qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "hw/hw.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/dma.h"
  30#include "hw/boards.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/sysbus.h"
  33#include "trace.h"
  34#include "qemu/error-report.h"
  35#include "qemu/option.h"
  36#include "qemu/config-file.h"
  37#include "qemu/cutils.h"
  38#include "qapi/error.h"
  39
  40#define FW_CFG_FILE_SLOTS_DFLT 0x20
  41
  42/* FW_CFG_VERSION bits */
  43#define FW_CFG_VERSION      0x01
  44#define FW_CFG_VERSION_DMA  0x02
  45
  46/* FW_CFG_DMA_CONTROL bits */
  47#define FW_CFG_DMA_CTL_ERROR   0x01
  48#define FW_CFG_DMA_CTL_READ    0x02
  49#define FW_CFG_DMA_CTL_SKIP    0x04
  50#define FW_CFG_DMA_CTL_SELECT  0x08
  51#define FW_CFG_DMA_CTL_WRITE   0x10
  52
  53#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  54
  55struct FWCfgEntry {
  56    uint32_t len;
  57    bool allow_write;
  58    uint8_t *data;
  59    void *callback_opaque;
  60    FWCfgCallback select_cb;
  61    FWCfgWriteCallback write_cb;
  62};
  63
  64/**
  65 * key_name:
  66 *
  67 * @key: The uint16 selector key.
  68 *
  69 * Returns: The stringified name if the selector refers to a well-known
  70 *          numerically defined item, or NULL on key lookup failure.
  71 */
  72static const char *key_name(uint16_t key)
  73{
  74    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  75        [FW_CFG_SIGNATURE] = "signature",
  76        [FW_CFG_ID] = "id",
  77        [FW_CFG_UUID] = "uuid",
  78        [FW_CFG_RAM_SIZE] = "ram_size",
  79        [FW_CFG_NOGRAPHIC] = "nographic",
  80        [FW_CFG_NB_CPUS] = "nb_cpus",
  81        [FW_CFG_MACHINE_ID] = "machine_id",
  82        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  83        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  84        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  85        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  86        [FW_CFG_INITRD_SIZE] = "initdr_size",
  87        [FW_CFG_BOOT_DEVICE] = "boot_device",
  88        [FW_CFG_NUMA] = "numa",
  89        [FW_CFG_BOOT_MENU] = "boot_menu",
  90        [FW_CFG_MAX_CPUS] = "max_cpus",
  91        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  92        [FW_CFG_KERNEL_DATA] = "kernel_data",
  93        [FW_CFG_INITRD_DATA] = "initrd_data",
  94        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
  95        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
  96        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
  97        [FW_CFG_SETUP_ADDR] = "setup_addr",
  98        [FW_CFG_SETUP_SIZE] = "setup_size",
  99        [FW_CFG_SETUP_DATA] = "setup_data",
 100        [FW_CFG_FILE_DIR] = "file_dir",
 101    };
 102
 103    if (key & FW_CFG_ARCH_LOCAL) {
 104        return fw_cfg_arch_key_name(key);
 105    }
 106    if (key < FW_CFG_FILE_FIRST) {
 107        return fw_cfg_wellknown_keys[key];
 108    }
 109
 110    return NULL;
 111}
 112
 113static inline const char *trace_key_name(uint16_t key)
 114{
 115    const char *name = key_name(key);
 116
 117    return name ? name : "unknown";
 118}
 119
 120#define JPG_FILE 0
 121#define BMP_FILE 1
 122
 123static char *read_splashfile(char *filename, gsize *file_sizep,
 124                             int *file_typep)
 125{
 126    GError *err = NULL;
 127    gchar *content;
 128    int file_type;
 129    unsigned int filehead;
 130    int bmp_bpp;
 131
 132    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 133        error_report("failed to read splash file '%s': %s",
 134                     filename, err->message);
 135        g_error_free(err);
 136        return NULL;
 137    }
 138
 139    /* check file size */
 140    if (*file_sizep < 30) {
 141        goto error;
 142    }
 143
 144    /* check magic ID */
 145    filehead = lduw_le_p(content);
 146    if (filehead == 0xd8ff) {
 147        file_type = JPG_FILE;
 148    } else if (filehead == 0x4d42) {
 149        file_type = BMP_FILE;
 150    } else {
 151        goto error;
 152    }
 153
 154    /* check BMP bpp */
 155    if (file_type == BMP_FILE) {
 156        bmp_bpp = lduw_le_p(&content[28]);
 157        if (bmp_bpp != 24) {
 158            goto error;
 159        }
 160    }
 161
 162    /* return values */
 163    *file_typep = file_type;
 164
 165    return content;
 166
 167error:
 168    error_report("splash file '%s' format not recognized; must be JPEG "
 169                 "or 24 bit BMP", filename);
 170    g_free(content);
 171    return NULL;
 172}
 173
 174static void fw_cfg_bootsplash(FWCfgState *s)
 175{
 176    const char *boot_splash_filename = NULL;
 177    const char *boot_splash_time = NULL;
 178    char *filename, *file_data;
