864        break;
2865
2866    case DMAR_IRTA_REG_HI:
2867        assert(size == 4);
2868        vtd_set_long(s, addr, val);
2869        break;
2870
2871    default:
2872        if (size == 4) {
2873            vtd_set_long(s, addr, val);
2874        } else {
2875            vtd_set_quad(s, addr, val);
2876        }
2877    }
2878}
2879
2880static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2881                                         IOMMUAccessFlags flag, int iommu_idx)
2882{
2883    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2884    IntelIOMMUState *s = vtd_as->iommu_state;
2885    IOMMUTLBEntry iotlb = {
2886        /* We'll fill in the rest later. */
2887        .target_as = &address_space_memory,
2888    };
2889    bool success;
2890
2891    if (likely(s->dmar_enabled)) {
2892        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2893                                         addr, flag & IOMMU_WO, &iotlb);
2894    } else {
2895        /* DMAR disabled, passthrough, use 4k-page*/
2896        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2897        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2898        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2899        iotlb.perm = IOMMU_RW;
2900        success = true;
2901    }
2902
2903    if (likely(success)) {
2904        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2905                                 VTD_PCI_SLOT(vtd_as->devfn),
2906                                 VTD_PCI_FUNC(vtd_as->devfn),
2907                                 iotlb.iova, iotlb.translated_addr,
2908                                 iotlb.addr_mask);
2909    } else {
2910        error_report_once("%s: detected translation failure "
2911                          "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2912                          __func__, pci_bus_num(vtd_as->bus),
2913                          VTD_PCI_SLOT(vtd_as->devfn),
2914                          VTD_PCI_FUNC(vtd_as->devfn),
2915                          addr);
2916    }
2917
2918    return iotlb;
2919}
2920
2921static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2922                                          IOMMUNotifierFlag old,
2923                                          IOMMUNotifierFlag new)
2924{
2925    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2926    IntelIOMMUState *s = vtd_as->iommu_state;
2927
2928    if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2929        error_report("We need to set caching-mode=on for intel-iommu to enable "
2930                     "device assignment with IOMMU protection.");
2931        exit(1);
2932    }
2933
2934    /* Update per-address-space notifier flags */
2935    vtd_as->notifier_flags = new;
2936
2937    if (old == IOMMU_NOTIFIER_NONE) {
2938        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2939    } else if (new == IOMMU_NOTIFIER_NONE) {
2940        QLIST_REMOVE(vtd_as, next);
2941    }
2942}
2943
2944static int vtd_post_load(void *opaque, int version_id)
2945{
2946    IntelIOMMUState *iommu = opaque;
2947
2948    /*
2949     * Memory regions are dynamically turned on/off depending on
2950     * context entry configurations from the guest. After migration,
2951     * we need to make sure the memory regions are still correct.
2952     */
2953    vtd_switch_address_space_all(iommu);
2954
2955    /*
2956     * We don't need to migrate the root_scalable because we can
2957     * simply do the calculation after the loading is complete.  We
2958     * can actually do similar things with root, dmar_enabled, etc.
2959     * however since we've had them already so we'd better keep them
2960     * for compatibility of migration.
