qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "exec/address-spaces.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/hw.h"
  27#include "hw/ide/pci.h"
  28#include "hw/ide/ahci.h"
  29#include "hw/loader.h"
  30#include "hw/loader-fit.h"
  31#include "hw/mips/cps.h"
  32#include "hw/mips/cpudevs.h"
  33#include "hw/pci-host/xilinx-pcie.h"
  34#include "qapi/error.h"
  35#include "qemu/error-report.h"
  36#include "qemu/log.h"
  37#include "chardev/char.h"
  38#include "sysemu/device_tree.h"
  39#include "sysemu/sysemu.h"
  40#include "sysemu/qtest.h"
  41
  42#include <libfdt.h>
  43
  44#define TYPE_MIPS_BOSTON "mips-boston"
  45#define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
  46
  47typedef struct {
  48    SysBusDevice parent_obj;
  49
  50    MachineState *mach;
  51    MIPSCPSState cps;
  52    SerialState *uart;
  53
  54    CharBackend lcd_display;
  55    char lcd_content[8];
  56    bool lcd_inited;
  57
  58    hwaddr kernel_entry;
  59    hwaddr fdt_base;
  60} BostonState;
  61
  62enum boston_plat_reg {
  63    PLAT_FPGA_BUILD     = 0x00,
  64    PLAT_CORE_CL        = 0x04,
  65    PLAT_WRAPPER_CL     = 0x08,
  66    PLAT_SYSCLK_STATUS  = 0x0c,
  67    PLAT_SOFTRST_CTL    = 0x10,
  68#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
  69    PLAT_DDR3_STATUS    = 0x14,
  70#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
  71#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
  72    PLAT_PCIE_STATUS    = 0x18,
  73#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
  74#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
  75#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
  76    PLAT_FLASH_CTL      = 0x1c,
  77    PLAT_SPARE0         = 0x20,
  78    PLAT_SPARE1         = 0x24,
  79    PLAT_SPARE2         = 0x28,
  80    PLAT_SPARE3         = 0x2c,
  81    PLAT_MMCM_DIV       = 0x30,
  82#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
  83#define PLAT_MMCM_DIV_INPUT_SHIFT       8
  84#define PLAT_MMCM_DIV_MUL_SHIFT         16
  85#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
  86    PLAT_BUILD_CFG      = 0x34,
  87#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
  88#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
  89#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
  90#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
  91    PLAT_DDR_CFG        = 0x38,
  92#define PLAT_DDR_CFG_SIZE               (0xf << 0)
  93#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
  94    PLAT_NOC_PCIE0_ADDR = 0x3c,
  95    PLAT_NOC_PCIE1_ADDR = 0x40,
  96    PLAT_NOC_PCIE2_ADDR = 0x44,
  97    PLAT_SYS_CTL        = 0x48,
  98};
  99
 100static void boston_lcd_event(void *opaque, int event)
 101{
 102    BostonState *s = opaque;
 103    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 104        qemu_chr_fe_printf(&s->lcd_display, "        ");
 105        s->lcd_inited = true;
 106    }
 107}
 108
 109static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 110                                unsigned size)
 111{
 112    BostonState *s = opaque;
 113    uint64_t val = 0;
 114
 115    switch (size) {
 116    case 8:
 117        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 118        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 119        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 120        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 121        /* fall through */
 122    case 4:
 123        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 124        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 125        /* fall through */
 126    case 2:
 127        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 128        /* fall through */
 129    case 1:
 130        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 131        break;
 132    }
 133
 134    return val;
 135}
 136
 137static void boston_lcd_write(void *opaque, hwaddr addr,
 138                             uint64_t val, unsigned size)
 139{
 140    BostonState *s = opaque;
 141
 142    switch (size) {
 143    case 8:
 144        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 145        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 146        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 147        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 148        /* fall through */
 149    case 4:
 150        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 151        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 152        /* fall through */
 153    case 2:
 154        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 155        /* fall through */
 156    case 1:
 157        s->lcd_content[(addr + 0) & 0x7] = val;
 158        break;
 159    }
 160
 161    qemu_chr_fe_printf(&s->lcd_display,
 162                       "\r%-8.8s", s->lcd_content);
