qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/bitops.h"
  17#include "qemu/main-loop.h"
  18#include "trace.h"
  19#include "gicv3_internal.h"
  20#include "cpu.h"
  21
  22void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
  23{
  24    ARMCPU *arm_cpu = ARM_CPU(cpu);
  25    CPUARMState *env = &arm_cpu->env;
  26
  27    env->gicv3state = (void *)s;
  28};
  29
  30static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  31{
  32    return env->gicv3state;
  33}
  34
  35static bool gicv3_use_ns_bank(CPUARMState *env)
  36{
  37    /* Return true if we should use the NonSecure bank for a banked GIC
  38     * CPU interface register. Note that this differs from the
  39     * access_secure_reg() function because GICv3 banked registers are
  40     * banked even for AArch64, unlike the other CPU system registers.
  41     */
  42    return !arm_is_secure_below_el3(env);
  43}
  44
  45/* The minimum BPR for the virtual interface is a configurable property */
  46static inline int icv_min_vbpr(GICv3CPUState *cs)
  47{
  48    return 7 - cs->vprebits;
  49}
  50
  51/* Simple accessor functions for LR fields */
  52static uint32_t ich_lr_vintid(uint64_t lr)
  53{
  54    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
  55}
  56
  57static uint32_t ich_lr_pintid(uint64_t lr)
  58{
  59    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
  60}
  61
  62static uint32_t ich_lr_prio(uint64_t lr)
  63{
  64    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
  65}
  66
  67static int ich_lr_state(uint64_t lr)
  68{
  69    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
  70}
  71
  72static bool icv_access(CPUARMState *env, int hcr_flags)
  73{
  74    /* Return true if this ICC_ register access should really be
  75     * directed to an ICV_ access. hcr_flags is a mask of
  76     * HCR_EL2 bits to check: we treat this as an ICV_ access
  77     * if we are in NS EL1 and at least one of the specified
  78     * HCR_EL2 bits is set.
  79     *
  80     * ICV registers fall into four categories:
  81     *  * access if NS EL1 and HCR_EL2.FMO == 1:
  82     *    all ICV regs with '0' in their name
  83     *  * access if NS EL1 and HCR_EL2.IMO == 1:
  84     *    all ICV regs with '1' in their name
  85     *  * access if NS EL1 and either IMO or FMO == 1:
  86     *    CTLR, DIR, PMR, RPR
  87     */
  88    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
  89    bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
  90
  91    return flagmatch && arm_current_el(env) == 1
  92        && !arm_is_secure_below_el3(env);
  93}
  94
  95static int read_vbpr(GICv3CPUState *cs, int grp)
  96{
  97    /* Read VBPR value out of the VMCR field (caller must handle
  98     * VCBPR effects if required)
  99     */
 100    if (grp == GICV3_G0) {
 101        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 102                     ICH_VMCR_EL2_VBPR0_LENGTH);
 103    } else {
 104        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 105                         ICH_VMCR_EL2_VBPR1_LENGTH);
 106    }
 107}
 108
 109static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 110{
 111    /* Write new VBPR1 value, handling the "writing a value less than
 112     * the minimum sets it to the minimum" semantics.
 113     */
 114    int min = icv_min_vbpr(cs);
 115
 116    if (grp != GICV3_G0) {
 117        min++;
 118    }
 119
 120    value = MAX(value, min);
 121
 122    if (grp == GICV3_G0) {
 123        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 124                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
 125    } else {
 126        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 127                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
 128    }
 129}
 130
 131static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 132{
 133    /* Return a mask word which clears the unimplemented priority bits
 134     * from a priority value for a virtual interrupt. (Not to be confused
 135     * with the group priority, whose mask depends on the value of VBPR
 136     * for the interrupt group.)
 137     */
 138    return ~0U << (8 - cs->vpribits);
 139}
 140
 141static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 142{
 143    /* Calculate the current running priority based on the set bits
 144     * in the ICH Active Priority Registers.
 145     */
 146    int i;
 147    int aprmax = 1 << (cs->vprebits - 5);
 148
 149    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
 150
 151    for (i = 0; i < aprmax; i++) {
 152        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 153            cs->ich_apr[GICV3_G1NS][i];
 154
 155        if (!apr) {
 156            continue;
 157        }
 158        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 159    }
 160    /* No current active interrupts: return idle priority */
 161    return 0xff;
 162}
 163
 164static int hppvi_index(GICv3CPUState *cs)
 165{
 166    /* Return the list register index of the highest priority pending
 167     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 168     * pseudocode. If no pending virtual interrupts, return -1.
 169     */
 170    int idx = -1;
 171    int i;
 172    /* Note that a list register entry with a priority of 0xff will
 173     * never be reported by this function; this is the architecturally
 174     * correct behaviour.
 175     */
 176    int prio = 0xff;
 177
 178    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 179        /* Both groups disabled, definitely nothing to do */
 180        return idx;
 181    }
 182
 183    for (i = 0; i < cs->num_list_regs; i++) {
 184        uint64_t lr = cs->ich_lr_el2[i];
 185        int thisprio;
 186
 187        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 188            /* Not Pending */
 189            continue;
 190        }
 191
 192        /* Ignore interrupts if relevant group enable not set */
 193        if (lr & ICH_LR_EL2_GROUP) {
 194            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 195                continue;
 196            }
 197        } else {
 198            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 199                continue;
 200            }
 201        }
 202
 203        thisprio = ich_lr_prio(lr);
 204
 205        if (thisprio < prio) {
 206            prio = thisprio;
 207            idx = i;
 208        }
 209    }
 210
 211    return idx;
 212}
 213
 214static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 215{
 216    /* Return a mask word which clears the subpriority bits from
 217     * a priority value for a virtual interrupt in the specified group.
 218     * This depends on the VBPR value.
 219     * If using VBPR0 then:
 220     *  a BPR of 0 means the group priority bits are [7:1];
 221     *  a BPR of 1 means they are [7:2], and so on down to
 222     *  a BPR of 7 meaning no group priority bits at all.
 223     * If using VBPR1 then:
 224     *  a BPR of 0 is impossible (the minimum value is 1)
 225     *  a BPR of 1 means the group priority bits are [7:1];
 226     *  a BPR of 2 means they are [7:2], and so on down to
 227     *  a BPR of 7 meaning the group priority is [7].
 228     *
 229     * Which BPR to use depends on the group of the interrupt and
 230     * the current ICH_VMCR_EL2.VCBPR settings.
 231     *
 232     * This corresponds to the VGroupBits() pseudocode.
 233     */
 234    int bpr;
 235
 236    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 237        group = GICV3_G0;
 238    }
 239
 240    bpr = read_vbpr(cs, group);
 241    if (group == GICV3_G1NS) {
 242        assert(bpr > 0);
 243        bpr--;
 244    }
 245
 246    return ~0U << (bpr + 1);
 247}
 248
 249static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 250{
 251    /* Return true if we can signal this virtual interrupt defined by
 252     * the given list register value; see the pseudocode functions
 253     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 254     * Compare also icc_hppi_can_preempt() which is the non-virtual
 255     * equivalent of these checks.
 256     */
 257    int grp;
 258    uint32_t mask, prio, rprio, vpmr;
 259
 260    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 261        /* Virtual interface disabled */
 262        return false;
 263    }
 264
 265    /* We don't need to check that this LR is in Pending state because
 266     * that has already been done in hppvi_index().
 267     */
 268
 269    prio = ich_lr_prio(lr);
 270    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 271                     ICH_VMCR_EL2_VPMR_LENGTH);
 272
 273    if (prio >= vpmr) {
 274        /* Priority mask masks this interrupt */
 275        return false;
 276    }
 277
 278    rprio = ich_highest_active_virt_prio(cs);
 279    if (rprio == 0xff) {
 280        /* No running interrupt so we can preempt */
 281        return true;
 282    }
 283
 284    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 285
 286    mask = icv_gprio_mask(cs, grp);
 287
 288    /* We only preempt a running interrupt if the pending interrupt's
 289     * group priority is sufficient (the subpriorities are not considered).
 290     */
 291    if ((prio & mask) < (rprio & mask)) {
 292        return true;
 293    }
 294
 295    return false;
 296}
 297
 298static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 299                                                uint32_t *misr)
 300{
 301    /* Return a set of bits indicating the EOI maintenance interrupt status
 302     * for each list register. The EOI maintenance interrupt status is
 303     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 304     * (see the GICv3 spec for the ICH_EISR_EL2 register).
 305     * If misr is not NULL then we should also collect the information
 306     * about the MISR.EOI, MISR.NP and MISR.U bits.