2961     */
2962    vtd_update_scalable_state(iommu);
2963
2964    return 0;
2965}
2966
2967static const VMStateDescription vtd_vmstate = {
2968    .name = "iommu-intel",
2969    .version_id = 1,
2970    .minimum_version_id = 1,
2971    .priority = MIG_PRI_IOMMU,
2972    .post_load = vtd_post_load,
2973    .fields = (VMStateField[]) {
2974        VMSTATE_UINT64(root, IntelIOMMUState),
2975        VMSTATE_UINT64(intr_root, IntelIOMMUState),
2976        VMSTATE_UINT64(iq, IntelIOMMUState),
2977        VMSTATE_UINT32(intr_size, IntelIOMMUState),
2978        VMSTATE_UINT16(iq_head, IntelIOMMUState),
2979        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2980        VMSTATE_UINT16(iq_size, IntelIOMMUState),
2981        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2982        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2983        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2984        VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
2985        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2986        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2987        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2988        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2989        VMSTATE_END_OF_LIST()
2990    }
2991};
2992
2993static const MemoryRegionOps vtd_mem_ops = {
2994    .read = vtd_mem_read,
2995    .write = vtd_mem_write,
2996    .endianness = DEVICE_LITTLE_ENDIAN,
2997    .impl = {
2998        .min_access_size = 4,
2999        .max_access_size = 8,
3000    },
3001    .valid = {
3002        .min_access_size = 4,
3003        .max_access_size = 8,
3004    },
3005};
3006
3007static Property vtd_properties[] = {
3008    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3009    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3010                            ON_OFF_AUTO_AUTO),
3011    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3012    DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3013                      VTD_HOST_ADDRESS_WIDTH),
3014    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3015    DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3016    DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3017    DEFINE_PROP_END_OF_LIST(),
3018};
3019
3020/* Read IRTE entry with specific index */
3021static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3022                        VTD_IR_TableEntry *entry, uint16_t sid)
3023{
3024    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3025        {0xffff, 0xfffb, 0xfff9, 0xfff8};
3026    dma_addr_t addr = 0x00;
3027    uint16_t mask, source_id;
3028    uint8_t bus, bus_max, bus_min;
3029
3030    addr = iommu->intr_root + index * sizeof(*entry);
3031    if (dma_memory_read(&address_space_memory, addr, entry,
3032                        sizeof(*entry))) {
3033        error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3034                          __func__, index, addr);
3035        return -VTD_FR_IR_ROOT_INVAL;
3036    }
3037
3038    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3039                          le64_to_cpu(entry->data[0]));
3040
3041    if (!entry->irte.present) {
3042        error_report_once("%s: detected non-present IRTE "
3043                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3044                          __func__, index, le64_to_cpu(entry->data[1]),
3045                          le64_to_cpu(entry->data[0]));
3046        return -VTD_FR_IR_ENTRY_P;
3047    }
3048
3049    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3050        entry->irte.__reserved_2) {
3051        error_report_once("%s: detected non-zero reserved IRTE "
3052                          "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3053                          __func__, index, le64_to_cpu(entry->data[1]),
3054                          le64_to_cpu(entry->data[0]));
3055        return -VTD_FR_IR_IRTE_RSVD;
3056    }
3057
3058    if (sid != X86_IOMMU_SID_INVALID) {
3059        /* Validate IRTE SID */
3060        source_id = le32_to_cpu(entry->irte.source_id);
3061        switch (entry->irte.sid_vtype) {
3062        case VTD_SVT_NONE:
3063            break;
3064
3065        case VTD_SVT_ALL:
3066            mask = vtd_svt_mask[entry->irte.sid_q];
3067            if ((source_id & mask) != (sid & mask)) {
3068                error_report_once("%s: invalid IRTE SID "
3069                                  "(index=%u, sid=%u, source_id=%u)",
3070                                  __func__, index, sid, source_id);
3071                return -VTD_FR_IR_SID_ERR;
3072            }
3073            break;
3074
3075        case VTD_SVT_BUS:
3076            bus_max = source_id >> 8;
3077            bus_min = source_id & 0xff;
3078            bus = sid >> 8;
3079            if (bus > bus_max || bus < bus_min) {
3080                error_report_once("%s: invalid SVT_BUS "
