qemu/hw/intc/xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "target/ppc/cpu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/dma.h"
  17#include "hw/qdev-properties.h"
  18#include "monitor/monitor.h"
  19#include "hw/ppc/xive.h"
  20#include "hw/ppc/xive_regs.h"
  21
  22/*
  23 * XIVE Thread Interrupt Management context
  24 */
  25
  26/*
  27 * Convert a priority number to an Interrupt Pending Buffer (IPB)
  28 * register, which indicates a pending interrupt at the priority
  29 * corresponding to the bit number
  30 */
  31static uint8_t priority_to_ipb(uint8_t priority)
  32{
  33    return priority > XIVE_PRIORITY_MAX ?
  34        0 : 1 << (XIVE_PRIORITY_MAX - priority);
  35}
  36
  37/*
  38 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
  39 * Interrupt Priority Register (PIPR), which contains the priority of
  40 * the most favored pending notification.
  41 */
  42static uint8_t ipb_to_pipr(uint8_t ibp)
  43{
  44    return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
  45}
  46
  47static void ipb_update(uint8_t *regs, uint8_t priority)
  48{
  49    regs[TM_IPB] |= priority_to_ipb(priority);
  50    regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  51}
  52
  53static uint8_t exception_mask(uint8_t ring)
  54{
  55    switch (ring) {
  56    case TM_QW1_OS:
  57        return TM_QW1_NSR_EO;
  58    case TM_QW3_HV_PHYS:
  59        return TM_QW3_NSR_HE;
  60    default:
  61        g_assert_not_reached();
  62    }
  63}
  64
  65static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
  66{
  67        switch (ring) {
  68        case TM_QW0_USER:
  69                return 0; /* Not supported */
  70        case TM_QW1_OS:
  71                return tctx->os_output;
  72        case TM_QW2_HV_POOL:
  73        case TM_QW3_HV_PHYS:
  74                return tctx->hv_output;
  75        default:
  76                return 0;
  77        }
  78}
  79
  80static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
  81{
  82    uint8_t *regs = &tctx->regs[ring];
  83    uint8_t nsr = regs[TM_NSR];
  84    uint8_t mask = exception_mask(ring);
  85
  86    qemu_irq_lower(xive_tctx_output(tctx, ring));
  87
  88    if (regs[TM_NSR] & mask) {
  89        uint8_t cppr = regs[TM_PIPR];
  90
  91        regs[TM_CPPR] = cppr;
  92
  93        /* Reset the pending buffer bit */
  94        regs[TM_IPB] &= ~priority_to_ipb(cppr);
  95        regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  96
  97        /* Drop Exception bit */
  98        regs[TM_NSR] &= ~mask;
  99    }
 100
 101    return (nsr << 8) | regs[TM_CPPR];
 102}
 103
 104static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
 105{
 106    uint8_t *regs = &tctx->regs[ring];
 107
 108    if (regs[TM_PIPR] < regs[TM_CPPR]) {
 109        switch (ring) {
 110        case TM_QW1_OS:
 111            regs[TM_NSR] |= TM_QW1_NSR_EO;
 112            break;
 113        case TM_QW3_HV_PHYS:
 114            regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
 115            break;
 116        default:
 117            g_assert_not_reached();
 118        }
 119        qemu_irq_raise(xive_tctx_output(tctx, ring));
 120    }
 121}
 122
 123static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
 124{
 125    if (cppr > XIVE_PRIORITY_MAX) {
 126        cppr = 0xff;
 127    }
 128
 129    tctx->regs[ring + TM_CPPR] = cppr;
 130
 131    /* CPPR has changed, check if we need to raise a pending exception */
 132    xive_tctx_notify(tctx, ring);
 133}
 134
 135static inline uint32_t xive_tctx_word2(uint8_t *ring)
 136{
 137    return *((uint32_t *) &ring[TM_WORD2]);
 138}
 139
 140/*
 141 * XIVE Thread Interrupt Management Area (TIMA)
 142 */
 143
 144static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
 145                                uint64_t value, unsigned size)
 146{
 147    xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
 148}
 149
 150static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 151{
 152    return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
 153}
 154
 155static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
 156                                      unsigned size)
 157{
 158    uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
 159    uint32_t qw2w2;
 160
 161    qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
 162    memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
 163    return qw2w2;
 164}
 165
 166static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
 167                            uint64_t value, unsigned size)
 168{
 169    tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
 170}
 171
 172static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
 173{
 174    return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
 175}
 176
 177/*
 178 * Define an access map for each page of the TIMA that we will use in
 179 * the memory region ops to filter values when doing loads and stores
 180 * of raw registers values
 181 *
 182 * Registers accessibility bits :
 183 *
 184 *    0x0 - no access
 185 *    0x1 - write only
 186 *    0x2 - read only
 187 *    0x3 - read/write
 188 */
 189
 190static const uint8_t xive_tm_hw_view[] = {
 191    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 192    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 193    0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 194    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
 195};
 196
 197static const uint8_t xive_tm_hv_view[] = {
 198    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 199    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 200    0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 201    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
 202};
 203
 204static const uint8_t xive_tm_os_view[] = {
 205    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 206    2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 207    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 208    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 209};
 210
 211static const uint8_t xive_tm_user_view[] = {
 212    3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
 213    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 214    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 215    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 216};
 217
 218/*
 219 * Overall TIMA access map for the thread interrupt management context
 220 * registers
 221 */
 222static const uint8_t *xive_tm_views[] = {
 223    [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
 224    [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
 225    [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
 226    [XIVE_TM_USER_PAGE] = xive_tm_user_view,
 227};
 228
 229/*
 230 * Computes a register access mask for a given offset in the TIMA
 231 */
 232static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
 233{
 234    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 235    uint8_t reg_offset = offset & 0x3F;