 307     */
 308    uint32_t value = 0;
 309    int validcount = 0;
 310    bool seenpending = false;
 311    int i;
 312
 313    for (i = 0; i < cs->num_list_regs; i++) {
 314        uint64_t lr = cs->ich_lr_el2[i];
 315
 316        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 317            == ICH_LR_EL2_EOI) {
 318            value |= (1 << i);
 319        }
 320        if ((lr & ICH_LR_EL2_STATE_MASK)) {
 321            validcount++;
 322        }
 323        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 324            seenpending = true;
 325        }
 326    }
 327
 328    if (misr) {
 329        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 330            *misr |= ICH_MISR_EL2_U;
 331        }
 332        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 333            *misr |= ICH_MISR_EL2_NP;
 334        }
 335        if (value) {
 336            *misr |= ICH_MISR_EL2_EOI;
 337        }
 338    }
 339    return value;
 340}
 341
 342static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 343{
 344    /* Return a set of bits indicating the maintenance interrupt status
 345     * (as seen in the ICH_MISR_EL2 register).
 346     */
 347    uint32_t value = 0;
 348
 349    /* Scan list registers and fill in the U, NP and EOI bits */
 350    eoi_maintenance_interrupt_state(cs, &value);
 351
 352    if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
 353        value |= ICH_MISR_EL2_LRENP;
 354    }
 355
 356    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 357        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 358        value |= ICH_MISR_EL2_VGRP0E;
 359    }
 360
 361    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 362        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 363        value |= ICH_MISR_EL2_VGRP0D;
 364    }
 365    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 366        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 367        value |= ICH_MISR_EL2_VGRP1E;
 368    }
 369
 370    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 371        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 372        value |= ICH_MISR_EL2_VGRP1D;
 373    }
 374
 375    return value;
 376}
 377
 378static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 379{
 380    /* Tell the CPU about any pending virtual interrupts or
 381     * maintenance interrupts, following a change to the state
 382     * of the CPU interface relevant to virtual interrupts.
 383     *
 384     * CAUTION: this function will call qemu_set_irq() on the
 385     * CPU maintenance IRQ line, which is typically wired up
 386     * to the GIC as a per-CPU interrupt. This means that it
 387     * will recursively call back into the GIC code via
 388     * gicv3_redist_set_irq() and thus into the CPU interface code's
 389     * gicv3_cpuif_update(). It is therefore important that this
 390     * function is only called as the final action of a CPU interface
 391     * register write implementation, after all the GIC state
 392     * fields have been updated. gicv3_cpuif_update() also must
 393     * not cause this function to be called, but that happens
 394     * naturally as a result of there being no architectural
 395     * linkage between the physical and virtual GIC logic.
 396     */
 397    int idx;
 398    int irqlevel = 0;
 399    int fiqlevel = 0;
 400    int maintlevel = 0;
 401
 402    idx = hppvi_index(cs);
 403    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
 404    if (idx >= 0) {
 405        uint64_t lr = cs->ich_lr_el2[idx];
 406
 407        if (icv_hppi_can_preempt(cs, lr)) {
 408            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 409            if (lr & ICH_LR_EL2_GROUP) {
 410                irqlevel = 1;
 411            } else {
 412                fiqlevel = 1;
 413            }
 414        }
 415    }
 416
 417    if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
 418        maintlevel = maintenance_interrupt_state(cs);
 419    }
 420
 421    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
 422                                    irqlevel, maintlevel);
 423
 424    qemu_set_irq(cs->parent_vfiq, fiqlevel);
 425    qemu_set_irq(cs->parent_virq, irqlevel);
 426    qemu_set_irq(cs->maintenance_irq, maintlevel);
 427}
 428
 429static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 430{
 431    GICv3CPUState *cs = icc_cs_from_env(env);
 432    int regno = ri->opc2 & 3;
 433    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 434    uint64_t value = cs->ich_apr[grp][regno];
 435
 436    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 437    return value;
 438}
 439
 440static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 441                         uint64_t value)
 442{
 443    GICv3CPUState *cs = icc_cs_from_env(env);
 444    int regno = ri->opc2 & 3;
 445    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 446
 447    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 448
 449    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 450
 451    gicv3_cpuif_virt_update(cs);
 452    return;
 453}
 454
 455static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 456{
 457    GICv3CPUState *cs = icc_cs_from_env(env);
 458    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 459    uint64_t bpr;
 460    bool satinc = false;
 461
 462    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 463        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 464        grp = GICV3_G0;
 465        satinc = true;
 466    }
 467
 468    bpr = read_vbpr(cs, grp);
 469
 470    if (satinc) {
 471        bpr++;
 472        bpr = MIN(bpr, 7);
 473    }
 474
 475    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 476
 477    return bpr;
 478}
 479
 480static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 481                          uint64_t value)
 482{
 483    GICv3CPUState *cs = icc_cs_from_env(env);
 484    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 485
 486    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 487                              gicv3_redist_affid(cs), value);
 488
 489    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 490        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 491        return;
 492    }
 493
 494    write_vbpr(cs, grp, value);
 495
 496    gicv3_cpuif_virt_update(cs);
 497}
 498
 499static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 500{
 501    GICv3CPUState *cs = icc_cs_from_env(env);
 502    uint64_t value;
 503
 504    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 505                      ICH_VMCR_EL2_VPMR_LENGTH);
 506
 507    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 508    return value;
 509}
 510
 511static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 512                          uint64_t value)
 513{
 514    GICv3CPUState *cs = icc_cs_from_env(env);
 515
 516    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 517
 518    value &= icv_fullprio_mask(cs);
 519
 520    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 521                                 ICH_VMCR_EL2_VPMR_LENGTH, value);
 522
 523    gicv3_cpuif_virt_update(cs);
 524}
 525
 526static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 527{
 528    GICv3CPUState *cs = icc_cs_from_env(env);
 529    int enbit;
 530    uint64_t value;
 531
 532    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 533    value = extract64(cs->ich_vmcr_el2, enbit, 1);
 534
 535    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 536                                gicv3_redist_affid(cs), value);
 537    return value;
 538}
 539
 540static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 541                             uint64_t value)
 542{
 543    GICv3CPUState *cs = icc_cs_from_env(env);
 544    int enbit;
 545
 546    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 547                                 gicv3_redist_affid(cs), value);
 548
 549    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 550
 551    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 552    gicv3_cpuif_virt_update(cs);
 553}
 554
 555static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 556{
 557    GICv3CPUState *cs = icc_cs_from_env(env);
 558    uint64_t value;
 559
 560    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 561     * should match the ones reported in ich_vtr_read().
 562     */
 563    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 564        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
 565
 566    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 567        value |= ICC_CTLR_EL1_EOIMODE;
 568    }
 569
 570    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 571        value |= ICC_CTLR_EL1_CBPR;
 572    }
 573
 574    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 575    return value;
 576}
 577
 578static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 579                               uint64_t value)
 580{
 581    GICv3CPUState *cs = icc_cs_from_env(env);
 582
 583    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 584
 585    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 586                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 587    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 588                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 589
 590    gicv3_cpuif_virt_update(cs);
 591}
 592
 593static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 594{
 595    GICv3CPUState *cs = icc_cs_from_env(env);
 596    int prio = ich_highest_active_virt_prio(cs);
 597
 598    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 599    return prio;
 600}
 601
 602static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 603{
 604    GICv3CPUState *cs = icc_cs_from_env(env);
 605    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 606    int idx = hppvi_index(cs);
 607    uint64_t value = INTID_SPURIOUS;
 608
 609    if (idx >= 0) {
 610        uint64_t lr = cs->ich_lr_el2[idx];
 611        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 612
 613        if (grp == thisgrp) {
 614            value = ich_lr_vintid(lr);
 615        }
 616    }
 617
 618    trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
 619    return value;
 620}
 621
 622static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 623{
 624    /* Activate the interrupt in the specified list register
 625     * by moving it from Pending to Active state, and update the
 626     * Active Priority Registers.
 627     */
 628    uint32_t mask = icv_gprio_mask(cs, grp);
 629    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 630    int aprbit = prio >> (8 - cs->vprebits);
 631    int regno = aprbit / 32;
 632    int regbit = aprbit % 32;
 633
 634    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 635    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 636    cs->ich_apr[grp][regno] |= (1 << regbit);
 637}
 638
 639static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 640{
 641    GICv3CPUState *cs = icc_cs_from_env(env);
 642    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 643    int idx = hppvi_index(cs);
 644    uint64_t intid = INTID_SPURIOUS;
 645
 646    if (idx >= 0) {
 647        uint64_t lr = cs->ich_lr_el2[idx];
 648        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 649
 650        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 651            intid = ich_lr_vintid(lr);
 652            if (intid < INTID_SECURE) {
 653                icv_activate_irq(cs, idx, grp);
 654            } else {
 655                /* Interrupt goes from Pending to Invalid */
 656                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 657                /* We will now return the (bogus) ID from the list register,
 658                 * as per the pseudocode.