 179    gsize file_size;
 180    int file_type;
 181
 182    /* get user configuration */
 183    QemuOptsList *plist = qemu_find_opts("boot-opts");
 184    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 185    boot_splash_filename = qemu_opt_get(opts, "splash");
 186    boot_splash_time = qemu_opt_get(opts, "splash-time");
 187
 188    /* insert splash time if user configurated */
 189    if (boot_splash_time) {
 190        int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
 191        uint16_t bst_le16;
 192
 193        /* validate the input */
 194        if (bst_val < 0 || bst_val > 0xffff) {
 195            error_report("splash-time is invalid,"
 196                         "it should be a value between 0 and 65535");
 197            exit(1);
 198        }
 199        /* use little endian format */
 200        bst_le16 = cpu_to_le16(bst_val);
 201        fw_cfg_add_file(s, "etc/boot-menu-wait",
 202                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 203    }
 204
 205    /* insert splash file if user configurated */
 206    if (boot_splash_filename) {
 207        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 208        if (filename == NULL) {
 209            error_report("failed to find file '%s'", boot_splash_filename);
 210            return;
 211        }
 212
 213        /* loading file data */
 214        file_data = read_splashfile(filename, &file_size, &file_type);
 215        if (file_data == NULL) {
 216            g_free(filename);
 217            return;
 218        }
 219        g_free(boot_splash_filedata);
 220        boot_splash_filedata = (uint8_t *)file_data;
 221
 222        /* insert data */
 223        if (file_type == JPG_FILE) {
 224            fw_cfg_add_file(s, "bootsplash.jpg",
 225                            boot_splash_filedata, file_size);
 226        } else {
 227            fw_cfg_add_file(s, "bootsplash.bmp",
 228                            boot_splash_filedata, file_size);
 229        }
 230        g_free(filename);
 231    }
 232}
 233
 234static void fw_cfg_reboot(FWCfgState *s)
 235{
 236    const char *reboot_timeout = NULL;
 237    int64_t rt_val = -1;
 238    uint32_t rt_le32;
 239
 240    /* get user configuration */
 241    QemuOptsList *plist = qemu_find_opts("boot-opts");
 242    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 243    reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
 244
 245    if (reboot_timeout) {
 246        rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
 247        /* validate the input */
 248        if (rt_val < 0 || rt_val > 0xffff) {
 249            error_report("reboot timeout is invalid,"
 250                         "it should be a value between 0 and 65535");
 251            exit(1);
 252        }
 253    }
 254
 255    rt_le32 = cpu_to_le32(rt_val);
 256    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 257}
 258
 259static void fw_cfg_write(FWCfgState *s, uint8_t value)
 260{
 261    /* nothing, write support removed in QEMU v2.4+ */
 262}
 263
 264static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 265{
 266    return s->file_slots;
 267}
 268
 269/* Note: this function returns an exclusive limit. */
 270static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 271{
 272    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 273}
 274
 275static int fw_cfg_select(FWCfgState *s, uint16_t key)
 276{
 277    int arch, ret;
 278    FWCfgEntry *e;
 279
 280    s->cur_offset = 0;
 281    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 282        s->cur_entry = FW_CFG_INVALID;
 283        ret = 0;
 284    } else {
 285        s->cur_entry = key;
 286        ret = 1;
 287        /* entry successfully selected, now run callback if present */
 288        arch = !!(key & FW_CFG_ARCH_LOCAL);
 289        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 290        if (e->select_cb) {
 291            e->select_cb(e->callback_opaque);
 292        }
 293    }
 294
 295    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 296    return ret;
 297}
 298
 299static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 300{
 301    FWCfgState *s = opaque;
 302    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 303    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 304                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 305    uint64_t value = 0;
 306
 307    assert(size > 0 && size <= sizeof(value));
 308    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 309        /* The least significant 'size' bytes of the return value are
 310         * expected to contain a string preserving portion of the item
 311         * data, padded with zeros on the right in case we run out early.