 236    uint8_t reg_mask = write ? 0x1 : 0x2;
 237    uint64_t mask = 0x0;
 238    int i;
 239
 240    for (i = 0; i < size; i++) {
 241        if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
 242            mask |= (uint64_t) 0xff << (8 * (size - i - 1));
 243        }
 244    }
 245
 246    return mask;
 247}
 248
 249static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 250                              unsigned size)
 251{
 252    uint8_t ring_offset = offset & 0x30;
 253    uint8_t reg_offset = offset & 0x3F;
 254    uint64_t mask = xive_tm_mask(offset, size, true);
 255    int i;
 256
 257    /*
 258     * Only 4 or 8 bytes stores are allowed and the User ring is
 259     * excluded
 260     */
 261    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 262        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
 263                      HWADDR_PRIx"\n", offset);
 264        return;
 265    }
 266
 267    /*
 268     * Use the register offset for the raw values and filter out
 269     * reserved values
 270     */
 271    for (i = 0; i < size; i++) {
 272        uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
 273        if (byte_mask) {
 274            tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
 275                byte_mask;
 276        }
 277    }
 278}
 279
 280static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 281{
 282    uint8_t ring_offset = offset & 0x30;
 283    uint8_t reg_offset = offset & 0x3F;
 284    uint64_t mask = xive_tm_mask(offset, size, false);
 285    uint64_t ret;
 286    int i;
 287
 288    /*
 289     * Only 4 or 8 bytes loads are allowed and the User ring is
 290     * excluded
 291     */
 292    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 293        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
 294                      HWADDR_PRIx"\n", offset);
 295        return -1;
 296    }
 297
 298    /* Use the register offset for the raw values */
 299    ret = 0;
 300    for (i = 0; i < size; i++) {
 301        ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
 302    }
 303
 304    /* filter out reserved values */
 305    return ret & mask;
 306}
 307
 308/*
 309 * The TM context is mapped twice within each page. Stores and loads
 310 * to the first mapping below 2K write and read the specified values
 311 * without modification. The second mapping above 2K performs specific
 312 * state changes (side effects) in addition to setting/returning the
 313 * interrupt management area context of the processor thread.
 314 */
 315static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 316{
 317    return xive_tctx_accept(tctx, TM_QW1_OS);
 318}
 319
 320static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
 321                                uint64_t value, unsigned size)
 322{
 323    xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
 324}
 325
 326/*
 327 * Adjust the IPB to allow a CPU to process event queues of other
 328 * priorities during one physical interrupt cycle.
 329 */
 330static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
 331                                   uint64_t value, unsigned size)
 332{
 333    ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
 334    xive_tctx_notify(tctx, TM_QW1_OS);
 335}
 336
 337/*
 338 * Define a mapping of "special" operations depending on the TIMA page
 339 * offset and the size of the operation.
 340 */
 341typedef struct XiveTmOp {
 342    uint8_t  page_offset;
 343    uint32_t op_offset;
 344    unsigned size;
 345    void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 346                              unsigned size);
 347    uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
 348} XiveTmOp;
 349
 350static const XiveTmOp xive_tm_operations[] = {
 351    /*
 352     * MMIOs below 2K : raw values and special operations without side
 353     * effects
 354     */
 355    { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
 356    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
 357    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
 358    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
 359
 360    /* MMIOs above 2K : special operations with side effects */
 361    { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
 362    { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
 363    { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
 364    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
 365    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
 366};
 367
 368static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
 369{
 370    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 371    uint32_t op_offset = offset & 0xFFF;
 372    int i;
 373
 374    for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
 375        const XiveTmOp *xto = &xive_tm_operations[i];
 376
 377        /* Accesses done from a more privileged TIMA page is allowed */
 378        if (xto->page_offset >= page_offset &&
 379            xto->op_offset == op_offset &&
 380            xto->size == size &&
 381            ((write && xto->write_handler) || (!write && xto->read_handler))) {
 382            return xto;
 383        }
 384    }
 385    return NULL;
 386}
 387
 388/*
 389 * TIMA MMIO handlers
 390 */
 391void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 392                        unsigned size)
 393{
 394    const XiveTmOp *xto;
 395
 396    /*
 397     * TODO: check V bit in Q[0-3]W2
 398     */
 399
 400    /*
 401     * First, check for special operations in the 2K region
 402     */
 403    if (offset & 0x800) {
 404        xto = xive_tm_find_op(offset, size, true);
 405        if (!xto) {
 406            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
 407                          "@%"HWADDR_PRIx"\n", offset);
 408        } else {
 409            xto->write_handler(tctx, offset, value, size);
 410        }
 411        return;
 412    }
 413
 414    /*
 415     * Then, for special operations in the region below 2K.
 416     */
 417    xto = xive_tm_find_op(offset, size, true);
 418    if (xto) {
 419        xto->write_handler(tctx, offset, value, size);
 420        return;
 421    }
 422
 423    /*
 424     * Finish with raw access to the register values
 425     */
 426    xive_tm_raw_write(tctx, offset, value, size);
 427}
 428
 429uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 430{
 431    const XiveTmOp *xto;
 432
 433    /*
 434     * TODO: check V bit in Q[0-3]W2
 435     */
 436
 437    /*
 438     * First, check for special operations in the 2K region
 439     */
 440    if (offset & 0x800) {
 441        xto = xive_tm_find_op(offset, size, false);
 442        if (!xto) {
 443            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
 444                          "@%"HWADDR_PRIx"\n", offset);
 445            return -1;
 446        }
 447        return xto->read_handler(tctx, offset, size);
 448    }
 449
 450    /*
 451     * Then, for special operations in the region below 2K.