 659                 */
 660            }
 661        }
 662    }
 663
 664    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 665                             gicv3_redist_affid(cs), intid);
 666    return intid;
 667}
 668
 669static int icc_highest_active_prio(GICv3CPUState *cs)
 670{
 671    /* Calculate the current running priority based on the set bits
 672     * in the Active Priority Registers.
 673     */
 674    int i;
 675
 676    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 677        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 678            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 679
 680        if (!apr) {
 681            continue;
 682        }
 683        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 684    }
 685    /* No current active interrupts: return idle priority */
 686    return 0xff;
 687}
 688
 689static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 690{
 691    /* Return a mask word which clears the subpriority bits from
 692     * a priority value for an interrupt in the specified group.
 693     * This depends on the BPR value. For CBPR0 (S or NS):
 694     *  a BPR of 0 means the group priority bits are [7:1];
 695     *  a BPR of 1 means they are [7:2], and so on down to
 696     *  a BPR of 7 meaning no group priority bits at all.
 697     * For CBPR1 NS:
 698     *  a BPR of 0 is impossible (the minimum value is 1)
 699     *  a BPR of 1 means the group priority bits are [7:1];
 700     *  a BPR of 2 means they are [7:2], and so on down to
 701     *  a BPR of 7 meaning the group priority is [7].
 702     *
 703     * Which BPR to use depends on the group of the interrupt and
 704     * the current ICC_CTLR.CBPR settings.
 705     *
 706     * This corresponds to the GroupBits() pseudocode.
 707     */
 708    int bpr;
 709
 710    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 711        (group == GICV3_G1NS &&
 712         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 713        group = GICV3_G0;
 714    }
 715
 716    bpr = cs->icc_bpr[group] & 7;
 717
 718    if (group == GICV3_G1NS) {
 719        assert(bpr > 0);
 720        bpr--;
 721    }
 722
 723    return ~0U << (bpr + 1);
 724}
 725
 726static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 727{
 728    /* Return true if there is no pending interrupt, or the
 729     * highest priority pending interrupt is in a group which has been
 730     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 731     */
 732    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 733}
 734
 735static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 736{
 737    /* Return true if we have a pending interrupt of sufficient
 738     * priority to preempt.
 739     */
 740    int rprio;
 741    uint32_t mask;
 742
 743    if (icc_no_enabled_hppi(cs)) {
 744        return false;
 745    }
 746
 747    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 748        /* Priority mask masks this interrupt */
 749        return false;
 750    }
 751
 752    rprio = icc_highest_active_prio(cs);
 753    if (rprio == 0xff) {
 754        /* No currently running interrupt so we can preempt */
 755        return true;
 756    }
 757
 758    mask = icc_gprio_mask(cs, cs->hppi.grp);
 759
 760    /* We only preempt a running interrupt if the pending interrupt's
 761     * group priority is sufficient (the subpriorities are not considered).
 762     */
 763    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 764        return true;
 765    }
 766
 767    return false;
 768}
 769
 770void gicv3_cpuif_update(GICv3CPUState *cs)
 771{
 772    /* Tell the CPU about its highest priority pending interrupt */
 773    int irqlevel = 0;
 774    int fiqlevel = 0;
 775    ARMCPU *cpu = ARM_CPU(cs->cpu);
 776    CPUARMState *env = &cpu->env;
 777
 778    g_assert(qemu_mutex_iothread_locked());
 779
 780    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 781                             cs->hppi.grp, cs->hppi.prio);
 782
 783    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 784        /* If a Security-enabled GIC sends a G1S interrupt to a
 785         * Security-disabled CPU, we must treat it as if it were G0.
 786         */
 787        cs->hppi.grp = GICV3_G0;
 788    }
 789
 790    if (icc_hppi_can_preempt(cs)) {
 791        /* We have an interrupt: should we signal it as IRQ or FIQ?
 792         * This is described in the GICv3 spec section 4.6.2.
 793         */
 794        bool isfiq;
 795
 796        switch (cs->hppi.grp) {
 797        case GICV3_G0:
 798            isfiq = true;
 799            break;
 800        case GICV3_G1:
 801            isfiq = (!arm_is_secure(env) ||
 802                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 803            break;
 804        case GICV3_G1NS:
 805            isfiq = arm_is_secure(env);
 806            break;
 807        default:
 808            g_assert_not_reached();
 809        }
 810
 811        if (isfiq) {
 812            fiqlevel = 1;
 813        } else {
 814            irqlevel = 1;
 815        }
 816    }
 817
 818    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 819
 820    qemu_set_irq(cs->parent_fiq, fiqlevel);
 821    qemu_set_irq(cs->parent_irq, irqlevel);
 822}
 823
 824static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 825{
 826    GICv3CPUState *cs = icc_cs_from_env(env);
 827    uint32_t value = cs->icc_pmr_el1;
 828
 829    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 830        return icv_pmr_read(env, ri);
 831    }
 832
 833    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 834        (env->cp15.scr_el3 & SCR_FIQ)) {
 835        /* NS access and Group 0 is inaccessible to NS: return the
 836         * NS view of the current priority
 837         */
 838        if ((value & 0x80) == 0) {
 839            /* Secure priorities not visible to NS */
 840            value = 0;
 841        } else if (value != 0xff) {
 842            value = (value << 1) & 0xff;
 843        }
 844    }
 845
 846    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 847
 848    return value;
 849}
 850
 851static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 852                          uint64_t value)
 853{
 854    GICv3CPUState *cs = icc_cs_from_env(env);
 855
 856    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 857        return icv_pmr_write(env, ri, value);
 858    }
 859
 860    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 861
 862    value &= 0xff;
 863
 864    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 865        (env->cp15.scr_el3 & SCR_FIQ)) {
 866        /* NS access and Group 0 is inaccessible to NS: return the
 867         * NS view of the current priority
 868         */
 869        if (!(cs->icc_pmr_el1 & 0x80)) {
 870            /* Current PMR in the secure range, don't allow NS to change it */
 871            return;
 872        }
 873        value = (value >> 1) | 0x80;
 874    }
 875    cs->icc_pmr_el1 = value;
 876    gicv3_cpuif_update(cs);
 877}
 878
 879static void icc_activate_irq(GICv3CPUState *cs, int irq)
 880{
 881    /* Move the interrupt from the Pending state to Active, and update
 882     * the Active Priority Registers
 883     */
 884    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 885    int prio = cs->hppi.prio & mask;
 886    int aprbit = prio >> 1;
 887    int regno = aprbit / 32;
 888    int regbit = aprbit % 32;
 889
 890    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 891
 892    if (irq < GIC_INTERNAL) {
 893        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 894        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 895        gicv3_redist_update(cs);
 896    } else {
 897        gicv3_gicd_active_set(cs->gic, irq);
 898        gicv3_gicd_pending_clear(cs->gic, irq);
 899        gicv3_update(cs->gic, irq, 1);
 900    }
 901}
 902
 903static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 904{
 905    /* Return the highest priority pending interrupt register value
 906     * for group 0.
 907     */
 908    bool irq_is_secure;
 909
 910    if (cs->hppi.prio == 0xff) {
 911        return INTID_SPURIOUS;
 912    }
 913
 914    /* Check whether we can return the interrupt or if we should return
 915     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 916     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 917     * is always zero.)
 918     */
 919    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 920                     (cs->hppi.grp != GICV3_G1NS));
 921
 922    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 923        return INTID_SPURIOUS;
 924    }
 925    if (irq_is_secure && !arm_is_secure(env)) {
 926        /* Secure interrupts not visible to Nonsecure */
 927        return INTID_SPURIOUS;
 928    }
 929
 930    if (cs->hppi.grp != GICV3_G0) {
 931        /* Indicate to EL3 that there's a Group 1 interrupt for the other
 932         * state pending.
 933         */
 934        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 935    }
 936
 937    return cs->hppi.irq;
 938}
 939
 940static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 941{
 942    /* Return the highest priority pending interrupt register value
 943     * for group 1.
 944     */
 945    bool irq_is_secure;
 946
 947    if (cs->hppi.prio == 0xff) {
 948        return INTID_SPURIOUS;
 949    }
 950
 951    /* Check whether we can return the interrupt or if we should return
 952     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 953     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 954     * is always zero.)