 312         * In technical terms, we're composing the host-endian representation
 313         * of the big endian interpretation of the fw_cfg string.
 314         */
 315        do {
 316            value = (value << 8) | e->data[s->cur_offset++];
 317        } while (--size && s->cur_offset < e->len);
 318        /* If size is still not zero, we *did* run out early, so continue
 319         * left-shifting, to add the appropriate number of padding zeros
 320         * on the right.
 321         */
 322        value <<= 8 * size;
 323    }
 324
 325    trace_fw_cfg_read(s, value);
 326    return value;
 327}
 328
 329static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 330                                  uint64_t value, unsigned size)
 331{
 332    FWCfgState *s = opaque;
 333    unsigned i = size;
 334
 335    do {
 336        fw_cfg_write(s, value >> (8 * --i));
 337    } while (i);
 338}
 339
 340static void fw_cfg_dma_transfer(FWCfgState *s)
 341{
 342    dma_addr_t len;
 343    FWCfgDmaAccess dma;
 344    int arch;
 345    FWCfgEntry *e;
 346    int read = 0, write = 0;
 347    dma_addr_t dma_addr;
 348
 349    /* Reset the address before the next access */
 350    dma_addr = s->dma_addr;
 351    s->dma_addr = 0;
 352
 353    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 354        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 355                   FW_CFG_DMA_CTL_ERROR);
 356        return;
 357    }
 358
 359    dma.address = be64_to_cpu(dma.address);
 360    dma.length = be32_to_cpu(dma.length);
 361    dma.control = be32_to_cpu(dma.control);
 362
 363    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 364        fw_cfg_select(s, dma.control >> 16);
 365    }
 366
 367    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 368    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 369        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 370
 371    if (dma.control & FW_CFG_DMA_CTL_READ) {
 372        read = 1;
 373        write = 0;
 374    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 375        read = 0;
 376        write = 1;
 377    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 378        read = 0;
 379        write = 0;
 380    } else {
 381        dma.length = 0;
 382    }
 383
 384    dma.control = 0;
 385
 386    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 387        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 388                                s->cur_offset >= e->len) {
 389            len = dma.length;
 390
 391            /* If the access is not a read access, it will be a skip access,
 392             * tested before.
 393             */
 394            if (read) {
 395                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 396                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 397                }
 398            }
 399            if (write) {
 400                dma.control |= FW_CFG_DMA_CTL_ERROR;
 401            }
 402        } else {
 403            if (dma.length <= (e->len - s->cur_offset)) {
 404                len = dma.length;
 405            } else {
 406                len = (e->len - s->cur_offset);
 407            }
 408
 409            /* If the access is not a read access, it will be a skip access,
 410             * tested before.