 452     */
 453    xto = xive_tm_find_op(offset, size, false);
 454    if (xto) {
 455        return xto->read_handler(tctx, offset, size);
 456    }
 457
 458    /*
 459     * Finish with raw access to the register values
 460     */
 461    return xive_tm_raw_read(tctx, offset, size);
 462}
 463
 464static void xive_tm_write(void *opaque, hwaddr offset,
 465                          uint64_t value, unsigned size)
 466{
 467    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 468
 469    xive_tctx_tm_write(tctx, offset, value, size);
 470}
 471
 472static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 473{
 474    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 475
 476    return xive_tctx_tm_read(tctx, offset, size);
 477}
 478
 479const MemoryRegionOps xive_tm_ops = {
 480    .read = xive_tm_read,
 481    .write = xive_tm_write,
 482    .endianness = DEVICE_BIG_ENDIAN,
 483    .valid = {
 484        .min_access_size = 1,
 485        .max_access_size = 8,
 486    },
 487    .impl = {
 488        .min_access_size = 1,
 489        .max_access_size = 8,
 490    },
 491};
 492
 493static char *xive_tctx_ring_print(uint8_t *ring)
 494{
 495    uint32_t w2 = xive_tctx_word2(ring);
 496
 497    return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
 498                   "%02x  %02x   %02x  %08x",
 499                   ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
 500                   ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
 501                   be32_to_cpu(w2));
 502}
 503
 504static const char * const xive_tctx_ring_names[] = {
 505    "USER", "OS", "POOL", "PHYS",
 506};
 507
 508void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
 509{
 510    int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
 511    int i;
 512
 513    if (kvm_irqchip_in_kernel()) {
 514        Error *local_err = NULL;
 515
 516        kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
 517        if (local_err) {
 518            error_report_err(local_err);
 519            return;
 520        }
 521    }
 522
 523    monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
 524                   "  W2\n", cpu_index);
 525
 526    for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
 527        char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
 528        monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
 529                       xive_tctx_ring_names[i], s);
 530        g_free(s);
 531    }
 532}
 533
 534static void xive_tctx_reset(void *dev)
 535{
 536    XiveTCTX *tctx = XIVE_TCTX(dev);
 537
 538    memset(tctx->regs, 0, sizeof(tctx->regs));
 539
 540    /* Set some defaults */
 541    tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
 542    tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
 543    tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
 544
 545    /*
 546     * Initialize PIPR to 0xFF to avoid phantom interrupts when the
 547     * CPPR is first set.
 548     */
 549    tctx->regs[TM_QW1_OS + TM_PIPR] =
 550        ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
 551    tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
 552        ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
 553}
 554
 555static void xive_tctx_realize(DeviceState *dev, Error **errp)
 556{
 557    XiveTCTX *tctx = XIVE_TCTX(dev);
 558    PowerPCCPU *cpu;
 559    CPUPPCState *env;
 560    Object *obj;
 561    Error *local_err = NULL;
 562
 563    obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
 564    if (!obj) {
 565        error_propagate(errp, local_err);
 566        error_prepend(errp, "required link 'cpu' not found: ");
 567        return;
 568    }
 569
 570    cpu = POWERPC_CPU(obj);
 571    tctx->cs = CPU(obj);
 572
 573    env = &cpu->env;
 574    switch (PPC_INPUT(env)) {
 575    case PPC_FLAGS_INPUT_POWER9:
 576        tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
 577        tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
 578        break;
 579
 580    default:
 581        error_setg(errp, "XIVE interrupt controller does not support "
 582                   "this CPU bus model");
 583        return;
 584    }
 585
 586    /* Connect the presenter to the VCPU (required for CPU hotplug) */
 587    if (kvm_irqchip_in_kernel()) {
 588        kvmppc_xive_cpu_connect(tctx, &local_err);
 589        if (local_err) {
 590            error_propagate(errp, local_err);
 591            return;
 592        }
 593    }
 594
 595    qemu_register_reset(xive_tctx_reset, dev);
 596}
 597
 598static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
 599{
 600    qemu_unregister_reset(xive_tctx_reset, dev);
 601}
 602
 603static int vmstate_xive_tctx_pre_save(void *opaque)
 604{
 605    Error *local_err = NULL;
 606
 607    if (kvm_irqchip_in_kernel()) {
 608        kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
 609        if (local_err) {
 610            error_report_err(local_err);
 611            return -1;
 612        }
 613    }
 614
 615    return 0;
 616}
 617
 618static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
 619{
 620    Error *local_err = NULL;
 621
 622    if (kvm_irqchip_in_kernel()) {
 623        /*
 624         * Required for hotplugged CPU, for which the state comes
 625         * after all states of the machine.
 626         */
 627        kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
 628        if (local_err) {
 629            error_report_err(local_err);
 630            return -1;
 631        }
 632    }
 633
 634    return 0;
 635}
 636
 637static const VMStateDescription vmstate_xive_tctx = {
 638    .name = TYPE_XIVE_TCTX,
 639    .version_id = 1,
 640    .minimum_version_id = 1,
 641    .pre_save = vmstate_xive_tctx_pre_save,
 642    .post_load = vmstate_xive_tctx_post_load,
 643    .fields = (VMStateField[]) {
 644        VMSTATE_BUFFER(regs, XiveTCTX),
 645        VMSTATE_END_OF_LIST()
 646    },
 647};
 648
 649static void xive_tctx_class_init(ObjectClass *klass, void *data)
 650{
 651    DeviceClass *dc = DEVICE_CLASS(klass);
 652
 653    dc->desc = "XIVE Interrupt Thread Context";
 654    dc->realize = xive_tctx_realize;
 655    dc->unrealize = xive_tctx_unrealize;
 656    dc->vmsd = &vmstate_xive_tctx;
 657}
 658
 659static const TypeInfo xive_tctx_info = {
 660    .name          = TYPE_XIVE_TCTX,
 661    .parent        = TYPE_DEVICE,
 662    .instance_size = sizeof(XiveTCTX),
 663    .class_init    = xive_tctx_class_init,
 664};
 665