 955     */
 956    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 957                     (cs->hppi.grp != GICV3_G1NS));
 958
 959    if (cs->hppi.grp == GICV3_G0) {
 960        /* Group 0 interrupts not visible via HPPIR1 */
 961        return INTID_SPURIOUS;
 962    }
 963    if (irq_is_secure) {
 964        if (!arm_is_secure(env)) {
 965            /* Secure interrupts not visible in Non-secure */
 966            return INTID_SPURIOUS;
 967        }
 968    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 969        /* Group 1 non-secure interrupts not visible in Secure EL1 */
 970        return INTID_SPURIOUS;
 971    }
 972
 973    return cs->hppi.irq;
 974}
 975
 976static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 977{
 978    GICv3CPUState *cs = icc_cs_from_env(env);
 979    uint64_t intid;
 980
 981    if (icv_access(env, HCR_FMO)) {
 982        return icv_iar_read(env, ri);
 983    }
 984
 985    if (!icc_hppi_can_preempt(cs)) {
 986        intid = INTID_SPURIOUS;
 987    } else {
 988        intid = icc_hppir0_value(cs, env);
 989    }
 990
 991    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 992        icc_activate_irq(cs, intid);
 993    }
 994
 995    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
 996    return intid;
 997}
 998
 999static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1000{
1001    GICv3CPUState *cs = icc_cs_from_env(env);
1002    uint64_t intid;
1003
1004    if (icv_access(env, HCR_IMO)) {
1005        return icv_iar_read(env, ri);
1006    }
1007
1008    if (!icc_hppi_can_preempt(cs)) {
1009        intid = INTID_SPURIOUS;
1010    } else {
1011        intid = icc_hppir1_value(cs, env);
1012    }
1013
1014    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1015        icc_activate_irq(cs, intid);
1016    }
1017
1018    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1019    return intid;
1020}
1021
1022static void icc_drop_prio(GICv3CPUState *cs, int grp)
1023{
1024    /* Drop the priority of the currently active interrupt in
1025     * the specified group.
1026     *
1027     * Note that we can guarantee (because of the requirement to nest
1028     * ICC_IAR reads [which activate an interrupt and raise priority]
1029     * with ICC_EOIR writes [which drop the priority for the interrupt])
1030     * that the interrupt we're being called for is the highest priority
1031     * active interrupt, meaning that it has the lowest set bit in the
1032     * APR registers.
1033     *
1034     * If the guest does not honour the ordering constraints then the
1035     * behaviour of the GIC is UNPREDICTABLE, which for us means that
1036     * the values of the APR registers might become incorrect and the
1037     * running priority will be wrong, so interrupts that should preempt
1038     * might not do so, and interrupts that should not preempt might do so.
1039     */
1040    int i;
1041
1042    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1043        uint64_t *papr = &cs->icc_apr[grp][i];
1044
1045        if (!*papr) {
1046            continue;
1047        }
1048        /* Clear the lowest set bit */
1049        *papr &= *papr - 1;
1050        break;
1051    }
1052
1053    /* running priority change means we need an update for this cpu i/f */
1054    gicv3_cpuif_update(cs);
1055}
1056
1057static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1058{
1059    /* Return true if we should split priority drop and interrupt
1060     * deactivation, ie whether the relevant EOIMode bit is set.
1061     */
1062    if (arm_is_el3_or_mon(env)) {
1063        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1064    }
1065    if (arm_is_secure_below_el3(env)) {
1066        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1067    } else {
1068        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1069    }
1070}
1071
1072static int icc_highest_active_group(GICv3CPUState *cs)
1073{
1074    /* Return the group with the highest priority active interrupt.
1075     * We can do this by just comparing the APRs to see which one
1076     * has the lowest set bit.
1077     * (If more than one group is active at the same priority then
1078     * we're in UNPREDICTABLE territory.)
1079     */
1080    int i;
1081
1082    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1083        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1084        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1085        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1086
1087        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1088            return GICV3_G1NS;
1089        }
1090        if (g1ctz < g0ctz) {
1091            return GICV3_G1;
1092        }
1093        if (g0ctz < 32) {
1094            return GICV3_G0;
1095        }
1096    }
1097    /* No set active bits? UNPREDICTABLE; return -1 so the caller
1098     * ignores the spurious EOI attempt.
1099     */
1100    return -1;
1101}
1102
1103static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1104{
1105    if (irq < GIC_INTERNAL) {
1106        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1107        gicv3_redist_update(cs);
1108    } else {
1109        gicv3_gicd_active_clear(cs->gic, irq);
1110        gicv3_update(cs->gic, irq, 1);
1111    }
1112}
1113
1114static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1115{
1116    /* Return true if we should split priority drop and interrupt
1117     * deactivation, ie whether the virtual EOIMode bit is set.
1118     */
1119    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1120}
1121
1122static int icv_find_active(GICv3CPUState *cs, int irq)
1123{
1124    /* Given an interrupt number for an active interrupt, return the index
1125     * of the corresponding list register, or -1 if there is no match.
1126     * Corresponds to FindActiveVirtualInterrupt pseudocode.
1127     */
1128    int i;
1129
1130    for (i = 0; i < cs->num_list_regs; i++) {
1131        uint64_t lr = cs->ich_lr_el2[i];
1132
1133        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1134            return i;
1135        }
1136    }
1137
1138    return -1;
1139}
1140
1141static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1142{
1143    /* Deactivate the interrupt in the specified list register index */
1144    uint64_t lr = cs->ich_lr_el2[idx];
1145
1146    if (lr & ICH_LR_EL2_HW) {
1147        /* Deactivate the associated physical interrupt */
1148        int pirq = ich_lr_pintid(lr);
1149
1150        if (pirq < INTID_SECURE) {
1151            icc_deactivate_irq(cs, pirq);
1152        }
1153    }
1154
1155    /* Clear the 'active' part of the state, so ActivePending->Pending
1156     * and Active->Invalid.
1157     */
1158    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1159    cs->ich_lr_el2[idx] = lr;
1160}
1161
1162static void icv_increment_eoicount(GICv3CPUState *cs)
1163{
1164    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1165    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1166                             ICH_HCR_EL2_EOICOUNT_LENGTH);
1167
1168    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1169                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1170}
1171
1172static int icv_drop_prio(GICv3CPUState *cs)
1173{
1174    /* Drop the priority of the currently active virtual interrupt
1175     * (favouring group 0 if there is a set active bit at
1176     * the same priority for both group 0 and group 1).
1177     * Return the priority value for the bit we just cleared,
1178     * or 0xff if no bits were set in the AP registers at all.
1179     * Note that though the ich_apr[] are uint64_t only the low
1180     * 32 bits are actually relevant.
1181     */
1182    int i;
1183    int aprmax = 1 << (cs->vprebits - 5);
1184
1185    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1186
1187    for (i = 0; i < aprmax; i++) {
1188        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1189        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1190        int apr0count, apr1count;
1191
1192        if (!*papr0 && !*papr1) {
1193            continue;
1194        }
1195
1196        /* We can't just use the bit-twiddling hack icc_drop_prio() does
1197         * because we need to return the bit number we cleared so
1198         * it can be compared against the list register's priority field.
1199         */
1200        apr0count = ctz32(*papr0);
1201        apr1count = ctz32(*papr1);
1202
1203        if (apr0count <= apr1count) {
1204            *papr0 &= *papr0 - 1;
1205            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1206        } else {
1207            *papr1 &= *papr1 - 1;
1208            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1209        }
1210    }
1211    return 0xff;
1212}
1213
1214static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215                          uint64_t value)
1216{
1217    /* Deactivate interrupt */
1218    GICv3CPUState *cs = icc_cs_from_env(env);
1219    int idx;
1220    int irq = value & 0xffffff;
1221
1222    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1223
1224    if (irq >= cs->gic->num_irq) {
1225        /* Also catches special interrupt numbers and LPIs */
1226        return;
1227    }
1228
1229    if (!icv_eoi_split(env, cs)) {
1230        return;
1231    }
1232
1233    idx = icv_find_active(cs, irq);
1234
1235    if (idx < 0) {
1236        /* No list register matching this, so increment the EOI count
1237         * (might trigger a maintenance interrupt)
1238         */
1239        icv_increment_eoicount(cs);
1240    } else {
1241        icv_deactivate_irq(cs, idx);
1242    }
1243
1244    gicv3_cpuif_virt_update(cs);
1245}
1246
1247static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1248                           uint64_t value)
1249{
1250    /* End of Interrupt */
1251    GICv3CPUState *cs = icc_cs_from_env(env);
1252    int irq = value & 0xffffff;
1253    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1254    int idx, dropprio;
1255
1256    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1257                               gicv3_redist_affid(cs), value);
1258
1259    if (irq >= cs->gic->num_irq) {
1260        /* Also catches special interrupt numbers and LPIs */
1261        return;
1262    }
1263
1264    /* We implement the IMPDEF choice of "drop priority before doing
1265     * error checks" (because that lets us avoid scanning the AP
1266     * registers twice).
1267     */
1268    dropprio = icv_drop_prio(cs);
1269    if (dropprio == 0xff) {
1270        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1271         * whether the list registers are checked in this
1272         * situation; we choose not to.