 163}
 164
 165static const MemoryRegionOps boston_lcd_ops = {
 166    .read = boston_lcd_read,
 167    .write = boston_lcd_write,
 168    .endianness = DEVICE_NATIVE_ENDIAN,
 169};
 170
 171static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 172                                    unsigned size)
 173{
 174    BostonState *s = opaque;
 175    uint32_t gic_freq, val;
 176
 177    if (size != 4) {
 178        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 179        return 0;
 180    }
 181
 182    switch (addr & 0xffff) {
 183    case PLAT_FPGA_BUILD:
 184    case PLAT_CORE_CL:
 185    case PLAT_WRAPPER_CL:
 186        return 0;
 187    case PLAT_DDR3_STATUS:
 188        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 189    case PLAT_MMCM_DIV:
 190        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 191        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 192        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 193        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 194        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 195        return val;
 196    case PLAT_BUILD_CFG:
 197        val = PLAT_BUILD_CFG_PCIE0_EN;
 198        val |= PLAT_BUILD_CFG_PCIE1_EN;
 199        val |= PLAT_BUILD_CFG_PCIE2_EN;
 200        return val;
 201    case PLAT_DDR_CFG:
 202        val = s->mach->ram_size / GiB;
 203        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 204        val |= PLAT_DDR_CFG_MHZ;
 205        return val;
 206    default:
 207        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 208                      addr & 0xffff);
 209        return 0;
 210    }
 211}
 212
 213static void boston_platreg_write(void *opaque, hwaddr addr,
 214                                 uint64_t val, unsigned size)
 215{
 216    if (size != 4) {
 217        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 218        return;
 219    }
 220
 221    switch (addr & 0xffff) {
 222    case PLAT_FPGA_BUILD:
 223    case PLAT_CORE_CL:
 224    case PLAT_WRAPPER_CL:
 225    case PLAT_DDR3_STATUS:
 226    case PLAT_PCIE_STATUS:
 227    case PLAT_MMCM_DIV:
 228    case PLAT_BUILD_CFG:
 229    case PLAT_DDR_CFG:
 230        /* read only */
 231        break;
 232    case PLAT_SOFTRST_CTL:
 233        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 234            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 235        }
 236        break;
 237    default:
 238        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 239                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 240        break;
 241    }
 242}
 243
 244static const MemoryRegionOps boston_platreg_ops = {
 245    .read = boston_platreg_read,
 246    .write = boston_platreg_write,
 247    .endianness = DEVICE_NATIVE_ENDIAN,
 248};
 249
 250static const TypeInfo boston_device = {
 251    .name          = TYPE_MIPS_BOSTON,
 252    .parent        = TYPE_SYS_BUS_DEVICE,
 253    .instance_size = sizeof(BostonState),
 254};
 255
 256static void boston_register_types(void)
 257{
 258    type_register_static(&boston_device);
 259}
 260type_init(boston_register_types)
 261
 262static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
 263                         bool is_64b)
 264{
 265    const uint32_t cm_base = 0x16100000;
 266    const uint32_t gic_base = 0x16120000;
 267    const uint32_t cpc_base = 0x16200000;
 268
 269    /* Move CM GCRs */
 270    if (is_64b) {
 271        stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
 272        stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
 273    } else {
 274        stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
 275        stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
 276    }
 277    stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
 278    stl_p(p++, 0x01094025);                     /* or   $8, $9 */
 279    stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
 280    if (is_64b) {
 281        stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
 282    } else {
 283        stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
 284    }
 285    stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
 286
 287    /* Move & enable GIC GCRs */
 288    stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
 289    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 290    if (is_64b) {
 291        stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
 292    } else {
 293        stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
 294    }
 295
 296    /* Move & enable CPC GCRs */
 297    stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
 298    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 299    if (is_64b) {
 300        stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
 301    } else {