 411             */
 412            if (read) {
 413                if (dma_memory_write(s->dma_as, dma.address,
 414                                    &e->data[s->cur_offset], len)) {
 415                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 416                }
 417            }
 418            if (write) {
 419                if (!e->allow_write ||
 420                    len != dma.length ||
 421                    dma_memory_read(s->dma_as, dma.address,
 422                                    &e->data[s->cur_offset], len)) {
 423                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 424                } else if (e->write_cb) {
 425                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 426                }
 427            }
 428
 429            s->cur_offset += len;
 430        }
 431
 432        dma.address += len;
 433        dma.length  -= len;
 434
 435    }
 436
 437    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 438                dma.control);
 439
 440    trace_fw_cfg_read(s, 0);
 441}
 442
 443static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 444                                    unsigned size)
 445{
 446    /* Return a signature value (and handle various read sizes) */
 447    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 448}
 449
 450static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 451                                 uint64_t value, unsigned size)
 452{
 453    FWCfgState *s = opaque;
 454
 455    if (size == 4) {
 456        if (addr == 0) {
 457            /* FWCfgDmaAccess high address */
 458            s->dma_addr = value << 32;
 459        } else if (addr == 4) {
 460            /* FWCfgDmaAccess low address */
 461            s->dma_addr |= value;
 462            fw_cfg_dma_transfer(s);
 463        }
 464    } else if (size == 8 && addr == 0) {
 465        s->dma_addr = value;
 466        fw_cfg_dma_transfer(s);
 467    }
 468}
 469
 470static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 471                                 unsigned size, bool is_write,
 472                                 MemTxAttrs attrs)
 473{
 474    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 475                         (size == 8 && addr == 0));
 476}
 477
 478static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 479                                  unsigned size, bool is_write,
 480                                  MemTxAttrs attrs)
 481{
 482    return addr == 0;
 483}
 484
 485static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 486{
 487    return 0;
 488}
 489
 490static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 491                                 uint64_t value, unsigned size)
 492{
 493    fw_cfg_select(opaque, (uint16_t)value);
 494}
 495
 496static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 497                                 unsigned size, bool is_write,
 498                                 MemTxAttrs attrs)
 499{
 500    return is_write && size == 2;
 501}
 502
 503static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 504                              uint64_t value, unsigned size)
 505{
 506    switch (size) {
 507    case 1:
 508        fw_cfg_write(opaque, (uint8_t)value);
 509        break;
 510    case 2:
 511        fw_cfg_select(opaque, (uint16_t)value);
 512        break;
 513    }
 514}
 515
 516static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 517                              unsigned size, bool is_write,
 518                              MemTxAttrs attrs)
 519{
 520    return (size == 1) || (is_write && size == 2);
 521}
 522
 523static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 524    .read = fw_cfg_ctl_mem_read,
 525    .write = fw_cfg_ctl_mem_write,
 526    .endianness = DEVICE_BIG_ENDIAN,
 527    .valid.accepts = fw_cfg_ctl_mem_valid,
 528};
 529
 530static const MemoryRegionOps fw_cfg_data_mem_ops = {
 531    .read = fw_cfg_data_read,
 532    .write = fw_cfg_data_mem_write,
 533    .endianness = DEVICE_BIG_ENDIAN,
 534    .valid = {
 535        .min_access_size = 1,
 536        .max_access_size = 1,
 537        .accepts = fw_cfg_data_mem_valid,
 538    },
 539};
 540
 541static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 542    .read = fw_cfg_data_read,
 543    .write = fw_cfg_comb_write,
 544    .endianness = DEVICE_LITTLE_ENDIAN,
 545    .valid.accepts = fw_cfg_comb_valid,
 546};
 547
 548static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 549    .read = fw_cfg_dma_mem_read,
 550    .write = fw_cfg_dma_mem_write,
 551    .endianness = DEVICE_BIG_ENDIAN,
 552    .valid.accepts = fw_cfg_dma_mem_valid,
 553    .valid.max_access_size = 8,
 554    .impl.max_access_size = 8,
 555};
 556
 557static void fw_cfg_reset(DeviceState *d)
 558{
 559    FWCfgState *s = FW_CFG(d);
 560
 561    /* we never register a read callback for FW_CFG_SIGNATURE */
 562    fw_cfg_select(s, FW_CFG_SIGNATURE);