1273         */
1274        return;
1275    }
1276
1277    idx = icv_find_active(cs, irq);
1278
1279    if (idx < 0) {
1280        /* No valid list register corresponding to EOI ID */
1281        icv_increment_eoicount(cs);
1282    } else {
1283        uint64_t lr = cs->ich_lr_el2[idx];
1284        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1285        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1286
1287        if (thisgrp == grp && lr_gprio == dropprio) {
1288            if (!icv_eoi_split(env, cs)) {
1289                /* Priority drop and deactivate not split: deactivate irq now */
1290                icv_deactivate_irq(cs, idx);
1291            }
1292        }
1293    }
1294
1295    gicv3_cpuif_virt_update(cs);
1296}
1297
1298static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1299                           uint64_t value)
1300{
1301    /* End of Interrupt */
1302    GICv3CPUState *cs = icc_cs_from_env(env);
1303    int irq = value & 0xffffff;
1304    int grp;
1305
1306    if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1307        icv_eoir_write(env, ri, value);
1308        return;
1309    }
1310
1311    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1312                               gicv3_redist_affid(cs), value);
1313
1314    if (ri->crm == 8) {
1315        /* EOIR0 */
1316        grp = GICV3_G0;
1317    } else {
1318        /* EOIR1 */
1319        if (arm_is_secure(env)) {
1320            grp = GICV3_G1;
1321        } else {
1322            grp = GICV3_G1NS;
1323        }
1324    }
1325
1326    if (irq >= cs->gic->num_irq) {
1327        /* This handles two cases:
1328         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1329         * to the GICC_EOIR, the GIC ignores that write.
1330         * 2. If software writes the number of a non-existent interrupt
1331         * this must be a subcase of "value written does not match the last
1332         * valid interrupt value read from the Interrupt Acknowledge
1333         * register" and so this is UNPREDICTABLE. We choose to ignore it.
1334         */
1335        return;
1336    }
1337
1338    if (icc_highest_active_group(cs) != grp) {
1339        return;
1340    }
1341
1342    icc_drop_prio(cs, grp);
1343
1344    if (!icc_eoi_split(env, cs)) {
1345        /* Priority drop and deactivate not split: deactivate irq now */
1346        icc_deactivate_irq(cs, irq);
1347    }
1348}
1349
1350static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1351{
1352    GICv3CPUState *cs = icc_cs_from_env(env);
1353    uint64_t value;
1354
1355    if (icv_access(env, HCR_FMO)) {
1356        return icv_hppir_read(env, ri);
1357    }
1358
1359    value = icc_hppir0_value(cs, env);
1360    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1361    return value;
1362}
1363
1364static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1365{
1366    GICv3CPUState *cs = icc_cs_from_env(env);
1367    uint64_t value;
1368
1369    if (icv_access(env, HCR_IMO)) {
1370        return icv_hppir_read(env, ri);
1371    }
1372
1373    value = icc_hppir1_value(cs, env);
1374    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1375    return value;
1376}
1377
1378static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1379{
1380    GICv3CPUState *cs = icc_cs_from_env(env);
1381    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1382    bool satinc = false;
1383    uint64_t bpr;
1384
1385    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1386        return icv_bpr_read(env, ri);
1387    }
1388
1389    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1390        grp = GICV3_G1NS;
1391    }
1392
1393    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1394        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1395        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1396         * modify BPR0
1397         */
1398        grp = GICV3_G0;
1399    }
1400
1401    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1402        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1403        /* reads return bpr0 + 1 sat to 7, writes ignored */
1404        grp = GICV3_G0;
1405        satinc = true;
1406    }
1407
1408    bpr = cs->icc_bpr[grp];
1409    if (satinc) {
1410        bpr++;
1411        bpr = MIN(bpr, 7);
1412    }
1413
1414    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1415
1416    return bpr;
1417}
1418
1419static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420                          uint64_t value)
1421{
1422    GICv3CPUState *cs = icc_cs_from_env(env);
1423    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1424    uint64_t minval;
1425
1426    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1427        icv_bpr_write(env, ri, value);
1428        return;
1429    }
1430
1431    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1432                              gicv3_redist_affid(cs), value);
1433
1434    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1435        grp = GICV3_G1NS;
1436    }
1437
1438    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1439        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1440        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1441         * modify BPR0
1442         */
1443        grp = GICV3_G0;
1444    }
1445
1446    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1447        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1448        /* reads return bpr0 + 1 sat to 7, writes ignored */
1449        return;
1450    }
1451
1452    minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1453    if (value < minval) {
1454        value = minval;
1455    }
1456
1457    cs->icc_bpr[grp] = value & 7;
1458    gicv3_cpuif_update(cs);
1459}
1460
1461static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1462{
1463    GICv3CPUState *cs = icc_cs_from_env(env);
1464    uint64_t value;
1465
1466    int regno = ri->opc2 & 3;
1467    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1468
1469    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1470        return icv_ap_read(env, ri);
1471    }
1472
1473    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1474        grp = GICV3_G1NS;
1475    }
1476
1477    value = cs->icc_apr[grp][regno];
1478
1479    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1480    return value;
1481}
1482
1483static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1484                         uint64_t value)
1485{
1486    GICv3CPUState *cs = icc_cs_from_env(env);
1487
1488    int regno = ri->opc2 & 3;
1489    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1490
1491    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1492        icv_ap_write(env, ri, value);
1493        return;
1494    }
1495
1496    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1497
1498    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1499        grp = GICV3_G1NS;
1500    }
1501
1502    /* It's not possible to claim that a Non-secure interrupt is active
1503     * at a priority outside the Non-secure range (128..255), since this
1504     * would otherwise allow malicious NS code to block delivery of S interrupts
1505     * by writing a bad value to these registers.
1506     */
1507    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1508        return;
1509    }
1510
1511    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1512    gicv3_cpuif_update(cs);
1513}
1514
1515static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516                          uint64_t value)
1517{
1518    /* Deactivate interrupt */
1519    GICv3CPUState *cs = icc_cs_from_env(env);
1520    int irq = value & 0xffffff;
1521    bool irq_is_secure, single_sec_state, irq_is_grp0;
1522    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1523
1524    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1525        icv_dir_write(env, ri, value);
1526        return;
1527    }
1528
1529    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1530
1531    if (irq >= cs->gic->num_irq) {
1532        /* Also catches special interrupt numbers and LPIs */
1533        return;
1534    }
1535
1536    if (!icc_eoi_split(env, cs)) {
1537        return;
1538    }
1539
1540    int grp = gicv3_irq_group(cs->gic, cs, irq);
1541
1542    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1543    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1544    irq_is_grp0 = grp == GICV3_G0;
1545
1546    /* Check whether we're allowed to deactivate this interrupt based
1547     * on its group and the current CPU state.
1548     * These checks are laid out to correspond to the spec's pseudocode.
1549     */
1550    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1551    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1552    /* No need to include !IsSecure in route_*_to_el2 as it's only
1553     * tested in cases where we know !IsSecure is true.
1554     */
1555    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1556    route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1557    route_irq_to_el2 = hcr_el2 & HCR_IMO;
1558
1559    switch (arm_current_el(env)) {
1560    case 3:
1561        break;
1562    case 2:
1563        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1564            break;
1565        }
1566        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1567            break;
1568        }
1569        return;
1570    case 1:
1571        if (!arm_is_secure_below_el3(env)) {
1572            if (single_sec_state && irq_is_grp0 &&
1573                !route_fiq_to_el3 && !route_fiq_to_el2) {
1574                break;
1575            }
1576            if (!irq_is_secure && !irq_is_grp0 &&
1577                !route_irq_to_el3 && !route_irq_to_el2) {
1578                break;
1579            }
1580        } else {
1581            if (irq_is_grp0 && !route_fiq_to_el3) {
1582                break;
1583            }
1584            if (!irq_is_grp0 &&
1585                (!irq_is_secure || !single_sec_state) &&
1586                !route_irq_to_el3) {
1587                break;
1588            }
1589        }
1590        return;
1591    default:
1592        g_assert_not_reached();
1593    }
1594
1595    icc_deactivate_irq(cs, irq);
1596}
1597
1598static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1599{
1600    GICv3CPUState *cs = icc_cs_from_env(env);
1601    int prio;
1602
1603    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1604        return icv_rpr_read(env, ri);
1605    }
1606
1607    prio = icc_highest_active_prio(cs);
1608
1609    if (arm_feature(env, ARM_FEATURE_EL3) &&
1610        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1611        /* NS GIC access and Group 0 is inaccessible to NS */
1612        if ((prio & 0x80) == 0) {
1613            /* NS mustn't see priorities in the Secure half of the range */
1614            prio = 0;
1615        } else if (prio != 0xff) {
1616            /* Non-idle priority: show the Non-secure view of it */
1617            prio = (prio << 1) & 0xff;
1618        }
1619    }
1620
1621    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1622    return prio;
1623}
1624
1625static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1626                             uint64_t value, int grp, bool ns)
1627{
1628    GICv3State *s = cs->gic;
1629
1630    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631    uint64_t aff = extract64(value, 48, 8) << 16 |
1632        extract64(value, 32, 8) << 8 |
1633        extract64(value, 16, 8);
1634    uint32_t targetlist = extract64(value, 0, 16);
1635    uint32_t irq = extract64(value, 24, 4);
1636    bool irm = extract64(value, 40, 1);
1637    int i;
1638
1639    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1640        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641         * interrupts as Group 0 interrupts and must send Secure Group 0
1642         * interrupts to the target CPUs.