 302        stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
 303    }
 304
 305    /*
 306     * Setup argument registers to follow the UHI boot protocol:
 307     *
 308     * a0/$4 = -2
 309     * a1/$5 = virtual address of FDT
 310     * a2/$6 = 0
 311     * a3/$7 = 0
 312     */
 313    stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
 314                                                /* lui  $5, hi(fdt_addr) */
 315    stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
 316    if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
 317        stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
 318    }
 319    stl_p(p++, 0x34060000);                     /* li   $6, 0 */
 320    stl_p(p++, 0x34070000);                     /* li   $7, 0 */
 321
 322    /* Load kernel entry address & jump to it */
 323                                                /* lui  $25, hi(kernel_entry) */
 324    stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
 325                                                /* ori  $25, lo(kernel_entry) */
 326    stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
 327    stl_p(p++, 0x03200009);                     /* jr   $25 */
 328}
 329
 330static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 331                                     const void *match_data, hwaddr *load_addr)
 332{
 333    BostonState *s = BOSTON(opaque);
 334    MachineState *machine = s->mach;
 335    const char *cmdline;
 336    int err;
 337    void *fdt;
 338    size_t fdt_sz, ram_low_sz, ram_high_sz;
 339
 340    fdt_sz = fdt_totalsize(fdt_orig) * 2;
 341    fdt = g_malloc0(fdt_sz);
 342
 343    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 344    if (err) {
 345        fprintf(stderr, "unable to open FDT\n");
 346        return NULL;
 347    }
 348
 349    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 350            ? machine->kernel_cmdline : " ";
 351    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 352    if (err < 0) {
 353        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 354        return NULL;
 355    }
 356
 357    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 358    ram_high_sz = machine->ram_size - ram_low_sz;
 359    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 360                                 1, 0x00000000, 1, ram_low_sz,
 361                                 1, 0x90000000, 1, ram_high_sz);
 362
 363    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 364    qemu_fdt_dumpdtb(fdt, fdt_sz);
 365
 366    s->fdt_base = *load_addr;
 367
 368    return fdt;
 369}
 370
 371static const void *boston_kernel_filter(void *opaque, const void *kernel,
 372                                        hwaddr *load_addr, hwaddr *entry_addr)
 373{
 374    BostonState *s = BOSTON(opaque);
 375
 376    s->kernel_entry = *entry_addr;
 377
 378    return kernel;
 379}
 380
 381static const struct fit_loader_match boston_matches[] = {
 382    { "img,boston" },
 383    { NULL },
 384};
 385
 386static const struct fit_loader boston_fit_loader = {
 387    .matches = boston_matches,
 388    .addr_to_phys = cpu_mips_kseg0_to_phys,
 389    .fdt_filter = boston_fdt_filter,
 390    .kernel_filter = boston_kernel_filter,
 391};
 392
 393static inline XilinxPCIEHost *
 394xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 395                 hwaddr cfg_base, uint64_t cfg_size,
 396                 hwaddr mmio_base, uint64_t mmio_size,
 397                 qemu_irq irq, bool link_up)
 398{
 399    DeviceState *dev;
 400    MemoryRegion *cfg, *mmio;
 401
 402    dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
 403
 404    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 405    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 406    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 407    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 408    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 409    qdev_prop_set_bit(dev, "link_up", link_up);
 410
 411    qdev_init_nofail(dev);
 412
 413    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 414    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 415
 416    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 417    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 418
 419    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 420
 421    return XILINX_PCIE_HOST(dev);
 422}
 423
 424static void boston_mach_init(MachineState *machine)
 425{
 426    DeviceState *dev;
 427    BostonState *s;
 428    Error *err = NULL;
 429    MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
 430    MemoryRegion *sys_mem = get_system_memory();
 431    XilinxPCIEHost *pcie2;
 432    PCIDevice *ahci;
 433    DriveInfo *hd[6];
 434    Chardev *chr;
 435    int fw_size, fit_err;
 436    bool is_64b;
 437
 438    if ((machine->ram_size % GiB) ||