 563}
 564
 565/* Save restore 32 bit int as uint16_t
 566   This is a Big hack, but it is how the old state did it.
 567   Or we broke compatibility in the state, or we can't use struct tm
 568 */
 569
 570static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 571                                const VMStateField *field)
 572{
 573    uint32_t *v = pv;
 574    *v = qemu_get_be16(f);
 575    return 0;
 576}
 577
 578static int put_unused(QEMUFile *f, void *pv, size_t size,
 579                      const VMStateField *field, QJSON *vmdesc)
 580{
 581    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 582    fprintf(stderr, "This functions shouldn't be called.\n");
 583
 584    return 0;
 585}
 586
 587static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 588    .name = "int32_as_uint16",
 589    .get  = get_uint32_as_uint16,
 590    .put  = put_unused,
 591};
 592
 593#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 594    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 595
 596
 597static bool is_version_1(void *opaque, int version_id)
 598{
 599    return version_id == 1;
 600}
 601
 602bool fw_cfg_dma_enabled(void *opaque)
 603{
 604    FWCfgState *s = opaque;
 605
 606    return s->dma_enabled;
 607}
 608
 609static const VMStateDescription vmstate_fw_cfg_dma = {
 610    .name = "fw_cfg/dma",
 611    .needed = fw_cfg_dma_enabled,
 612    .fields = (VMStateField[]) {
 613        VMSTATE_UINT64(dma_addr, FWCfgState),
 614        VMSTATE_END_OF_LIST()
 615    },
 616};
 617
 618static const VMStateDescription vmstate_fw_cfg = {
 619    .name = "fw_cfg",
 620    .version_id = 2,
 621    .minimum_version_id = 1,
 622    .fields = (VMStateField[]) {
 623        VMSTATE_UINT16(cur_entry, FWCfgState),
 624        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 625        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 626        VMSTATE_END_OF_LIST()
 627    },
 628    .subsections = (const VMStateDescription*[]) {
 629        &vmstate_fw_cfg_dma,
 630        NULL,
 631    }
 632};
 633
 634static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 635                                      FWCfgCallback select_cb,
 636                                      FWCfgWriteCallback write_cb,
 637                                      void *callback_opaque,
 638                                      void *data, size_t len,
 639                                      bool read_only)
 640{
 641    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 642
 643    key &= FW_CFG_ENTRY_MASK;
 644
 645    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 646    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 647
 648    s->entries[arch][key].data = data;
 649    s->entries[arch][key].len = (uint32_t)len;
 650    s->entries[arch][key].select_cb = select_cb;
 651    s->entries[arch][key].write_cb = write_cb;
 652    s->entries[arch][key].callback_opaque = callback_opaque;
 653    s->entries[arch][key].allow_write = !read_only;
 654}
 655
 656static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 657                                              void *data, size_t len)
 658{
 659    void *ptr;
 660    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 661
 662    key &= FW_CFG_ENTRY_MASK;
 663
 664    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 665
 666    /* return the old data to the function caller, avoid memory leak */
 667    ptr = s->entries[arch][key].data;
 668    s->entries[arch][key].data = data;
 669    s->entries[arch][key].len = len;
 670    s->entries[arch][key].callback_opaque = NULL;
 671    s->entries[arch][key].allow_write = false;
 672
 673    return ptr;
 674}
 675
 676void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 677{
 678    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 679    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 680}
 681
 682void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 683{
 684    size_t sz = strlen(value) + 1;
 685
 686    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 687    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 688}
 689
 690void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 691{
 692    uint16_t *copy;
 693
 694    copy = g_malloc(sizeof(value));
 695    *copy = cpu_to_le16(value);
 696    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 697    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 698}
 699
 700void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 701{
 702    uint16_t *copy, *old;
 703
 704    copy = g_malloc(sizeof(value));
 705    *copy = cpu_to_le16(value);
 706    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 707    g_free(old);
 708}
 709
 710void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 711{
 712    uint32_t *copy;
 713
 714    copy = g_malloc(sizeof(value));
 715    *copy = cpu_to_le32(value);
 716    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 717    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 718}
 719
 720void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 721{
 722    uint64_t *copy;
 723
 724    copy = g_malloc(sizeof(value));
 725    *copy = cpu_to_le64(value);
 726    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 727    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 728}
 729
 730void fw_cfg_set_order_override(FWCfgState *s, int order)
 731{
 732    assert(s->fw_cfg_order_override == 0);
 733    s->fw_cfg_order_override = order;
 734}
 735
 736void fw_cfg_reset_order_override(FWCfgState *s)
 737{
 738    assert(s->fw_cfg_order_override != 0);
 739    s->fw_cfg_order_override = 0;
 740}
 741
 742/*
 743 * This is the legacy order list.  For legacy systems, files are in
 744 * the fw_cfg in the order defined below, by the "order" value.  Note
 745 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 746 * specific area, but there may be more than one and they occur in the
 747 * order that the user specifies them on the command line.  Those are
 748 * handled in a special manner, using the order override above.
 749 *
 750 * For non-legacy, the files are sorted by filename to avoid this kind
 751 * of complexity in the future.
 752 *
 753 * This is only for x86, other arches don't implement versioning so
 754 * they won't set legacy mode.
