qemu/hw/misc/mps2-fpgaio.c
<<
>>
Prefs
   1/*
   2 * ARM MPS2 AN505 FPGAIO emulation
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* This is a model of the "FPGA system control and I/O" block found
  13 * in the AN505 FPGA image for the MPS2 devboard.
  14 * It is documented in AN505:
  15 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/log.h"
  20#include "qemu/module.h"
  21#include "qapi/error.h"
  22#include "trace.h"
  23#include "hw/sysbus.h"
  24#include "hw/registerfields.h"
  25#include "hw/misc/mps2-fpgaio.h"
  26#include "qemu/timer.h"
  27
  28REG32(LED0, 0)
  29REG32(BUTTON, 8)
  30REG32(CLK1HZ, 0x10)
  31REG32(CLK100HZ, 0x14)
  32REG32(COUNTER, 0x18)
  33REG32(PRESCALE, 0x1c)
  34REG32(PSCNTR, 0x20)
  35REG32(MISC, 0x4c)
  36
  37static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
  38{
  39    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
  40}
  41
  42static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
  43{
  44    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
  45}
  46
  47static void resync_counter(MPS2FPGAIO *s)
  48{
  49    /*
  50     * Update s->counter and s->pscntr to their true current values
  51     * by calculating how many times PSCNTR has ticked since the
  52     * last time we did a resync.
  53     */
  54    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  55    int64_t elapsed = now - s->pscntr_sync_ticks;
  56
  57    /*
  58     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
  59     * lose time if we do multiple resyncs in a single tick.
  60     */
  61    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
  62
  63    /*
  64     * Work out what PSCNTR and COUNTER have moved to. We assume that
  65     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
  66     * and that COUNTER increments at the same moment.
  67     */
  68    if (ticks == 0) {
  69        /* We haven't ticked since the last time we were asked */
  70        return;
  71    } else if (ticks < s->pscntr) {
  72        /* We haven't yet reached zero, just reduce the PSCNTR */
  73        s->pscntr -= ticks;
  74    } else {
  75        if (s->prescale == 0) {
  76            /*
  77             * If the reload value is zero then the PSCNTR will stick
  78             * at zero once it reaches it, and so we will increment
  79             * COUNTER every tick after that.
  80             */
  81            s->counter += ticks - s->pscntr;
  82            s->pscntr = 0;
  83        } else {
  84            /*
  85             * This is the complicated bit. This ASCII art diagram gives an
  86             * example with PRESCALE==5 PSCNTR==7:
  87             *
  88             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
  89             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
  90             * cinc                           1                 2
  91             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
  92             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
  93             *
  94             * where x = y % (s->prescale + 1)
  95             * and so PSCNTR = s->prescale - x
  96             * and COUNTER is incremented by y / (s->prescale + 1)
  97             *
  98             * The case where PSCNTR < PRESCALE works out the same,
  99             * though we must be careful to calculate y as 64-bit unsigned
 100             * for all parts of the expression.
 101             * y < 0 is not possible because that implies ticks < s->pscntr.
 102             */
 103            uint64_t y = ticks - s->pscntr + s->prescale;
 104            s->pscntr = s->prescale - (y % (s->prescale + 1));
 105            s->counter += y / (s->prescale + 1);
 106        }
 107    }
 108
 109    /*
 110     * Only advance the sync time to the timestamp of the last PSCNTR tick,
 111     * not all the way to 'now', so we don't lose time if we do multiple
 112     * resyncs in a single tick.
 113     */
 114    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
 115                                     s->prescale_clk);
 116}
 117
 118static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
 119{
 120    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 121    uint64_t r;
 122    int64_t now;
 123
 124    switch (offset) {
 125    case A_LED0:
 126        r = s->led0;
 127        break;
 128    case A_BUTTON:
 129        /* User-pressable board buttons. We don't model that, so just return
 130         * zeroes.
 131         */
 132        r = 0;
 133        break;
 134    case A_PRESCALE:
 135        r = s->prescale;
 136        break;
 137    case A_MISC:
 138        r = s->misc;
 139        break;
 140    case A_CLK1HZ:
 141        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 142        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
 143        break;
 144    case A_CLK100HZ:
 145        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 146        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
 147        break;
 148    case A_COUNTER:
 149        resync_counter(s);
 150        r = s->counter;
 151        break;
 152    case A_PSCNTR:
 153        resync_counter(s);
 154        r = s->pscntr;
 155        break;
 156    default:
 157        qemu_log_mask(LOG_GUEST_ERROR,
 158                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
 159        r = 0;
 160        break;
 161    }
 162
 163    trace_mps2_fpgaio_read(offset, r, size);
 164    return r;
 165}
 166
 167static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
 168                              unsigned size)
 169{
 170    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 171    int64_t now;
 172
 173    trace_mps2_fpgaio_write(offset, value, size);
 174
 175    switch (offset) {
 176    case A_LED0:
 177        /* LED bits [1:0] control board LEDs. We don't currently have
 178         * a mechanism for displaying this graphically, so use a trace event.