 666Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
 667{
 668    Error *local_err = NULL;
 669    Object *obj;
 670
 671    obj = object_new(TYPE_XIVE_TCTX);
 672    object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
 673    object_unref(obj);
 674    object_property_add_const_link(obj, "cpu", cpu, &error_abort);
 675    object_property_set_bool(obj, true, "realized", &local_err);
 676    if (local_err) {
 677        goto error;
 678    }
 679
 680    return obj;
 681
 682error:
 683    object_unparent(obj);
 684    error_propagate(errp, local_err);
 685    return NULL;
 686}
 687
 688/*
 689 * XIVE ESB helpers
 690 */
 691
 692static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
 693{
 694    uint8_t old_pq = *pq & 0x3;
 695
 696    *pq &= ~0x3;
 697    *pq |= value & 0x3;
 698
 699    return old_pq;
 700}
 701
 702static bool xive_esb_trigger(uint8_t *pq)
 703{
 704    uint8_t old_pq = *pq & 0x3;
 705
 706    switch (old_pq) {
 707    case XIVE_ESB_RESET:
 708        xive_esb_set(pq, XIVE_ESB_PENDING);
 709        return true;
 710    case XIVE_ESB_PENDING:
 711    case XIVE_ESB_QUEUED:
 712        xive_esb_set(pq, XIVE_ESB_QUEUED);
 713        return false;
 714    case XIVE_ESB_OFF:
 715        xive_esb_set(pq, XIVE_ESB_OFF);
 716        return false;
 717    default:
 718         g_assert_not_reached();
 719    }
 720}
 721
 722static bool xive_esb_eoi(uint8_t *pq)
 723{
 724    uint8_t old_pq = *pq & 0x3;
 725
 726    switch (old_pq) {
 727    case XIVE_ESB_RESET:
 728    case XIVE_ESB_PENDING:
 729        xive_esb_set(pq, XIVE_ESB_RESET);
 730        return false;
 731    case XIVE_ESB_QUEUED:
 732        xive_esb_set(pq, XIVE_ESB_PENDING);
 733        return true;
 734    case XIVE_ESB_OFF:
 735        xive_esb_set(pq, XIVE_ESB_OFF);
 736        return false;
 737    default:
 738         g_assert_not_reached();
 739    }
 740}
 741
 742/*
 743 * XIVE Interrupt Source (or IVSE)
 744 */
 745
 746uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
 747{
 748    assert(srcno < xsrc->nr_irqs);
 749
 750    return xsrc->status[srcno] & 0x3;
 751}
 752
 753uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
 754{
 755    assert(srcno < xsrc->nr_irqs);
 756
 757    return xive_esb_set(&xsrc->status[srcno], pq);
 758}
 759
 760/*
 761 * Returns whether the event notification should be forwarded.
 762 */
 763static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
 764{
 765    uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
 766
 767    xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
 768
 769    switch (old_pq) {
 770    case XIVE_ESB_RESET:
 771        xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
 772        return true;
 773    default:
 774        return false;
 775    }
 776}
 777
 778/*
 779 * Returns whether the event notification should be forwarded.
 780 */
 781static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
 782{
 783    bool ret;
 784
 785    assert(srcno < xsrc->nr_irqs);
 786
 787    ret = xive_esb_trigger(&xsrc->status[srcno]);
 788
 789    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 790        xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
 791        qemu_log_mask(LOG_GUEST_ERROR,
 792                      "XIVE: queued an event on LSI IRQ %d\n", srcno);
 793    }
 794
 795    return ret;
 796}
 797
 798/*
 799 * Returns whether the event notification should be forwarded.
 800 */
 801static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
 802{
 803    bool ret;
 804
 805    assert(srcno < xsrc->nr_irqs);
 806
 807    ret = xive_esb_eoi(&xsrc->status[srcno]);
 808
 809    /*
 810     * LSI sources do not set the Q bit but they can still be
 811     * asserted, in which case we should forward a new event
 812     * notification
 813     */
 814    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 815        xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
 816        ret = xive_source_lsi_trigger(xsrc, srcno);
 817    }
 818
 819    return ret;
 820}
 821
 822/*
 823 * Forward the source event notification to the Router
 824 */
 825static void xive_source_notify(XiveSource *xsrc, int srcno)
 826{
 827    XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
 828
 829    if (xnc->notify) {
 830        xnc->notify(xsrc->xive, srcno);
 831    }
 832}
 833
 834/*
 835 * In a two pages ESB MMIO setting, even page is the trigger page, odd
 836 * page is for management
 837 */
 838static inline bool addr_is_even(hwaddr addr, uint32_t shift)
 839{
 840    return !((addr >> shift) & 1);
 841}
 842
 843static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
 844{
 845    return xive_source_esb_has_2page(xsrc) &&
 846        addr_is_even(addr, xsrc->esb_shift - 1);
 847}
 848
 849/*
 850 * ESB MMIO loads
 851 *                      Trigger page    Management/EOI page
 852 *
 853 * ESB MMIO setting     2 pages         1 or 2 pages
 854 *
 855 * 0x000 .. 0x3FF       -1              EOI and return 0|1
 856 * 0x400 .. 0x7FF       -1              EOI and return 0|1
 857 * 0x800 .. 0xBFF       -1              return PQ
 858 * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
 859 * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
 860 * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
 861 * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
 862 */
 863static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
 864{
 865    XiveSource *xsrc = XIVE_SOURCE(opaque);
 866    uint32_t offset = addr & 0xFFF;
 867    uint32_t srcno = addr >> xsrc->esb_shift;
 868    uint64_t ret = -1;
 869
 870    /* In a two pages ESB MMIO setting, trigger page should not be read */
 871    if (xive_source_is_trigger_page(xsrc, addr)) {
 872        qemu_log_mask(LOG_GUEST_ERROR,
 873                      "XIVE: invalid load on IRQ %d trigger page at "
 874                      "0x%"HWADDR_PRIx"\n", srcno, addr);
 875        return -1;
 876    }
 877
 878    switch (offset) {
 879    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
 880        ret = xive_source_esb_eoi(xsrc, srcno);
 881
 882        /* Forward the source event notification for routing */
 883        if (ret) {
 884            xive_source_notify(xsrc, srcno);
 885        }
 886        break;
 887
 888    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
 889        ret = xive_source_esb_get(xsrc, srcno);
 890        break;
 891