 755 */
 756static struct {
 757    const char *name;
 758    int order;
 759} fw_cfg_order[] = {
 760    { "etc/boot-menu-wait", 10 },
 761    { "bootsplash.jpg", 11 },
 762    { "bootsplash.bmp", 12 },
 763    { "etc/boot-fail-wait", 15 },
 764    { "etc/smbios/smbios-tables", 20 },
 765    { "etc/smbios/smbios-anchor", 30 },
 766    { "etc/e820", 40 },
 767    { "etc/reserved-memory-end", 50 },
 768    { "genroms/kvmvapic.bin", 55 },
 769    { "genroms/linuxboot.bin", 60 },
 770    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 771    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 772    { "etc/system-states", 90 },
 773    { }, /* User ROMs come here, 100. */
 774    { }, /* Device FW comes here, 110. */
 775    { "etc/extra-pci-roots", 120 },
 776    { "etc/acpi/tables", 130 },
 777    { "etc/table-loader", 140 },
 778    { "etc/tpm/log", 150 },
 779    { "etc/acpi/rsdp", 160 },
 780    { "bootorder", 170 },
 781
 782#define FW_CFG_ORDER_OVERRIDE_LAST 200
 783};
 784
 785static int get_fw_cfg_order(FWCfgState *s, const char *name)
 786{
 787    int i;
 788
 789    if (s->fw_cfg_order_override > 0) {
 790        return s->fw_cfg_order_override;
 791    }
 792
 793    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 794        if (fw_cfg_order[i].name == NULL) {
 795            continue;
 796        }
 797
 798        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 799            return fw_cfg_order[i].order;
 800        }
 801    }
 802
 803    /* Stick unknown stuff at the end. */
 804    warn_report("Unknown firmware file in legacy mode: %s", name);
 805    return FW_CFG_ORDER_OVERRIDE_LAST;
 806}
 807
 808void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 809                              FWCfgCallback select_cb,
 810                              FWCfgWriteCallback write_cb,
 811                              void *callback_opaque,
 812                              void *data, size_t len, bool read_only)
 813{
 814    int i, index, count;
 815    size_t dsize;
 816    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 817    int order = 0;
 818
 819    if (!s->files) {
 820        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 821        s->files = g_malloc0(dsize);
 822        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 823    }
 824
 825    count = be32_to_cpu(s->files->count);
 826    assert(count < fw_cfg_file_slots(s));
 827
 828    /* Find the insertion point. */
 829    if (mc->legacy_fw_cfg_order) {
 830        /*
 831         * Sort by order. For files with the same order, we keep them
 832         * in the sequence in which they were added.
 833         */
 834        order = get_fw_cfg_order(s, filename);
 835        for (index = count;
 836             index > 0 && order < s->entry_order[index - 1];
 837             index--);
 838    } else {
 839        /* Sort by file name. */
 840        for (index = count;
 841             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 842             index--);
 843    }
 844
 845    /*
 846     * Move all the entries from the index point and after down one
 847     * to create a slot for the new entry.  Because calculations are
 848     * being done with the index, make it so that "i" is the current
 849     * index and "i - 1" is the one being copied from, thus the
 850     * unusual start and end in the for statement.
 851     */
 852    for (i = count; i > index; i--) {
 853        s->files->f[i] = s->files->f[i - 1];
 854        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 855        s->entries[0][FW_CFG_FILE_FIRST + i] =
 856            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 857        s->entry_order[i] = s->entry_order[i - 1];
 858    }
 859
 860    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 861    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 862
 863    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 864    for (i = 0; i <= count; i++) {
 865        if (i != index &&
 866            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 867            error_report("duplicate fw_cfg file name: %s",
 868                         s->files->f[index].name);
 869            exit(1);
 870        }
 871    }
 872
 873    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 874                              select_cb, write_cb,
 875                              callback_opaque, data, len,
 876                              read_only);
 877
 878    s->files->f[index].size   = cpu_to_be32(len);
 879    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 880    s->entry_order[index] = order;
 881    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 882
 883    s->files->count = cpu_to_be32(count+1);
 884}
 885
 886void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 887                     void *data, size_t len)
 888{
 889    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 890}
 891
 892void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
 893                        void *data, size_t len)
 894{
 895    int i, index;
 896    void *ptr = NULL;
 897
 898    assert(s->files);