 179         */
 180        trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
 181                               value & 0x01 ? '*' : '.');
 182        s->led0 = value & 0x3;
 183        break;
 184    case A_PRESCALE:
 185        resync_counter(s);
 186        s->prescale = value;
 187        break;
 188    case A_MISC:
 189        /* These are control bits for some of the other devices on the
 190         * board (SPI, CLCD, etc). We don't implement that yet, so just
 191         * make the bits read as written.
 192         */
 193        qemu_log_mask(LOG_UNIMP,
 194                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
 195        s->misc = value;
 196        break;
 197    case A_CLK1HZ:
 198        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 199        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
 200        break;
 201    case A_CLK100HZ:
 202        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 203        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
 204        break;
 205    case A_COUNTER:
 206        resync_counter(s);
 207        s->counter = value;
 208        break;
 209    case A_PSCNTR:
 210        resync_counter(s);
 211        s->pscntr = value;
 212        break;
 213    default:
 214        qemu_log_mask(LOG_GUEST_ERROR,
 215                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
 216        break;
 217    }
 218}
 219
 220static const MemoryRegionOps mps2_fpgaio_ops = {
 221    .read = mps2_fpgaio_read,
 222    .write = mps2_fpgaio_write,
 223    .endianness = DEVICE_LITTLE_ENDIAN,
 224};
 225
 226static void mps2_fpgaio_reset(DeviceState *dev)
 227{
 228    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
 229    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 230
 231    trace_mps2_fpgaio_reset();
 232    s->led0 = 0;
 233    s->prescale = 0;
 234    s->misc = 0;
 235    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
 236    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
 237    s->counter = 0;
 238    s->pscntr = 0;
 239    s->pscntr_sync_ticks = now;
 240}
 241
 242static void mps2_fpgaio_init(Object *obj)
 243{
 244    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 245    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
 246
 247    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
 248                          "mps2-fpgaio", 0x1000);
 249    sysbus_init_mmio(sbd, &s->iomem);
 250}
 251
 252static bool mps2_fpgaio_counters_needed(void *opaque)
 253{
 254    /* Currently vmstate.c insists all subsections have a 'needed' function */
 255    return true;
 256}
 257
 258static const VMStateDescription mps2_fpgaio_counters_vmstate = {
 259    .name = "mps2-fpgaio/counters",
 260    .version_id = 2,
 261    .minimum_version_id = 2,
 262    .needed = mps2_fpgaio_counters_needed,
 263    .fields = (VMStateField[]) {
 264        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
 265        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
 266        VMSTATE_UINT32(counter, MPS2FPGAIO),
 267        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
 268        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
 269        VMSTATE_END_OF_LIST()
 270    }
 271};
 272
 273static const VMStateDescription mps2_fpgaio_vmstate = {
 274    .name = "mps2-fpgaio",
 275    .version_id = 1,
 276    .minimum_version_id = 1,
 277    .fields = (VMStateField[]) {
 278        VMSTATE_UINT32(led0, MPS2FPGAIO),
 279        VMSTATE_UINT32(prescale, MPS2FPGAIO),
 280        VMSTATE_UINT32(misc, MPS2FPGAIO),
 281        VMSTATE_END_OF_LIST()
 282    },
 283    .subsections = (const VMStateDescription*[]) {
 284        &mps2_fpgaio_counters_vmstate,
 285        NULL
 286    }
 287};
 288
 289static Property mps2_fpgaio_properties[] = {
 290    /* Frequency of the prescale counter */
 291    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
 292    DEFINE_PROP_END_OF_LIST(),
 293};
 294
 295static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
 296{
 297    DeviceClass *dc = DEVICE_CLASS(klass);
 298
 299    dc->vmsd = &mps2_fpgaio_vmstate;
 300    dc->reset = mps2_fpgaio_reset;
 301    dc->props = mps2_fpgaio_properties;
 302}
 303
 304static const TypeInfo mps2_fpgaio_info = {
 305    .name = TYPE_MPS2_FPGAIO,
 306    .parent = TYPE_SYS_BUS_DEVICE,
 307    .instance_size = sizeof(MPS2FPGAIO),
 308    .instance_init = mps2_fpgaio_init,
 309    .class_init = mps2_fpgaio_class_init,
 310};
 311
 312static void mps2_fpgaio_register_types(void)
 313{
 314    type_register_static(&mps2_fpgaio_info);
 315}
 316
 317type_init(mps2_fpgaio_register_types);
 318