1643         */
1644        grp = GICV3_G0;
1645    }
1646
1647    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1648                                 aff, targetlist);
1649
1650    for (i = 0; i < s->num_cpu; i++) {
1651        GICv3CPUState *ocs = &s->cpu[i];
1652
1653        if (irm) {
1654            /* IRM == 1 : route to all CPUs except self */
1655            if (cs == ocs) {
1656                continue;
1657            }
1658        } else {
1659            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660             * where the corresponding bit is set in targetlist
1661             */
1662            int aff0;
1663
1664            if (ocs->gicr_typer >> 40 != aff) {
1665                continue;
1666            }
1667            aff0 = extract64(ocs->gicr_typer, 32, 8);
1668            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1669                continue;
1670            }
1671        }
1672
1673        /* The redistributor will check against its own GICR_NSACR as needed */
1674        gicv3_redist_send_sgi(ocs, grp, irq, ns);
1675    }
1676}
1677
1678static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679                           uint64_t value)
1680{
1681    /* Generate Secure Group 0 SGI. */
1682    GICv3CPUState *cs = icc_cs_from_env(env);
1683    bool ns = !arm_is_secure(env);
1684
1685    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1686}
1687
1688static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689                           uint64_t value)
1690{
1691    /* Generate Group 1 SGI for the current Security state */
1692    GICv3CPUState *cs = icc_cs_from_env(env);
1693    int grp;
1694    bool ns = !arm_is_secure(env);
1695
1696    grp = ns ? GICV3_G1NS : GICV3_G1;
1697    icc_generate_sgi(env, cs, value, grp, ns);
1698}
1699
1700static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701                             uint64_t value)
1702{
1703    /* Generate Group 1 SGI for the Security state that is not
1704     * the current state
1705     */
1706    GICv3CPUState *cs = icc_cs_from_env(env);
1707    int grp;
1708    bool ns = !arm_is_secure(env);
1709
1710    grp = ns ? GICV3_G1 : GICV3_G1NS;
1711    icc_generate_sgi(env, cs, value, grp, ns);
1712}
1713
1714static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715{
1716    GICv3CPUState *cs = icc_cs_from_env(env);
1717    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1718    uint64_t value;
1719
1720    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1721        return icv_igrpen_read(env, ri);
1722    }
1723
1724    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1725        grp = GICV3_G1NS;
1726    }
1727
1728    value = cs->icc_igrpen[grp];
1729    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1730                                gicv3_redist_affid(cs), value);
1731    return value;
1732}
1733
1734static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735                             uint64_t value)
1736{
1737    GICv3CPUState *cs = icc_cs_from_env(env);
1738    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1739
1740    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1741        icv_igrpen_write(env, ri, value);
1742        return;
1743    }
1744
1745    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1746                                 gicv3_redist_affid(cs), value);
1747
1748    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749        grp = GICV3_G1NS;
1750    }
1751
1752    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1753    gicv3_cpuif_update(cs);
1754}
1755
1756static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1757{
1758    GICv3CPUState *cs = icc_cs_from_env(env);
1759    uint64_t value;
1760
1761    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1763    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1764    return value;
1765}
1766
1767static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768                                  uint64_t value)
1769{
1770    GICv3CPUState *cs = icc_cs_from_env(env);
1771
1772    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1773
1774    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1776    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1777    gicv3_cpuif_update(cs);
1778}
1779
1780static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781{
1782    GICv3CPUState *cs = icc_cs_from_env(env);
1783    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1784    uint64_t value;
1785
1786    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1787        return icv_ctlr_read(env, ri);
1788    }
1789
1790    value = cs->icc_ctlr_el1[bank];
1791    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1792    return value;
1793}
1794
1795static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796                               uint64_t value)
1797{
1798    GICv3CPUState *cs = icc_cs_from_env(env);
1799    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1800    uint64_t mask;
1801
1802    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1803        icv_ctlr_write(env, ri, value);
1804        return;
1805    }
1806
1807    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1808
1809    /* Only CBPR and EOIMODE can be RW;
1810     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811     * the asseciated priority-based routing of them);
1812     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1813     */
1814    if (arm_feature(env, ARM_FEATURE_EL3) &&
1815        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1816        mask = ICC_CTLR_EL1_EOIMODE;
1817    } else {
1818        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1819    }
1820
1821    cs->icc_ctlr_el1[bank] &= ~mask;
1822    cs->icc_ctlr_el1[bank] |= (value & mask);
1823    gicv3_cpuif_update(cs);
1824}
1825
1826
1827static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1828{
1829    GICv3CPUState *cs = icc_cs_from_env(env);
1830    uint64_t value;
1831
1832    value = cs->icc_ctlr_el3;
1833    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1834        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1835    }
1836    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1837        value |= ICC_CTLR_EL3_CBPR_EL1NS;
1838    }
1839    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1840        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1841    }
1842    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1843        value |= ICC_CTLR_EL3_CBPR_EL1S;
1844    }
1845
1846    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1847    return value;
1848}
1849
1850static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851                               uint64_t value)
1852{
1853    GICv3CPUState *cs = icc_cs_from_env(env);
1854    uint64_t mask;
1855
1856    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1857
1858    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859    cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1860    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1861        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1862    }
1863    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1864        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1865    }
1866
1867    cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1868    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1869        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1870    }
1871    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1872        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1873    }
1874
1875    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876    mask = ICC_CTLR_EL3_EOIMODE_EL3;
1877
1878    cs->icc_ctlr_el3 &= ~mask;
1879    cs->icc_ctlr_el3 |= (value & mask);
1880    gicv3_cpuif_update(cs);
1881}
1882
1883static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1884                                          const ARMCPRegInfo *ri, bool isread)
1885{
1886    CPAccessResult r = CP_ACCESS_OK;
1887    GICv3CPUState *cs = icc_cs_from_env(env);
1888    int el = arm_current_el(env);
1889
1890    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1891        el == 1 && !arm_is_secure_below_el3(env)) {
1892        /* Takes priority over a possible EL3 trap */
1893        return CP_ACCESS_TRAP_EL2;
1894    }
1895
1896    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1897        switch (el) {
1898        case 1:
1899            /* Note that arm_hcr_el2_eff takes secure state into account.  */
1900            if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1901                r = CP_ACCESS_TRAP_EL3;
1902            }
1903            break;
1904        case 2:
1905            r = CP_ACCESS_TRAP_EL3;
1906            break;
1907        case 3:
1908            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1909                r = CP_ACCESS_TRAP_EL3;
1910            }
1911            break;
1912        default:
1913            g_assert_not_reached();
1914        }
1915    }
1916
1917    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1918        r = CP_ACCESS_TRAP;
1919    }
1920    return r;
1921}
1922
1923static CPAccessResult gicv3_dir_access(CPUARMState *env,
1924                                       const ARMCPRegInfo *ri, bool isread)
1925{
1926    GICv3CPUState *cs = icc_cs_from_env(env);
1927
1928    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1929        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1930        /* Takes priority over a possible EL3 trap */
1931        return CP_ACCESS_TRAP_EL2;
1932    }
1933
1934    return gicv3_irqfiq_access(env, ri, isread);
1935}
1936
1937static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1938                                       const ARMCPRegInfo *ri, bool isread)
1939{
1940    if (arm_current_el(env) == 1 &&
1941        (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1942        /* Takes priority over a possible EL3 trap */
1943        return CP_ACCESS_TRAP_EL2;
1944    }
1945
1946    return gicv3_irqfiq_access(env, ri, isread);
1947}
1948
1949static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1950                                       const ARMCPRegInfo *ri, bool isread)
1951{
1952    CPAccessResult r = CP_ACCESS_OK;
1953    GICv3CPUState *cs = icc_cs_from_env(env);
1954    int el = arm_current_el(env);
1955
1956    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1957        el == 1 && !arm_is_secure_below_el3(env)) {
1958        /* Takes priority over a possible EL3 trap */
1959        return CP_ACCESS_TRAP_EL2;
1960    }
1961
1962    if (env->cp15.scr_el3 & SCR_FIQ) {
1963        switch (el) {
1964        case 1:
1965            if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1966                r = CP_ACCESS_TRAP_EL3;
1967            }
1968            break;
1969        case 2:
1970            r = CP_ACCESS_TRAP_EL3;
1971            break;
1972        case 3:
1973            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1974                r = CP_ACCESS_TRAP_EL3;
1975            }
1976            break;
1977        default:
1978            g_assert_not_reached();
1979        }
1980    }
1981
1982    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1983        r = CP_ACCESS_TRAP;
1984    }
1985    return r;
1986}
1987
1988static CPAccessResult gicv3_irq_access(CPUARMState *env,
1989                                       const ARMCPRegInfo *ri, bool isread)
1990{
1991    CPAccessResult r = CP_ACCESS_OK;
1992    GICv3CPUState *cs = icc_cs_from_env(env);
1993    int el = arm_current_el(env);
1994
1995    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1996        el == 1 && !arm_is_secure_below_el3(env)) {
1997        /* Takes priority over a possible EL3 trap */
1998        return CP_ACCESS_TRAP_EL2;
1999    }
2000
2001    if (env->cp15.scr_el3 & SCR_IRQ) {
2002        switch (el) {
2003        case 1:
2004            if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2005                r = CP_ACCESS_TRAP_EL3;
2006            }
2007            break;
2008        case 2:
2009            r = CP_ACCESS_TRAP_EL3;
2010            break;
2011        case 3:
2012            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2013                r = CP_ACCESS_TRAP_EL3;
2014            }
2015            break;
2016        default:
2017            g_assert_not_reached();
2018        }
2019    }
2020
2021    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2022        r = CP_ACCESS_TRAP;
2023    }
2024    return r;
2025}
2026
2027static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2028{
2029    GICv3CPUState *cs = icc_cs_from_env(env);
2030
2031    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2032        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2033        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2034    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2035        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2036        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2037    cs->icc_pmr_el1 = 0;
2038    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2039    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2040    cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2041    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2042    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2043    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2044        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2045        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2046
2047    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2048    cs->ich_hcr_el2 = 0;