 892    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 893    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 894    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 895    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 896        ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 897        break;
 898    default:
 899        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
 900                      offset);
 901    }
 902
 903    return ret;
 904}
 905
 906/*
 907 * ESB MMIO stores
 908 *                      Trigger page    Management/EOI page
 909 *
 910 * ESB MMIO setting     2 pages         1 or 2 pages
 911 *
 912 * 0x000 .. 0x3FF       Trigger         Trigger
 913 * 0x400 .. 0x7FF       Trigger         EOI
 914 * 0x800 .. 0xBFF       Trigger         undefined
 915 * 0xC00 .. 0xCFF       Trigger         PQ=00
 916 * 0xD00 .. 0xDFF       Trigger         PQ=01
 917 * 0xE00 .. 0xDFF       Trigger         PQ=10
 918 * 0xF00 .. 0xDFF       Trigger         PQ=11
 919 */
 920static void xive_source_esb_write(void *opaque, hwaddr addr,
 921                                  uint64_t value, unsigned size)
 922{
 923    XiveSource *xsrc = XIVE_SOURCE(opaque);
 924    uint32_t offset = addr & 0xFFF;
 925    uint32_t srcno = addr >> xsrc->esb_shift;
 926    bool notify = false;
 927
 928    /* In a two pages ESB MMIO setting, trigger page only triggers */
 929    if (xive_source_is_trigger_page(xsrc, addr)) {
 930        notify = xive_source_esb_trigger(xsrc, srcno);
 931        goto out;
 932    }
 933
 934    switch (offset) {
 935    case 0 ... 0x3FF:
 936        notify = xive_source_esb_trigger(xsrc, srcno);
 937        break;
 938
 939    case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
 940        if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
 941            qemu_log_mask(LOG_GUEST_ERROR,
 942                          "XIVE: invalid Store EOI for IRQ %d\n", srcno);
 943            return;
 944        }
 945
 946        notify = xive_source_esb_eoi(xsrc, srcno);
 947        break;
 948
 949    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 950    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 951    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 952    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 953        xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 954        break;
 955
 956    default:
 957        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
 958                      offset);
 959        return;
 960    }
 961
 962out:
 963    /* Forward the source event notification for routing */
 964    if (notify) {
 965        xive_source_notify(xsrc, srcno);
 966    }
 967}
 968
 969static const MemoryRegionOps xive_source_esb_ops = {
 970    .read = xive_source_esb_read,
 971    .write = xive_source_esb_write,
 972    .endianness = DEVICE_BIG_ENDIAN,
 973    .valid = {
 974        .min_access_size = 8,
 975        .max_access_size = 8,
 976    },
 977    .impl = {
 978        .min_access_size = 8,
 979        .max_access_size = 8,
 980    },
 981};
 982
 983void xive_source_set_irq(void *opaque, int srcno, int val)
 984{
 985    XiveSource *xsrc = XIVE_SOURCE(opaque);
 986    bool notify = false;
 987
 988    if (xive_source_irq_is_lsi(xsrc, srcno)) {
 989        if (val) {
 990            notify = xive_source_lsi_trigger(xsrc, srcno);
 991        } else {
 992            xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
 993        }
 994    } else {
 995        if (val) {
 996            notify = xive_source_esb_trigger(xsrc, srcno);
 997        }
 998    }
 999
1000    /* Forward the source event notification for routing */
1001    if (notify) {
1002        xive_source_notify(xsrc, srcno);
1003    }
1004}
1005
1006void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1007{
1008    int i;
1009
1010    for (i = 0; i < xsrc->nr_irqs; i++) {
1011        uint8_t pq = xive_source_esb_get(xsrc, i);
1012
1013        if (pq == XIVE_ESB_OFF) {
1014            continue;
1015        }
1016
1017        monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1018                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1019                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
1020                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1021                       xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1022    }
1023}
1024
1025static void xive_source_reset(void *dev)
1026{
1027    XiveSource *xsrc = XIVE_SOURCE(dev);
1028
1029    /* Do not clear the LSI bitmap */
1030
1031    /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1032    memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1033}
1034
1035static void xive_source_realize(DeviceState *dev, Error **errp)
1036{
1037    XiveSource *xsrc = XIVE_SOURCE(dev);
1038    Object *obj;
1039    Error *local_err = NULL;
1040
1041    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1042    if (!obj) {
1043        error_propagate(errp, local_err);
1044        error_prepend(errp, "required link 'xive' not found: ");
1045        return;
1046    }
1047
1048    xsrc->xive = XIVE_NOTIFIER(obj);
1049
1050    if (!xsrc->nr_irqs) {
1051        error_setg(errp, "Number of interrupt needs to be greater than 0");
1052        return;
1053    }
1054
1055    if (xsrc->esb_shift != XIVE_ESB_4K &&
1056        xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1057        xsrc->esb_shift != XIVE_ESB_64K &&
1058        xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1059        error_setg(errp, "Invalid ESB shift setting");
1060        return;
1061    }
1062
1063    xsrc->status = g_malloc0(xsrc->nr_irqs);
1064    xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1065
1066    if (!kvm_irqchip_in_kernel()) {
1067        memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1068                              &xive_source_esb_ops, xsrc, "xive.esb",
1069                              (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1070    }
1071
1072    qemu_register_reset(xive_source_reset, dev);
1073}
1074
1075static const VMStateDescription vmstate_xive_source = {
1076    .name = TYPE_XIVE_SOURCE,
1077    .version_id = 1,
1078    .minimum_version_id = 1,
1079    .fields = (VMStateField[]) {
1080        VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1081        VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1082        VMSTATE_END_OF_LIST()
1083    },
1084};
1085
1086/*
1087 * The default XIVE interrupt source setting for the ESB MMIOs is two
1088 * 64k pages without Store EOI, to be in sync with KVM.