3081                                  "(index=%u, bus=%u, min=%u, max=%u)",
3082                                  __func__, index, bus, bus_min, bus_max);
3083                return -VTD_FR_IR_SID_ERR;
3084            }
3085            break;
3086
3087        default:
3088            error_report_once("%s: detected invalid IRTE SVT "
3089                              "(index=%u, type=%d)", __func__,
3090                              index, entry->irte.sid_vtype);
3091            /* Take this as verification failure. */
3092            return -VTD_FR_IR_SID_ERR;
3093            break;
3094        }
3095    }
3096
3097    return 0;
3098}
3099
3100/* Fetch IRQ information of specific IR index */
3101static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3102                             X86IOMMUIrq *irq, uint16_t sid)
3103{
3104    VTD_IR_TableEntry irte = {};
3105    int ret = 0;
3106
3107    ret = vtd_irte_get(iommu, index, &irte, sid);
3108    if (ret) {
3109        return ret;
3110    }
3111
3112    irq->trigger_mode = irte.irte.trigger_mode;
3113    irq->vector = irte.irte.vector;
3114    irq->delivery_mode = irte.irte.delivery_mode;
3115    irq->dest = le32_to_cpu(irte.irte.dest_id);
3116    if (!iommu->intr_eime) {
3117#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3118#define  VTD_IR_APIC_DEST_SHIFT        (8)
3119        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3120            VTD_IR_APIC_DEST_SHIFT;
3121    }
3122    irq->dest_mode = irte.irte.dest_mode;
3123    irq->redir_hint = irte.irte.redir_hint;
3124
3125    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3126                       irq->delivery_mode, irq->dest, irq->dest_mode);
3127
3128    return 0;
3129}
3130
3131/* Interrupt remapping for MSI/MSI-X entry */
3132static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3133                                   MSIMessage *origin,
3134                                   MSIMessage *translated,
3135                                   uint16_t sid)
3136{
3137    int ret = 0;
3138    VTD_IR_MSIAddress addr;
3139    uint16_t index;
3140    X86IOMMUIrq irq = {};
3141
3142    assert(origin && translated);
3143
3144    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3145
3146    if (!iommu || !iommu->intr_enabled) {
3147        memcpy(translated, origin, sizeof(*origin));
3148        goto out;
3149    }
3150
3151    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3152        error_report_once("%s: MSI address high 32 bits non-zero detected: "
3153                          "address=0x%" PRIx64, __func__, origin->address);
3154        return -VTD_FR_IR_REQ_RSVD;
3155    }
3156
3157    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3158    if (addr.addr.__head != 0xfee) {
3159        error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3160                          __func__, addr.data);
3161        return -VTD_FR_IR_REQ_RSVD;
3162    }
3163
3164    /* This is compatible mode. */
3165    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3166        memcpy(translated, origin, sizeof(*origin));
3167        goto out;
3168    }
3169
3170    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3171
3172#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3173#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3174
3175    if (addr.addr.sub_valid) {
3176        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3177        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3178    }
3179
3180    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3181    if (ret) {
3182        return ret;
3183    }
3184
3185    if (addr.addr.sub_valid) {
3186        trace_vtd_ir_remap_type("MSI");
3187        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3188            error_report_once("%s: invalid IR MSI "
3189                              "(sid=%u, address=0x%" PRIx64
3190                              ", data=0x%" PRIx32 ")",
3191                              __func__, sid, origin->address, origin->data);
3192            return -VTD_FR_IR_REQ_RSVD;
3193        }
3194    } else {
3195        uint8_t vector = origin->data & 0xff;
3196        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3197
3198        trace_vtd_ir_remap_type("IOAPIC");
3199        /* IOAPIC entry vector should be aligned with IRTE vector
3200         * (see vt-d spec 5.1.5.1). */
3201        if (vector != irq.vector) {
3202            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3203        }
3204
3205        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3206         * (see vt-d spec 5.1.5.1). */
3207        if (trigger_mode != irq.trigger_mode) {
3208            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3209                                      irq.trigger_mode);
3210        }
3211    }
3212
3213    /*
3214     * We'd better keep the last two bits, assuming that guest OS
3215     * might modify it. Keep it does not hurt after all.