 439        (machine->ram_size > (2 * GiB))) {
 440        error_report("Memory size must be 1GB or 2GB");
 441        exit(1);
 442    }
 443
 444    dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
 445    qdev_init_nofail(dev);
 446
 447    s = BOSTON(dev);
 448    s->mach = machine;
 449
 450    if (!cpu_supports_cps_smp(machine->cpu_type)) {
 451        error_report("Boston requires CPUs which support CPS");
 452        exit(1);
 453    }
 454
 455    is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
 456
 457    sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps),
 458                          sizeof(s->cps), TYPE_MIPS_CPS);
 459    object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type",
 460                            &err);
 461    object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err);
 462    object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
 463
 464    if (err != NULL) {
 465        error_report("%s", error_get_pretty(err));
 466        exit(1);
 467    }
 468
 469    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 470
 471    flash =  g_new(MemoryRegion, 1);
 472    memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
 473    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
 474
 475    ddr = g_new(MemoryRegion, 1);
 476    memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
 477                                         machine->ram_size);
 478    memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
 479
 480    ddr_low_alias = g_new(MemoryRegion, 1);
 481    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 482                             ddr, 0, MIN(machine->ram_size, (256 * MiB)));
 483    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 484
 485    xilinx_pcie_init(sys_mem, 0,
 486                     0x10000000, 32 * MiB,
 487                     0x40000000, 1 * GiB,
 488                     get_cps_irq(&s->cps, 2), false);
 489
 490    xilinx_pcie_init(sys_mem, 1,
 491                     0x12000000, 32 * MiB,
 492                     0x20000000, 512 * MiB,
 493                     get_cps_irq(&s->cps, 1), false);
 494
 495    pcie2 = xilinx_pcie_init(sys_mem, 2,
 496                             0x14000000, 32 * MiB,
 497                             0x16000000, 1 * MiB,
 498                             get_cps_irq(&s->cps, 0), true);
 499
 500    platreg = g_new(MemoryRegion, 1);
 501    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 502                          "boston-platregs", 0x1000);
 503    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
 504
 505    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
 506                             get_cps_irq(&s->cps, 3), 10000000,
 507                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 508
 509    lcd = g_new(MemoryRegion, 1);
 510    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 511    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
 512
 513    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 514    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 515    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 516                             boston_lcd_event, NULL, s, NULL, true);
 517
 518    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 519                                           PCI_DEVFN(0, 0),
 520                                           true, TYPE_ICH9_AHCI);
 521    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 522    ide_drive_get(hd, ahci_get_num_ports(ahci));
 523    ahci_ide_create_devs(ahci, hd);
 524
 525    if (machine->firmware) {
 526        fw_size = load_image_targphys(machine->firmware,
 527                                      0x1fc00000, 4 * MiB);
 528        if (fw_size == -1) {
 529            error_report("unable to load firmware image '%s'",
 530                          machine->firmware);
 531            exit(1);
 532        }
 533    } else if (machine->kernel_filename) {
 534        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 535        if (fit_err) {
 536            error_report("unable to load FIT image");
 537            exit(1);
 538        }
 539
 540        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 541                     s->kernel_entry, s->fdt_base, is_64b);
 542    } else if (!qtest_enabled()) {
 543        error_report("Please provide either a -kernel or -bios argument");
 544        exit(1);
 545    }
 546}
 547
 548static void boston_mach_class_init(MachineClass *mc)
 549{
 550    mc->desc = "MIPS Boston";
 551    mc->init = boston_mach_init;
 552    mc->block_default_type = IF_IDE;
 553    mc->default_ram_size = 1 * GiB;
 554    mc->max_cpus = 16;
 555    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 556}
 557
 558DEFINE_MACHINE("boston", boston_mach_class_init)
 559