2049    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2050    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2051        ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2052        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2053}
2054
2055static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2056    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2057      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2058      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2059      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2060      .readfn = icc_pmr_read,
2061      .writefn = icc_pmr_write,
2062      /* We hang the whole cpu interface reset routine off here
2063       * rather than parcelling it out into one little function
2064       * per register
2065       */
2066      .resetfn = icc_reset,
2067    },
2068    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2069      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2070      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2071      .access = PL1_R, .accessfn = gicv3_fiq_access,
2072      .readfn = icc_iar0_read,
2073    },
2074    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2075      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2076      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2077      .access = PL1_W, .accessfn = gicv3_fiq_access,
2078      .writefn = icc_eoir_write,
2079    },
2080    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2081      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2082      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083      .access = PL1_R, .accessfn = gicv3_fiq_access,
2084      .readfn = icc_hppir0_read,
2085    },
2086    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2087      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2088      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2089      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2090      .readfn = icc_bpr_read,
2091      .writefn = icc_bpr_write,
2092    },
2093    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2094      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2095      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2096      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2097      .readfn = icc_ap_read,
2098      .writefn = icc_ap_write,
2099    },
2100    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2101      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2102      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2103      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2104      .readfn = icc_ap_read,
2105      .writefn = icc_ap_write,
2106    },
2107    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2108      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2109      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2110      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2111      .readfn = icc_ap_read,
2112      .writefn = icc_ap_write,
2113    },
2114    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2115      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2116      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2117      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2118      .readfn = icc_ap_read,
2119      .writefn = icc_ap_write,
2120    },
2121    /* All the ICC_AP1R*_EL1 registers are banked */
2122    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2123      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2124      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2125      .access = PL1_RW, .accessfn = gicv3_irq_access,
2126      .readfn = icc_ap_read,
2127      .writefn = icc_ap_write,
2128    },
2129    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2130      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2131      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2132      .access = PL1_RW, .accessfn = gicv3_irq_access,
2133      .readfn = icc_ap_read,
2134      .writefn = icc_ap_write,
2135    },
2136    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2137      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2138      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2139      .access = PL1_RW, .accessfn = gicv3_irq_access,
2140      .readfn = icc_ap_read,
2141      .writefn = icc_ap_write,
2142    },
2143    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2144      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2145      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2146      .access = PL1_RW, .accessfn = gicv3_irq_access,
2147      .readfn = icc_ap_read,
2148      .writefn = icc_ap_write,
2149    },
2150    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2151      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2152      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2153      .access = PL1_W, .accessfn = gicv3_dir_access,
2154      .writefn = icc_dir_write,
2155    },
2156    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2157      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2158      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2159      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2160      .readfn = icc_rpr_read,
2161    },
2162    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2163      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2164      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2165      .access = PL1_W, .accessfn = gicv3_sgi_access,
2166      .writefn = icc_sgi1r_write,
2167    },
2168    { .name = "ICC_SGI1R",
2169      .cp = 15, .opc1 = 0, .crm = 12,
2170      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2171      .access = PL1_W, .accessfn = gicv3_sgi_access,
2172      .writefn = icc_sgi1r_write,
2173    },
2174    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2175      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2176      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2177      .access = PL1_W, .accessfn = gicv3_sgi_access,
2178      .writefn = icc_asgi1r_write,
2179    },
2180    { .name = "ICC_ASGI1R",
2181      .cp = 15, .opc1 = 1, .crm = 12,
2182      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2183      .access = PL1_W, .accessfn = gicv3_sgi_access,
2184      .writefn = icc_asgi1r_write,
2185    },
2186    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2187      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2188      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2189      .access = PL1_W, .accessfn = gicv3_sgi_access,
2190      .writefn = icc_sgi0r_write,
2191    },
2192    { .name = "ICC_SGI0R",
2193      .cp = 15, .opc1 = 2, .crm = 12,
2194      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2195      .access = PL1_W, .accessfn = gicv3_sgi_access,
2196      .writefn = icc_sgi0r_write,
2197    },
2198    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2199      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2200      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201      .access = PL1_R, .accessfn = gicv3_irq_access,
2202      .readfn = icc_iar1_read,
2203    },
2204    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2205      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2206      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2207      .access = PL1_W, .accessfn = gicv3_irq_access,
2208      .writefn = icc_eoir_write,
2209    },
2210    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2211      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2212      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2213      .access = PL1_R, .accessfn = gicv3_irq_access,
2214      .readfn = icc_hppir1_read,
2215    },
2216    /* This register is banked */
2217    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2218      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2219      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2220      .access = PL1_RW, .accessfn = gicv3_irq_access,
2221      .readfn = icc_bpr_read,
2222      .writefn = icc_bpr_write,
2223    },
2224    /* This register is banked */
2225    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2226      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2227      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2228      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2229      .readfn = icc_ctlr_el1_read,
2230      .writefn = icc_ctlr_el1_write,
2231    },
2232    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2233      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2234      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2235      .access = PL1_RW,
2236      /* We don't support IRQ/FIQ bypass and system registers are
2237       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2238       * This register is banked but since it's constant we don't
2239       * need to do anything special.
2240       */
2241      .resetvalue = 0x7,
2242    },
2243    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2244      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2245      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2246      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2247      .readfn = icc_igrpen_read,
2248      .writefn = icc_igrpen_write,
2249    },
2250    /* This register is banked */
2251    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2252      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2253      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2254      .access = PL1_RW, .accessfn = gicv3_irq_access,
2255      .readfn = icc_igrpen_read,
2256      .writefn = icc_igrpen_write,
2257    },
2258    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2259      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2260      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2261      .access = PL2_RW,
2262      /* We don't support IRQ/FIQ bypass and system registers are
2263       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2264       */
2265      .resetvalue = 0xf,
2266    },
2267    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2268      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2269      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270      .access = PL3_RW,
2271      .readfn = icc_ctlr_el3_read,
2272      .writefn = icc_ctlr_el3_write,
2273    },
2274    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2275      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2276      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2277      .access = PL3_RW,
2278      /* We don't support IRQ/FIQ bypass and system registers are
2279       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2280       */
2281      .resetvalue = 0xf,
2282    },
2283    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2284      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2285      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2286      .access = PL3_RW,
2287      .readfn = icc_igrpen1_el3_read,
2288      .writefn = icc_igrpen1_el3_write,
2289    },
2290    REGINFO_SENTINEL
2291};
2292
2293static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2294{
2295    GICv3CPUState *cs = icc_cs_from_env(env);
2296    int regno = ri->opc2 & 3;
2297    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2298    uint64_t value;
2299
2300    value = cs->ich_apr[grp][regno];
2301    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2302    return value;
2303}
2304
2305static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2306                         uint64_t value)
2307{
2308    GICv3CPUState *cs = icc_cs_from_env(env);
2309    int regno = ri->opc2 & 3;
2310    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2311
2312    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2313
2314    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2315    gicv3_cpuif_virt_update(cs);
2316}
2317
2318static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2319{
2320    GICv3CPUState *cs = icc_cs_from_env(env);
2321    uint64_t value = cs->ich_hcr_el2;
2322
2323    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2324    return value;
2325}
2326
2327static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2328                          uint64_t value)
2329{
2330    GICv3CPUState *cs = icc_cs_from_env(env);
2331
2332    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2333
2334    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2335        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2336        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2337        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2338        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2339
2340    cs->ich_hcr_el2 = value;
2341    gicv3_cpuif_virt_update(cs);
2342}
2343
2344static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2345{
2346    GICv3CPUState *cs = icc_cs_from_env(env);
2347    uint64_t value = cs->ich_vmcr_el2;
2348
2349    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2350    return value;
2351}
2352
2353static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2354                         uint64_t value)
2355{
2356    GICv3CPUState *cs = icc_cs_from_env(env);
2357
2358    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2359
2360    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2361        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2362        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2363    value |= ICH_VMCR_EL2_VFIQEN;
2364
2365    cs->ich_vmcr_el2 = value;
2366    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2367     * by reading and writing back the fields.