3216     */
3217    irq.msi_addr_last_bits = addr.addr.__not_care;
3218
3219    /* Translate X86IOMMUIrq to MSI message */
3220    x86_iommu_irq_to_msi_message(&irq, translated);
3221
3222out:
3223    trace_vtd_ir_remap_msi(origin->address, origin->data,
3224                           translated->address, translated->data);
3225    return 0;
3226}
3227
3228static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3229                         MSIMessage *dst, uint16_t sid)
3230{
3231    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3232                                   src, dst, sid);
3233}
3234
3235static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3236                                   uint64_t *data, unsigned size,
3237                                   MemTxAttrs attrs)
3238{
3239    return MEMTX_OK;
3240}
3241
3242static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3243                                    uint64_t value, unsigned size,
3244                                    MemTxAttrs attrs)
3245{
3246    int ret = 0;
3247    MSIMessage from = {}, to = {};
3248    uint16_t sid = X86_IOMMU_SID_INVALID;
3249
3250    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3251    from.data = (uint32_t) value;
3252
3253    if (!attrs.unspecified) {
3254        /* We have explicit Source ID */
3255        sid = attrs.requester_id;
3256    }
3257
3258    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3259    if (ret) {
3260        /* TODO: report error */
3261        /* Drop this interrupt */
3262        return MEMTX_ERROR;
3263    }
3264
3265    apic_get_class()->send_msi(&to);
3266
3267    return MEMTX_OK;
3268}
3269
3270static const MemoryRegionOps vtd_mem_ir_ops = {
3271    .read_with_attrs = vtd_mem_ir_read,
3272    .write_with_attrs = vtd_mem_ir_write,
3273    .endianness = DEVICE_LITTLE_ENDIAN,
3274    .impl = {
3275        .min_access_size = 4,
3276        .max_access_size = 4,
3277    },
3278    .valid = {
3279        .min_access_size = 4,
3280        .max_access_size = 4,
3281    },
3282};
3283
3284VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3285{
3286    uintptr_t key = (uintptr_t)bus;
3287    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3288    VTDAddressSpace *vtd_dev_as;
3289    char name[128];
3290
3291    if (!vtd_bus) {
3292        uintptr_t *new_key = g_malloc(sizeof(*new_key));
3293        *new_key = (uintptr_t)bus;
3294        /* No corresponding free() */
3295        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3296                            PCI_DEVFN_MAX);
3297        vtd_bus->bus = bus;
3298        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3299    }
3300
3301    vtd_dev_as = vtd_bus->dev_as[devfn];
3302
3303    if (!vtd_dev_as) {
3304        snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3305                 PCI_FUNC(devfn));
3306        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3307
3308        vtd_dev_as->bus = bus;
3309        vtd_dev_as->devfn = (uint8_t)devfn;
3310        vtd_dev_as->iommu_state = s;
3311        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3312        vtd_dev_as->iova_tree = iova_tree_new();
3313
3314        memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3315        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3316
3317        /*
3318         * Build the DMAR-disabled container with aliases to the
3319         * shared MRs.  Note that aliasing to a shared memory region
3320         * could help the memory API to detect same FlatViews so we
3321         * can have devices to share the same FlatView when DMAR is
3322         * disabled (either by not providing "intel_iommu=on" or with
3323         * "iommu=pt").  It will greatly reduce the total number of
3324         * FlatViews of the system hence VM runs faster.
3325         */
3326        memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3327                                 "vtd-nodmar", &s->mr_nodmar, 0,
3328                                 memory_region_size(&s->mr_nodmar));
3329
3330        /*
3331         * Build the per-device DMAR-enabled container.
3332         *
3333         * TODO: currently we have per-device IOMMU memory region only
3334         * because we have per-device IOMMU notifiers for devices.  If
3335         * one day we can abstract the IOMMU notifiers out of the
3336         * memory regions then we can also share the same memory
3337         * region here just like what we've done above with the nodmar
3338         * region.