1089 */
1090static Property xive_source_properties[] = {
1091    DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1092    DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1093    DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1094    DEFINE_PROP_END_OF_LIST(),
1095};
1096
1097static void xive_source_class_init(ObjectClass *klass, void *data)
1098{
1099    DeviceClass *dc = DEVICE_CLASS(klass);
1100
1101    dc->desc    = "XIVE Interrupt Source";
1102    dc->props   = xive_source_properties;
1103    dc->realize = xive_source_realize;
1104    dc->vmsd    = &vmstate_xive_source;
1105}
1106
1107static const TypeInfo xive_source_info = {
1108    .name          = TYPE_XIVE_SOURCE,
1109    .parent        = TYPE_DEVICE,
1110    .instance_size = sizeof(XiveSource),
1111    .class_init    = xive_source_class_init,
1112};
1113
1114/*
1115 * XiveEND helpers
1116 */
1117
1118void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1119{
1120    uint64_t qaddr_base = xive_end_qaddr(end);
1121    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1122    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1123    uint32_t qentries = 1 << (qsize + 10);
1124    int i;
1125
1126    /*
1127     * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1128     */
1129    monitor_printf(mon, " [ ");
1130    qindex = (qindex - (width - 1)) & (qentries - 1);
1131    for (i = 0; i < width; i++) {
1132        uint64_t qaddr = qaddr_base + (qindex << 2);
1133        uint32_t qdata = -1;
1134
1135        if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1136                            sizeof(qdata))) {
1137            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1138                          HWADDR_PRIx "\n", qaddr);
1139            return;
1140        }
1141        monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1142                       be32_to_cpu(qdata));
1143        qindex = (qindex + 1) & (qentries - 1);
1144    }
1145}
1146
1147void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1148{
1149    uint64_t qaddr_base = xive_end_qaddr(end);
1150    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1151    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1152    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1153    uint32_t qentries = 1 << (qsize + 10);
1154
1155    uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1156    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1157
1158    if (!xive_end_is_valid(end)) {
1159        return;
1160    }
1161
1162    monitor_printf(mon, "  %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1163                   "% 6d/%5d ^%d", end_idx,
1164                   xive_end_is_valid(end)    ? 'v' : '-',
1165                   xive_end_is_enqueue(end)  ? 'q' : '-',
1166                   xive_end_is_notify(end)   ? 'n' : '-',
1167                   xive_end_is_backlog(end)  ? 'b' : '-',
1168                   xive_end_is_escalate(end) ? 'e' : '-',
1169                   priority, nvt, qaddr_base, qindex, qentries, qgen);
1170
1171    xive_end_queue_pic_print_info(end, 6, mon);
1172    monitor_printf(mon, "]\n");
1173}
1174
1175static void xive_end_enqueue(XiveEND *end, uint32_t data)
1176{
1177    uint64_t qaddr_base = xive_end_qaddr(end);
1178    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1179    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1180    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1181
1182    uint64_t qaddr = qaddr_base + (qindex << 2);
1183    uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1184    uint32_t qentries = 1 << (qsize + 10);
1185
1186    if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1187        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1188                      HWADDR_PRIx "\n", qaddr);
1189        return;
1190    }
1191
1192    qindex = (qindex + 1) & (qentries - 1);
1193    if (qindex == 0) {
1194        qgen ^= 1;
1195        end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1196    }
1197    end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1198}
1199
1200/*
1201 * XIVE Router (aka. Virtualization Controller or IVRE)
1202 */
1203
1204int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1205                        XiveEAS *eas)
1206{
1207    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1208
1209    return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1210}
1211
1212int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1213                        XiveEND *end)
1214{
1215   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1216
1217   return xrc->get_end(xrtr, end_blk, end_idx, end);
1218}
1219
1220int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1221                          XiveEND *end, uint8_t word_number)
1222{
1223   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1224
1225   return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1226}
1227
1228int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1229                        XiveNVT *nvt)
1230{
1231   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1232
1233   return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1234}
1235
1236int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1237                        XiveNVT *nvt, uint8_t word_number)
1238{
1239   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1240
1241   return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1242}
1243
1244XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1245{
1246    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1247
1248    return xrc->get_tctx(xrtr, cs);
1249}
1250
1251/*
1252 * Encode the HW CAM line in the block group mode format :
1253 *
1254 *   chip << 19 | 0000000 0 0001 thread (7Bit)
1255 */
1256static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1257{
1258    CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1259    uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1260
1261    return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1262}
1263
1264/*
1265 * The thread context register words are in big-endian format.
1266 */
1267static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1268                                     uint8_t nvt_blk, uint32_t nvt_idx,
1269                                     bool cam_ignore, uint32_t logic_serv)
1270{
1271    uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1272    uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1273    uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1274    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1275    uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1276
1277    /*
1278     * TODO (PowerNV): ignore mode. The low order bits of the NVT
1279     * identifier are ignored in the "CAM" match.
1280     */
1281
1282    if (format == 0) {
1283        if (cam_ignore == true) {
1284            /*
1285             * F=0 & i=1: Logical server notification (bits ignored at
1286             * the end of the NVT identifier)
1287             */
1288            qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1289                          nvt_blk, nvt_idx);
1290             return -1;
1291        }
1292
1293        /* F=0 & i=0: Specific NVT notification */
1294
1295        /* PHYS ring */
1296        if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1297            cam == xive_tctx_hw_cam_line(tctx)) {
1298            return TM_QW3_HV_PHYS;
1299        }
1300
1301        /* HV POOL ring */
1302        if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1303            cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1304            return TM_QW2_HV_POOL;
1305        }
1306
1307        /* OS ring */
1308        if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1309            cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1310            return TM_QW1_OS;
1311        }
1312    } else {
1313        /* F=1 : User level Event-Based Branch (EBB) notification */
1314
1315        /* USER ring */
1316        if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1317             (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1318             (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1319             (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1320            return TM_QW0_USER;
1321        }
1322    }
1323    return -1;
1324}
1325
1326typedef struct XiveTCTXMatch {
1327    XiveTCTX *tctx;
1328    uint8_t ring;
1329} XiveTCTXMatch;
1330
1331static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1332                                 uint8_t nvt_blk, uint32_t nvt_idx,
1333                                 bool cam_ignore, uint8_t priority,
1334                                 uint32_t logic_serv, XiveTCTXMatch *match)
1335{
1336    CPUState *cs;
1337
1338    /*
1339     * TODO (PowerNV): handle chip_id overwrite of block field for
1340     * hardwired CAM compares
1341     */
1342
1343    CPU_FOREACH(cs) {
1344        XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1345        int ring;
1346
1347        /*
1348         * HW checks that the CPU is enabled in the Physical Thread
1349         * Enable Register (PTER).