2368     */
2369    write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2370    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2371
2372    gicv3_cpuif_virt_update(cs);
2373}
2374
2375static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376{
2377    GICv3CPUState *cs = icc_cs_from_env(env);
2378    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2379    uint64_t value;
2380
2381    /* This read function handles all of:
2382     * 64-bit reads of the whole LR
2383     * 32-bit reads of the low half of the LR
2384     * 32-bit reads of the high half of the LR
2385     */
2386    if (ri->state == ARM_CP_STATE_AA32) {
2387        if (ri->crm >= 14) {
2388            value = extract64(cs->ich_lr_el2[regno], 32, 32);
2389            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2390        } else {
2391            value = extract64(cs->ich_lr_el2[regno], 0, 32);
2392            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2393        }
2394    } else {
2395        value = cs->ich_lr_el2[regno];
2396        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2397    }
2398
2399    return value;
2400}
2401
2402static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2403                         uint64_t value)
2404{
2405    GICv3CPUState *cs = icc_cs_from_env(env);
2406    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2407
2408    /* This write function handles all of:
2409     * 64-bit writes to the whole LR
2410     * 32-bit writes to the low half of the LR
2411     * 32-bit writes to the high half of the LR
2412     */
2413    if (ri->state == ARM_CP_STATE_AA32) {
2414        if (ri->crm >= 14) {
2415            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2416            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2417        } else {
2418            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2419            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2420        }
2421    } else {
2422        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2423    }
2424
2425    /* Enforce RES0 bits in priority field */
2426    if (cs->vpribits < 8) {
2427        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2428                          8 - cs->vpribits, 0);
2429    }
2430
2431    cs->ich_lr_el2[regno] = value;
2432    gicv3_cpuif_virt_update(cs);
2433}
2434
2435static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436{
2437    GICv3CPUState *cs = icc_cs_from_env(env);
2438    uint64_t value;
2439
2440    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2441        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2442        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2443        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2444        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2445
2446    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2447    return value;
2448}
2449
2450static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2451{
2452    GICv3CPUState *cs = icc_cs_from_env(env);
2453    uint64_t value = maintenance_interrupt_state(cs);
2454
2455    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2456    return value;
2457}
2458
2459static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2460{
2461    GICv3CPUState *cs = icc_cs_from_env(env);
2462    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2463
2464    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2465    return value;
2466}
2467
2468static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2469{
2470    GICv3CPUState *cs = icc_cs_from_env(env);
2471    uint64_t value = 0;
2472    int i;
2473
2474    for (i = 0; i < cs->num_list_regs; i++) {
2475        uint64_t lr = cs->ich_lr_el2[i];
2476
2477        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2478            ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2479            value |= (1 << i);
2480        }
2481    }
2482
2483    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2484    return value;
2485}
2486
2487static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2488    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2489      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2490      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2491      .access = PL2_RW,
2492      .readfn = ich_ap_read,
2493      .writefn = ich_ap_write,
2494    },
2495    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2496      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2497      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2498      .access = PL2_RW,
2499      .readfn = ich_ap_read,
2500      .writefn = ich_ap_write,
2501    },
2502    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2503      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2504      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2505      .access = PL2_RW,
2506      .readfn = ich_hcr_read,
2507      .writefn = ich_hcr_write,
2508    },
2509    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2510      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2511      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2512      .access = PL2_R,
2513      .readfn = ich_vtr_read,
2514    },
2515    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2516      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2517      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2518      .access = PL2_R,
2519      .readfn = ich_misr_read,
2520    },
2521    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2522      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2523      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2524      .access = PL2_R,
2525      .readfn = ich_eisr_read,
2526    },
2527    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2528      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2529      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2530      .access = PL2_R,
2531      .readfn = ich_elrsr_read,
2532    },
2533    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2534      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2535      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2536      .access = PL2_RW,
2537      .readfn = ich_vmcr_read,
2538      .writefn = ich_vmcr_write,
2539    },
2540    REGINFO_SENTINEL
2541};
2542
2543static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2544    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2545      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2546      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2547      .access = PL2_RW,
2548      .readfn = ich_ap_read,
2549      .writefn = ich_ap_write,
2550    },
2551    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2552      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2553      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2554      .access = PL2_RW,
2555      .readfn = ich_ap_read,
2556      .writefn = ich_ap_write,
2557    },
2558    REGINFO_SENTINEL
2559};
2560
2561static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2562    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2563      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2564      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2565      .access = PL2_RW,
2566      .readfn = ich_ap_read,
2567      .writefn = ich_ap_write,
2568    },
2569    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2570      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2571      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2572      .access = PL2_RW,
2573      .readfn = ich_ap_read,
2574      .writefn = ich_ap_write,
2575    },
2576    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2577      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2578      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2579      .access = PL2_RW,
2580      .readfn = ich_ap_read,
2581      .writefn = ich_ap_write,
2582    },
2583    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2584      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2585      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2586      .access = PL2_RW,
2587      .readfn = ich_ap_read,
2588      .writefn = ich_ap_write,
2589    },
2590    REGINFO_SENTINEL
2591};
2592
2593static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2594{
2595    GICv3CPUState *cs = opaque;
2596
2597    gicv3_cpuif_update(cs);
2598}
2599
2600void gicv3_init_cpuif(GICv3State *s)
2601{
2602    /* Called from the GICv3 realize function; register our system
2603     * registers with the CPU
2604     */
2605    int i;
2606
2607    for (i = 0; i < s->num_cpu; i++) {
2608        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2609        GICv3CPUState *cs = &s->cpu[i];
2610
2611        /* Note that we can't just use the GICv3CPUState as an opaque pointer
2612         * in define_arm_cp_regs_with_opaque(), because when we're called back
2613         * it might be with code translated by CPU 0 but run by CPU 1, in
2614         * which case we'd get the wrong value.
2615         * So instead we define the regs with no ri->opaque info, and
2616         * get back to the GICv3CPUState from the CPUARMState.
2617         */
2618        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2619        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2620            && cpu->gic_num_lrs) {
2621            int j;
2622
2623            cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2624
2625            cs->num_list_regs = cpu->gic_num_lrs;
2626            cs->vpribits = cpu->gic_vpribits;
2627            cs->vprebits = cpu->gic_vprebits;
2628
2629            /* Check against architectural constraints: getting these
2630             * wrong would be a bug in the CPU code defining these,
2631             * and the implementation relies on them holding.
2632             */
2633            g_assert(cs->vprebits <= cs->vpribits);
2634            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2635            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2636
2637            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2638
2639            for (j = 0; j < cs->num_list_regs; j++) {
2640                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2641                 * are split into two cp15 regs, LR (the low part, with the
2642                 * same encoding as the AArch64 LR) and LRC (the high part).
2643                 */
2644                ARMCPRegInfo lr_regset[] = {
2645                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2646                      .opc0 = 3, .opc1 = 4, .crn = 12,
2647                      .crm = 12 + (j >> 3), .opc2 = j & 7,
2648                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2649                      .access = PL2_RW,
2650                      .readfn = ich_lr_read,
2651                      .writefn = ich_lr_write,
2652                    },
2653                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2654                      .cp = 15, .opc1 = 4, .crn = 12,
2655                      .crm = 14 + (j >> 3), .opc2 = j & 7,
2656                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2657                      .access = PL2_RW,
2658                      .readfn = ich_lr_read,
2659                      .writefn = ich_lr_write,
2660                    },
2661                    REGINFO_SENTINEL
2662                };
2663                define_arm_cp_regs(cpu, lr_regset);
2664            }
2665            if (cs->vprebits >= 6) {
2666                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2667            }
2668            if (cs->vprebits == 7) {
2669                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2670            }
2671        }
2672        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2673    }
2674}
2675