3339         */
3340        strcat(name, "-dmar");
3341        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3342                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3343                                 name, UINT64_MAX);
3344        memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3345                                 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3346        memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3347                                            VTD_INTERRUPT_ADDR_FIRST,
3348                                            &vtd_dev_as->iommu_ir, 1);
3349
3350        /*
3351         * Hook both the containers under the root container, we
3352         * switch between DMAR & noDMAR by enable/disable
3353         * corresponding sub-containers
3354         */
3355        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3356                                            MEMORY_REGION(&vtd_dev_as->iommu),
3357                                            0);
3358        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3359                                            &vtd_dev_as->nodmar, 0);
3360
3361        vtd_switch_address_space(vtd_dev_as);
3362    }
3363    return vtd_dev_as;
3364}
3365
3366static uint64_t get_naturally_aligned_size(uint64_t start,
3367                                           uint64_t size, int gaw)
3368{
3369    uint64_t max_mask = 1ULL << gaw;
3370    uint64_t alignment = start ? start & -start : max_mask;
3371
3372    alignment = MIN(alignment, max_mask);
3373    size = MIN(size, max_mask);
3374
3375    if (alignment <= size) {
3376        /* Increase the alignment of start */
3377        return alignment;
3378    } else {
3379        /* Find the largest page mask from size */
3380        return 1ULL << (63 - clz64(size));
3381    }
3382}
3383
3384/* Unmap the whole range in the notifier's scope. */
3385static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3386{
3387    hwaddr size, remain;
3388    hwaddr start = n->start;
3389    hwaddr end = n->end;
3390    IntelIOMMUState *s = as->iommu_state;
3391    DMAMap map;
3392
3393    /*
3394     * Note: all the codes in this function has a assumption that IOVA
3395     * bits are no more than VTD_MGAW bits (which is restricted by
3396     * VT-d spec), otherwise we need to consider overflow of 64 bits.
3397     */
3398
3399    if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3400        /*
3401         * Don't need to unmap regions that is bigger than the whole
3402         * VT-d supported address space size
3403         */
3404        end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3405    }
3406
3407    assert(start <= end);
3408    size = remain = end - start + 1;
3409
3410    while (remain >= VTD_PAGE_SIZE) {
3411        IOMMUTLBEntry entry;
3412        uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3413
3414        assert(mask);
3415
3416        entry.iova = start;
3417        entry.addr_mask = mask - 1;
3418        entry.target_as = &address_space_memory;
3419        entry.perm = IOMMU_NONE;
3420        /* This field is meaningless for unmap */
3421        entry.translated_addr = 0;
3422
3423        memory_region_notify_one(n, &entry);
3424
3425        start += mask;
3426        remain -= mask;
3427    }
3428
3429    assert(!remain);
3430
3431    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3432                             VTD_PCI_SLOT(as->devfn),
3433                             VTD_PCI_FUNC(as->devfn),
3434                             n->start, size);
3435
3436    map.iova = n->start;
3437    map.size = size;
3438    iova_tree_remove(as->iova_tree, &map);
3439}
3440
3441static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3442{
3443    VTDAddressSpace *vtd_as;
3444    IOMMUNotifier *n;
3445
3446    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3447        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3448            vtd_address_space_unmap(vtd_as, n);
3449        }
3450    }
3451}
3452
3453static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3454{
3455    vtd_address_space_unmap_all(s);
3456    vtd_switch_address_space_all(s);
3457}
3458
3459static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3460{
3461    memory_region_notify_one((IOMMUNotifier *)private, entry);
3462    return 0;
3463}
3464
3465static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3466{
3467    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3468    IntelIOMMUState *s = vtd_as->iommu_state;
3469    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3470    VTDContextEntry ce;
3471
3472    /*
3473     * The replay can be triggered by either a invalidation or a newly
3474     * created entry. No matter what, we release existing mappings
3475     * (it means flushing caches for UNMAP-only registers).