 899
 900    index = be32_to_cpu(s->files->count);
 901
 902    for (i = 0; i < index; i++) {
 903        if (strcmp(filename, s->files->f[i].name) == 0) {
 904            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
 905                                           data, len);
 906            s->files->f[i].size   = cpu_to_be32(len);
 907            return ptr;
 908        }
 909    }
 910
 911    assert(index < fw_cfg_file_slots(s));
 912
 913    /* add new one */
 914    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 915    return NULL;
 916}
 917
 918static void fw_cfg_machine_reset(void *opaque)
 919{
 920    void *ptr;
 921    size_t len;
 922    FWCfgState *s = opaque;
 923    char *bootindex = get_boot_devices_list(&len);
 924
 925    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
 926    g_free(ptr);
 927}
 928
 929static void fw_cfg_machine_ready(struct Notifier *n, void *data)
 930{
 931    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
 932    qemu_register_reset(fw_cfg_machine_reset, s);
 933}
 934
 935
 936
 937static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
 938{
 939    FWCfgState *s = FW_CFG(dev);
 940    MachineState *machine = MACHINE(qdev_get_machine());
 941    uint32_t version = FW_CFG_VERSION;
 942
 943    if (!fw_cfg_find()) {
 944        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
 945        return;
 946    }
 947
 948    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
 949    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
 950    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
 951    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
 952    fw_cfg_bootsplash(s);
 953    fw_cfg_reboot(s);
 954
 955    if (s->dma_enabled) {
 956        version |= FW_CFG_VERSION_DMA;
 957    }
 958
 959    fw_cfg_add_i32(s, FW_CFG_ID, version);
 960
 961    s->machine_ready.notify = fw_cfg_machine_ready;
 962    qemu_add_machine_init_done_notifier(&s->machine_ready);
 963}
 964
 965FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
 966                                AddressSpace *dma_as)
 967{
 968    DeviceState *dev;
 969    SysBusDevice *sbd;
 970    FWCfgIoState *ios;
 971    FWCfgState *s;
 972    bool dma_requested = dma_iobase && dma_as;
 973
 974    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
 975    if (!dma_requested) {
 976        qdev_prop_set_bit(dev, "dma_enabled", false);
 977    }
 978
 979    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 980                              OBJECT(dev), NULL);
 981    qdev_init_nofail(dev);
 982
 983    sbd = SYS_BUS_DEVICE(dev);
 984    ios = FW_CFG_IO(dev);
 985    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
 986
 987    s = FW_CFG(dev);
 988
 989    if (s->dma_enabled) {
 990        /* 64 bits for the address field */
 991        s->dma_as = dma_as;
 992        s->dma_addr = 0;
 993        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
 994    }
 995
 996    return s;
 997}
 998
 999FWCfgState *fw_cfg_init_io(uint32_t iobase)
1000{
1001    return fw_cfg_init_io_dma(iobase, 0, NULL);
1002}
1003
1004FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1005                                 hwaddr data_addr, uint32_t data_width,
1006                                 hwaddr dma_addr, AddressSpace *dma_as)
1007{
1008    DeviceState *dev;
1009    SysBusDevice *sbd;
1010    FWCfgState *s;
1011    bool dma_requested = dma_addr && dma_as;
1012
1013    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1014    qdev_prop_set_uint32(dev, "data_width", data_width);
1015    if (!dma_requested) {
1016        qdev_prop_set_bit(dev, "dma_enabled", false);
1017    }
1018
1019    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1020                              OBJECT(dev), NULL);
1021    qdev_init_nofail(dev);
1022
1023    sbd = SYS_BUS_DEVICE(dev);
1024    sysbus_mmio_map(sbd, 0, ctl_addr);
1025    sysbus_mmio_map(sbd, 1, data_addr);
1026
1027    s = FW_CFG(dev);
1028
1029    if (s->dma_enabled) {
1030        s->dma_as = dma_as;
1031        s->dma_addr = 0;
1032        sysbus_mmio_map(sbd, 2, dma_addr);
1033    }
1034
1035    return s;
1036}
1037
1038FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1039{
1040    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1041                                fw_cfg_data_mem_ops.valid.max_access_size,
1042                                0, NULL);
1043}
1044
1045
1046FWCfgState *fw_cfg_find(void)
1047{
1048    /* Returns NULL unless there is exactly one fw_cfg device */
1049    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1050}
1051
1052
1053static void fw_cfg_class_init(ObjectClass *klass, void *data)
1054{
1055    DeviceClass *dc = DEVICE_CLASS(klass);
1056
1057    dc->reset = fw_cfg_reset;
1058    dc->vmsd = &vmstate_fw_cfg;
1059}
1060
1061static const TypeInfo fw_cfg_info = {
1062    .name          = TYPE_FW_CFG,
1063    .parent        = TYPE_SYS_BUS_DEVICE,
1064    .abstract      = true,
1065    .instance_size = sizeof(FWCfgState),
1066    .class_init    = fw_cfg_class_init,
1067};
1068
1069static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1070{