1350         */
1351
1352        /*
1353         * Check the thread context CAM lines and record matches. We
1354         * will handle CPU exception delivery later
1355         */
1356        ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1357                                         cam_ignore, logic_serv);
1358        /*
1359         * Save the context and follow on to catch duplicates, that we
1360         * don't support yet.
1361         */
1362        if (ring != -1) {
1363            if (match->tctx) {
1364                qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1365                              "context NVT %x/%x\n", nvt_blk, nvt_idx);
1366                return false;
1367            }
1368
1369            match->ring = ring;
1370            match->tctx = tctx;
1371        }
1372    }
1373
1374    if (!match->tctx) {
1375        qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1376                      nvt_blk, nvt_idx);
1377        return false;
1378    }
1379
1380    return true;
1381}
1382
1383/*
1384 * This is our simple Xive Presenter Engine model. It is merged in the
1385 * Router as it does not require an extra object.
1386 *
1387 * It receives notification requests sent by the IVRE to find one
1388 * matching NVT (or more) dispatched on the processor threads. In case
1389 * of a single NVT notification, the process is abreviated and the
1390 * thread is signaled if a match is found. In case of a logical server
1391 * notification (bits ignored at the end of the NVT identifier), the
1392 * IVPE and IVRE select a winning thread using different filters. This
1393 * involves 2 or 3 exchanges on the PowerBus that the model does not
1394 * support.
1395 *
1396 * The parameters represent what is sent on the PowerBus
1397 */
1398static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1399                                  uint8_t nvt_blk, uint32_t nvt_idx,
1400                                  bool cam_ignore, uint8_t priority,
1401                                  uint32_t logic_serv)
1402{
1403    XiveNVT nvt;
1404    XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1405    bool found;
1406
1407    /* NVT cache lookup */
1408    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1409        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1410                      nvt_blk, nvt_idx);
1411        return;
1412    }
1413
1414    if (!xive_nvt_is_valid(&nvt)) {
1415        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1416                      nvt_blk, nvt_idx);
1417        return;
1418    }
1419
1420    found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1421                                 priority, logic_serv, &match);
1422    if (found) {
1423        ipb_update(&match.tctx->regs[match.ring], priority);
1424        xive_tctx_notify(match.tctx, match.ring);
1425        return;
1426    }
1427
1428    /* Record the IPB in the associated NVT structure */
1429    ipb_update((uint8_t *) &nvt.w4, priority);
1430    xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1431
1432    /*
1433     * If no matching NVT is dispatched on a HW thread :
1434     * - update the NVT structure if backlog is activated
1435     * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1436     *   activated
1437     */
1438}
1439
1440/*
1441 * An END trigger can come from an event trigger (IPI or HW) or from
1442 * another chip. We don't model the PowerBus but the END trigger
1443 * message has the same parameters than in the function below.
1444 */
1445static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1446                                   uint32_t end_idx, uint32_t end_data)
1447{
1448    XiveEND end;
1449    uint8_t priority;
1450    uint8_t format;
1451
1452    /* END cache lookup */
1453    if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1454        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1455                      end_idx);
1456        return;
1457    }
1458
1459    if (!xive_end_is_valid(&end)) {
1460        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1461                      end_blk, end_idx);
1462        return;
1463    }
1464
1465    if (xive_end_is_enqueue(&end)) {
1466        xive_end_enqueue(&end, end_data);
1467        /* Enqueuing event data modifies the EQ toggle and index */
1468        xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1469    }
1470
1471    /*
1472     * The W7 format depends on the F bit in W6. It defines the type
1473     * of the notification :
1474     *
1475     *   F=0 : single or multiple NVT notification
1476     *   F=1 : User level Event-Based Branch (EBB) notification, no
1477     *         priority
1478     */
1479    format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1480    priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1481
1482    /* The END is masked */
1483    if (format == 0 && priority == 0xff) {
1484        return;
1485    }
1486
1487    /*
1488     * Check the END ESn (Event State Buffer for notification) for
1489     * even futher coalescing in the Router
1490     */
1491    if (!xive_end_is_notify(&end)) {
1492        uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1493        bool notify = xive_esb_trigger(&pq);
1494
1495        if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1496            end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1497            xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1498        }
1499
1500        /* ESn[Q]=1 : end of notification */
1501        if (!notify) {
1502            return;
1503        }
1504    }
1505
1506    /*
1507     * Follows IVPE notification
1508     */
1509    xive_presenter_notify(xrtr, format,
1510                          xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1511                          xive_get_field32(END_W6_NVT_INDEX, end.w6),
1512                          xive_get_field32(END_W7_F0_IGNORE, end.w7),
1513                          priority,
1514                          xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1515
1516    /* TODO: Auto EOI. */
1517}
1518
1519void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1520{
1521    XiveRouter *xrtr = XIVE_ROUTER(xn);
1522    uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1523    uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1524    XiveEAS eas;
1525
1526    /* EAS cache lookup */
1527    if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1528        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1529        return;
1530    }
1531
1532    /*
1533     * The IVRE checks the State Bit Cache at this point. We skip the
1534     * SBC lookup because the state bits of the sources are modeled
1535     * internally in QEMU.