3476     */
3477    vtd_address_space_unmap(vtd_as, n);
3478
3479    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3480        trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3481                                  "legacy mode",
3482                                  bus_n, PCI_SLOT(vtd_as->devfn),
3483                                  PCI_FUNC(vtd_as->devfn),
3484                                  vtd_get_domain_id(s, &ce),
3485                                  ce.hi, ce.lo);
3486        if (vtd_as_has_map_notifier(vtd_as)) {
3487            /* This is required only for MAP typed notifiers */
3488            vtd_page_walk_info info = {
3489                .hook_fn = vtd_replay_hook,
3490                .private = (void *)n,
3491                .notify_unmap = false,
3492                .aw = s->aw_bits,
3493                .as = vtd_as,
3494                .domain_id = vtd_get_domain_id(s, &ce),
3495            };
3496
3497            vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3498        }
3499    } else {
3500        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3501                                    PCI_FUNC(vtd_as->devfn));
3502    }
3503
3504    return;
3505}
3506
3507/* Do the initialization. It will also be called when reset, so pay
3508 * attention when adding new initialization stuff.
3509 */
3510static void vtd_init(IntelIOMMUState *s)
3511{
3512    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3513
3514    memset(s->csr, 0, DMAR_REG_SIZE);
3515    memset(s->wmask, 0, DMAR_REG_SIZE);
3516    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3517    memset(s->womask, 0, DMAR_REG_SIZE);
3518
3519    s->root = 0;
3520    s->root_scalable = false;
3521    s->dmar_enabled = false;
3522    s->intr_enabled = false;
3523    s->iq_head = 0;
3524    s->iq_tail = 0;
3525    s->iq = 0;
3526    s->iq_size = 0;
3527    s->qi_enabled = false;
3528    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3529    s->iq_dw = false;
3530    s->next_frcd_reg = 0;
3531    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3532             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3533             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3534    if (s->dma_drain) {
3535        s->cap |= VTD_CAP_DRAIN;
3536    }
3537    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3538        s->cap |= VTD_CAP_SAGAW_48bit;
3539    }
3540    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3541
3542    /*
3543     * Rsvd field masks for spte
3544     */
3545    vtd_paging_entry_rsvd_field[0] = ~0ULL;
3546    vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3547    vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3548    vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3549    vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3550    vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3551    vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3552    vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3553    vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3554
3555    if (x86_iommu_ir_supported(x86_iommu)) {
3556        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3557        if (s->intr_eim == ON_OFF_AUTO_ON) {
3558            s->ecap |= VTD_ECAP_EIM;
3559        }
3560        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3561    }
3562
3563    if (x86_iommu->dt_supported) {
3564        s->ecap |= VTD_ECAP_DT;
3565    }
3566
3567    if (x86_iommu->pt_supported) {
3568        s->ecap |= VTD_ECAP_PT;
3569    }
3570
3571    if (s->caching_mode) {
3572        s->cap |= VTD_CAP_CM;
3573    }
3574
3575    /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3576    if (s->scalable_mode) {
3577        s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3578    }
3579
3580    vtd_reset_caches(s);
3581
3582    /* Define registers with default values and bit semantics */
3583    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3584    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3585    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3586    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3587    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3588    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3589    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3590    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3591    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3592
3593    /* Advanced Fault Logging not supported */
3594    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3595    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3596    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3597    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3598
3599    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3600     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3601     */
3602    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3603
3604    /* Treated as RO for implementations that PLMR and PHMR fields reported
3605     * as Clear in the CAP_REG.
3606     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3607     */
3608    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3609
3610    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3611    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3612    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3613    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3614    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3615    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3616    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3617    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3618    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3619
3620    /* IOTLB registers */
3621    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3622    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3623    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3624
3625    /* Fault Recording Registers, 128-bit */
3626    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3627    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3628
3629    /*
3630     * Interrupt remapping registers.
3631     */
3632    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3633}
3634
3635/* Should not reset address_spaces when reset because devices will still use
3636 * the address space they got at first (won't ask the bus again).
3637 */
3638static void vtd_reset(DeviceState *dev)
3639{
3640    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3641
3642    vtd_init(s);
3643    vtd_address_space_refresh_all(s);
3644}
3645
3646static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3647{
3648    IntelIOMMUState *s = opaque;
3649    VTDAddressSpace *vtd_as;
3650
3651    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3652
3653    vtd_as = vtd_find_add_as(s, bus, devfn);
3654    return &vtd_as->as;
3655}
3656
3657static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3658{
3659    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3660
3661    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3662        error_setg(errp, "eim=on cannot be selected without intremap=on");
3663        return false;
3664    }
3665
3666    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3667        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3668                      && x86_iommu_ir_supported(x86_iommu) ?