1071    uint16_t file_slots_max;
1072
1073    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1074        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1075                   FW_CFG_FILE_SLOTS_MIN);
1076        return;
1077    }
1078
1079    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1080     * that we permit. The actual (exclusive) value coming from the
1081     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1082    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1083    if (fw_cfg_file_slots(s) > file_slots_max) {
1084        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1085                   file_slots_max);
1086        return;
1087    }
1088
1089    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1090    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1091    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1092}
1093
1094static Property fw_cfg_io_properties[] = {
1095    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1096                     true),
1097    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1098                       FW_CFG_FILE_SLOTS_DFLT),
1099    DEFINE_PROP_END_OF_LIST(),
1100};
1101
1102static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1103{
1104    FWCfgIoState *s = FW_CFG_IO(dev);
1105    Error *local_err = NULL;
1106
1107    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1108    if (local_err) {
1109        error_propagate(errp, local_err);
1110        return;
1111    }
1112
1113    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1114     * with half of the 16-bit control register. Hence, the total size
1115     * of the i/o region used is FW_CFG_CTL_SIZE */
1116    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1117                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1118
1119    if (FW_CFG(s)->dma_enabled) {
1120        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1121                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1122                              sizeof(dma_addr_t));
1123    }
1124
1125    fw_cfg_common_realize(dev, errp);
1126}
1127
1128static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1129{
1130    DeviceClass *dc = DEVICE_CLASS(klass);
1131
1132    dc->realize = fw_cfg_io_realize;
1133    dc->props = fw_cfg_io_properties;
1134}
1135
1136static const TypeInfo fw_cfg_io_info = {
1137    .name          = TYPE_FW_CFG_IO,
1138    .parent        = TYPE_FW_CFG,
1139    .instance_size = sizeof(FWCfgIoState),
1140    .class_init    = fw_cfg_io_class_init,
1141};
1142
1143
1144static Property fw_cfg_mem_properties[] = {
1145    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1146    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1147                     true),
1148    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1149                       FW_CFG_FILE_SLOTS_DFLT),
1150    DEFINE_PROP_END_OF_LIST(),
1151};
1152
1153static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1154{
1155    FWCfgMemState *s = FW_CFG_MEM(dev);
1156    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1157    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1158    Error *local_err = NULL;
1159
1160    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1161    if (local_err) {
1162        error_propagate(errp, local_err);
1163        return;
1164    }
1165
1166    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1167                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1168    sysbus_init_mmio(sbd, &s->ctl_iomem);
1169
1170    if (s->data_width > data_ops->valid.max_access_size) {
1171        s->wide_data_ops = *data_ops;
1172
1173        s->wide_data_ops.valid.max_access_size = s->data_width;
1174        s->wide_data_ops.impl.max_access_size  = s->data_width;
1175        data_ops = &s->wide_data_ops;
1176    }
1177    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1178                          "fwcfg.data", data_ops->valid.max_access_size);
1179    sysbus_init_mmio(sbd, &s->data_iomem);
1180
1181    if (FW_CFG(s)->dma_enabled) {
1182        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1183                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1184                              sizeof(dma_addr_t));
1185        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1186    }
1187
1188    fw_cfg_common_realize(dev, errp);
1189}
1190
1191static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1192{
1193    DeviceClass *dc = DEVICE_CLASS(klass);
1194
1195    dc->realize = fw_cfg_mem_realize;
1196    dc->props = fw_cfg_mem_properties;
1197}
1198
1199static const TypeInfo fw_cfg_mem_info = {
1200    .name          = TYPE_FW_CFG_MEM,
1201    .parent        = TYPE_FW_CFG,
1202    .instance_size = sizeof(FWCfgMemState),
1203    .class_init    = fw_cfg_mem_class_init,
1204};
1205
1206
1207static void fw_cfg_register_types(void)
1208{
1209    type_register_static(&fw_cfg_info);
1210    type_register_static(&fw_cfg_io_info);
1211    type_register_static(&fw_cfg_mem_info);
1212}
1213
1214type_init(fw_cfg_register_types)
1215