1536     */
1537
1538    if (!xive_eas_is_valid(&eas)) {
1539        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1540        return;
1541    }
1542
1543    if (xive_eas_is_masked(&eas)) {
1544        /* Notification completed */
1545        return;
1546    }
1547
1548    /*
1549     * The event trigger becomes an END trigger
1550     */
1551    xive_router_end_notify(xrtr,
1552                           xive_get_field64(EAS_END_BLOCK, eas.w),
1553                           xive_get_field64(EAS_END_INDEX, eas.w),
1554                           xive_get_field64(EAS_END_DATA,  eas.w));
1555}
1556
1557static void xive_router_class_init(ObjectClass *klass, void *data)
1558{
1559    DeviceClass *dc = DEVICE_CLASS(klass);
1560    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1561
1562    dc->desc    = "XIVE Router Engine";
1563    xnc->notify = xive_router_notify;
1564}
1565
1566static const TypeInfo xive_router_info = {
1567    .name          = TYPE_XIVE_ROUTER,
1568    .parent        = TYPE_SYS_BUS_DEVICE,
1569    .abstract      = true,
1570    .class_size    = sizeof(XiveRouterClass),
1571    .class_init    = xive_router_class_init,
1572    .interfaces    = (InterfaceInfo[]) {
1573        { TYPE_XIVE_NOTIFIER },
1574        { }
1575    }
1576};
1577
1578void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1579{
1580    if (!xive_eas_is_valid(eas)) {
1581        return;
1582    }
1583
1584    monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1585                   lisn, xive_eas_is_masked(eas) ? "M" : " ",
1586                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1587                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1588                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1589}
1590
1591/*
1592 * END ESB MMIO loads
1593 */
1594static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1595{
1596    XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1597    uint32_t offset = addr & 0xFFF;
1598    uint8_t end_blk;
1599    uint32_t end_idx;
1600    XiveEND end;
1601    uint32_t end_esmask;
1602    uint8_t pq;
1603    uint64_t ret = -1;
1604
1605    end_blk = xsrc->block_id;
1606    end_idx = addr >> (xsrc->esb_shift + 1);
1607
1608    if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1609        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1610                      end_idx);
1611        return -1;
1612    }
1613
1614    if (!xive_end_is_valid(&end)) {
1615        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1616                      end_blk, end_idx);
1617        return -1;
1618    }
1619
1620    end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1621    pq = xive_get_field32(end_esmask, end.w1);
1622
1623    switch (offset) {
1624    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1625        ret = xive_esb_eoi(&pq);
1626
1627        /* Forward the source event notification for routing ?? */
1628        break;
1629
1630    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1631        ret = pq;
1632        break;
1633
1634    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1635    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1636    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1637    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1638        ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1639        break;
1640    default:
1641        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1642                      offset);
1643        return -1;
1644    }
1645
1646    if (pq != xive_get_field32(end_esmask, end.w1)) {
1647        end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1648        xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1649    }
1650
1651    return ret;
1652}
1653
1654/*
1655 * END ESB MMIO stores are invalid
1656 */
1657static void xive_end_source_write(void *opaque, hwaddr addr,
1658                                  uint64_t value, unsigned size)
1659{
1660    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1661                  HWADDR_PRIx"\n", addr);
1662}
1663
1664static const MemoryRegionOps xive_end_source_ops = {
1665    .read = xive_end_source_read,
1666    .write = xive_end_source_write,
1667    .endianness = DEVICE_BIG_ENDIAN,
1668    .valid = {
1669        .min_access_size = 8,
1670        .max_access_size = 8,
1671    },
1672    .impl = {
1673        .min_access_size = 8,
1674        .max_access_size = 8,
1675    },
1676};
1677
1678static void xive_end_source_realize(DeviceState *dev, Error **errp)
1679{
1680    XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1681    Object *obj;
1682    Error *local_err = NULL;
1683
1684    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1685    if (!obj) {
1686        error_propagate(errp, local_err);
1687        error_prepend(errp, "required link 'xive' not found: ");
1688        return;
1689    }
1690
1691    xsrc->xrtr = XIVE_ROUTER(obj);
1692
1693    if (!xsrc->nr_ends) {
1694        error_setg(errp, "Number of interrupt needs to be greater than 0");
1695        return;
1696    }
1697
1698    if (xsrc->esb_shift != XIVE_ESB_4K &&
1699        xsrc->esb_shift != XIVE_ESB_64K) {
1700        error_setg(errp, "Invalid ESB shift setting");
1701        return;
1702    }
1703
1704    /*
1705     * Each END is assigned an even/odd pair of MMIO pages, the even page
1706     * manages the ESn field while the odd page manages the ESe field.
1707     */
1708    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1709                          &xive_end_source_ops, xsrc, "xive.end",
1710                          (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1711}
1712
1713static Property xive_end_source_properties[] = {
1714    DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1715    DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1716    DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1717    DEFINE_PROP_END_OF_LIST(),
1718};
1719
1720static void xive_end_source_class_init(ObjectClass *klass, void *data)
1721{
1722    DeviceClass *dc = DEVICE_CLASS(klass);
1723
1724    dc->desc    = "XIVE END Source";
1725    dc->props   = xive_end_source_properties;
1726    dc->realize = xive_end_source_realize;
1727}
1728
1729static const TypeInfo xive_end_source_info = {
1730    .name          = TYPE_XIVE_END_SOURCE,
1731    .parent        = TYPE_DEVICE,
1732    .instance_size = sizeof(XiveENDSource),
1733    .class_init    = xive_end_source_class_init,
1734};
1735
1736/*
1737 * XIVE Notifier
1738 */
1739static const TypeInfo xive_notifier_info = {
1740    .name = TYPE_XIVE_NOTIFIER,
1741    .parent = TYPE_INTERFACE,
1742    .class_size = sizeof(XiveNotifierClass),
1743};
1744
1745static void xive_register_types(void)
1746{
1747    type_register_static(&xive_source_info);
1748    type_register_static(&xive_notifier_info);
1749    type_register_static(&xive_router_info);
1750    type_register_static(&xive_end_source_info);
1751    type_register_static(&xive_tctx_info);
1752}
1753
1754type_init(xive_register_types)
1755