3669                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3670    }
3671    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3672        if (!kvm_irqchip_in_kernel()) {
3673            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3674            return false;
3675        }
3676        if (!kvm_enable_x2apic()) {
3677            error_setg(errp, "eim=on requires support on the KVM side"
3678                             "(X2APIC_API, first shipped in v4.7)");
3679            return false;
3680        }
3681    }
3682
3683    /* Currently only address widths supported are 39 and 48 bits */
3684    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3685        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3686        error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3687                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3688        return false;
3689    }
3690
3691    if (s->scalable_mode && !s->dma_drain) {
3692        error_setg(errp, "Need to set dma_drain for scalable mode");
3693        return false;
3694    }
3695
3696    return true;
3697}
3698
3699static void vtd_realize(DeviceState *dev, Error **errp)
3700{
3701    MachineState *ms = MACHINE(qdev_get_machine());
3702    PCMachineState *pcms = PC_MACHINE(ms);
3703    PCIBus *bus = pcms->bus;
3704    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3705    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3706
3707    x86_iommu->type = TYPE_INTEL;
3708
3709    if (!vtd_decide_config(s, errp)) {
3710        return;
3711    }
3712
3713    QLIST_INIT(&s->vtd_as_with_notifiers);
3714    qemu_mutex_init(&s->iommu_lock);
3715    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3716    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3717                          "intel_iommu", DMAR_REG_SIZE);
3718
3719    /* Create the shared memory regions by all devices */
3720    memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3721                       UINT64_MAX);
3722    memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3723                          s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3724    memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3725                             "vtd-sys-alias", get_system_memory(), 0,
3726                             memory_region_size(get_system_memory()));
3727    memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3728                                        &s->mr_sys_alias, 0);
3729    memory_region_add_subregion_overlap(&s->mr_nodmar,
3730                                        VTD_INTERRUPT_ADDR_FIRST,
3731                                        &s->mr_ir, 1);
3732
3733    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3734    /* No corresponding destroy */
3735    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3736                                     g_free, g_free);
3737    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3738                                              g_free, g_free);
3739    vtd_init(s);
3740    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3741    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3742    /* Pseudo address space under root PCI bus. */
3743    pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3744}
3745
3746static void vtd_class_init(ObjectClass *klass, void *data)
3747{
3748    DeviceClass *dc = DEVICE_CLASS(klass);
3749    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3750
3751    dc->reset = vtd_reset;
3752    dc->vmsd = &vtd_vmstate;
3753    dc->props = vtd_properties;
3754    dc->hotpluggable = false;
3755    x86_class->realize = vtd_realize;
3756    x86_class->int_remap = vtd_int_remap;
3757    /* Supported by the pc-q35-* machine types */
3758    dc->user_creatable = true;
3759    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3760    dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3761}
3762
3763static const TypeInfo vtd_info = {
3764    .name          = TYPE_INTEL_IOMMU_DEVICE,
3765    .parent        = TYPE_X86_IOMMU_DEVICE,
3766    .instance_size = sizeof(IntelIOMMUState),
3767    .class_init    = vtd_class_init,
3768};
3769
3770static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3771                                                     void *data)
3772{
3773    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3774
3775    imrc->translate = vtd_iommu_translate;
3776    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3777    imrc->replay = vtd_iommu_replay;
3778}
3779
3780static const TypeInfo vtd_iommu_memory_region_info = {
3781    .parent = TYPE_IOMMU_MEMORY_REGION,
3782    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3783    .class_init = vtd_iommu_memory_region_class_init,
3784};
3785
3786static void vtd_register_types(void)
3787{
3788    type_register_static(&vtd_info);
3789    type_register_static(&vtd_iommu_memory_region_info);
3790}
3791
3792type_init(vtd_register_types)
3793