qemu/hw/ppc/spapr_drc.c
<<
>>
Prefs
   1/*
   2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
   3 *
   4 * Copyright IBM Corp. 2014
   5 *
   6 * Authors:
   7 *  Michael Roth      <mdroth@linux.vnet.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qapi/error.h"
  15#include "qapi/qmp/qnull.h"
  16#include "cpu.h"
  17#include "qemu/cutils.h"
  18#include "hw/ppc/spapr_drc.h"
  19#include "qom/object.h"
  20#include "hw/qdev.h"
  21#include "qapi/visitor.h"
  22#include "qemu/error-report.h"
  23#include "hw/ppc/spapr.h" /* for RTAS return codes */
  24#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
  25#include "sysemu/device_tree.h"
  26#include "trace.h"
  27
  28#define DRC_CONTAINER_PATH "/dr-connector"
  29#define DRC_INDEX_TYPE_SHIFT 28
  30#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
  31
  32SpaprDrcType spapr_drc_type(SpaprDrc *drc)
  33{
  34    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  35
  36    return 1 << drck->typeshift;
  37}
  38
  39uint32_t spapr_drc_index(SpaprDrc *drc)
  40{
  41    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  42
  43    /* no set format for a drc index: it only needs to be globally
  44     * unique. this is how we encode the DRC type on bare-metal
  45     * however, so might as well do that here
  46     */
  47    return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
  48        | (drc->id & DRC_INDEX_ID_MASK);
  49}
  50
  51static uint32_t drc_isolate_physical(SpaprDrc *drc)
  52{
  53    switch (drc->state) {
  54    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  55        return RTAS_OUT_SUCCESS; /* Nothing to do */
  56    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  57        break; /* see below */
  58    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  59        return RTAS_OUT_PARAM_ERROR; /* not allowed */
  60    default:
  61        g_assert_not_reached();
  62    }
  63
  64    drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
  65
  66    if (drc->unplug_requested) {
  67        uint32_t drc_index = spapr_drc_index(drc);
  68        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
  69        spapr_drc_detach(drc);
  70    }
  71
  72    return RTAS_OUT_SUCCESS;
  73}
  74
  75static uint32_t drc_unisolate_physical(SpaprDrc *drc)
  76{
  77    switch (drc->state) {
  78    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  79    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  80        return RTAS_OUT_SUCCESS; /* Nothing to do */
  81    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  82        break; /* see below */
  83    default:
  84        g_assert_not_reached();
  85    }
  86
  87    /* cannot unisolate a non-existent resource, and, or resources
  88     * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
  89     * 13.5.3.5)
  90     */
  91    if (!drc->dev) {
  92        return RTAS_OUT_NO_SUCH_INDICATOR;
  93    }
  94
  95    drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
  96    drc->ccs_offset = drc->fdt_start_offset;
  97    drc->ccs_depth = 0;
  98
  99    return RTAS_OUT_SUCCESS;
 100}
 101
 102static uint32_t drc_isolate_logical(SpaprDrc *drc)
 103{
 104    switch (drc->state) {
 105    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 106    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 107        return RTAS_OUT_SUCCESS; /* Nothing to do */
 108    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 109        break; /* see below */
 110    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 111        return RTAS_OUT_PARAM_ERROR; /* not allowed */
 112    default:
 113        g_assert_not_reached();
 114    }
 115
 116    /*
 117     * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
 118     * belong to a DIMM device that is marked for removal.
 119     *
 120     * Currently the guest userspace tool drmgr that drives the memory
 121     * hotplug/unplug will just try to remove a set of 'removable' LMBs
 122     * in response to a hot unplug request that is based on drc-count.
 123     * If the LMB being removed doesn't belong to a DIMM device that is
 124     * actually being unplugged, fail the isolation request here.
 125     */
 126    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
 127        && !drc->unplug_requested) {
 128        return RTAS_OUT_HW_ERROR;
 129    }
 130
 131    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 132
 133    /* if we're awaiting release, but still in an unconfigured state,
 134     * it's likely the guest is still in the process of configuring
 135     * the device and is transitioning the devices to an ISOLATED
 136     * state as a part of that process. so we only complete the
 137     * removal when this transition happens for a device in a
 138     * configured state, as suggested by the state diagram from PAPR+
 139     * 2.7, 13.4
 140     */
 141    if (drc->unplug_requested) {
 142        uint32_t drc_index = spapr_drc_index(drc);
 143        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
 144        spapr_drc_detach(drc);
 145    }
 146    return RTAS_OUT_SUCCESS;
 147}
 148
 149static uint32_t drc_unisolate_logical(SpaprDrc *drc)
 150{
 151    switch (drc->state) {
 152    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 153    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 154        return RTAS_OUT_SUCCESS; /* Nothing to do */
 155    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 156        break; /* see below */
 157    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 158        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 159    default:
 160        g_assert_not_reached();
 161    }
 162
 163    /* Move to AVAILABLE state should have ensured device was present */
 164    g_assert(drc->dev);
 165
 166    drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
 167    drc->ccs_offset = drc->fdt_start_offset;
 168    drc->ccs_depth = 0;
 169
 170    return RTAS_OUT_SUCCESS;
 171}
 172
 173static uint32_t drc_set_usable(SpaprDrc *drc)
 174{
 175    switch (drc->state) {
 176    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 177    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 178    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 179        return RTAS_OUT_SUCCESS; /* Nothing to do */
 180    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 181        break; /* see below */
 182    default:
 183        g_assert_not_reached();
 184    }
 185
 186    /* if there's no resource/device associated with the DRC, there's
 187     * no way for us to put it in an allocation state consistent with
 188     * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
 189     * result in an RTAS return code of -3 / "no such indicator"
 190     */
 191    if (!drc->dev) {
 192        return RTAS_OUT_NO_SUCH_INDICATOR;
 193    }
 194    if (drc->unplug_requested) {
 195        /* Don't allow the guest to move a device away from UNUSABLE
 196         * state when we want to unplug it */
 197        return RTAS_OUT_NO_SUCH_INDICATOR;
 198    }
 199
 200    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 201
 202    return RTAS_OUT_SUCCESS;
 203}
 204
 205static uint32_t drc_set_unusable(SpaprDrc *drc)
 206{
 207    switch (drc->state) {
 208    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 209        return RTAS_OUT_SUCCESS; /* Nothing to do */
 210    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 211        break; /* see below */
 212    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 213    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 214        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 215    default:
 216        g_assert_not_reached();
 217    }
 218
 219    drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 220    if (drc->unplug_requested) {
 221        uint32_t drc_index = spapr_drc_index(drc);
 222        trace_spapr_drc_set_allocation_state_finalizing(drc_index);
 223        spapr_drc_detach(drc);
 224    }
 225
 226    return RTAS_OUT_SUCCESS;
 227}
 228
 229static const char *spapr_drc_name(SpaprDrc *drc)
 230{
 231    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 232
 233    /* human-readable name for a DRC to encode into the DT
 234     * description. this is mainly only used within a guest in place
 235     * of the unique DRC index.
 236     *
 237     * in the case of VIO/PCI devices, it corresponds to a "location
 238     * code" that maps a logical device/function (DRC index) to a
 239     * physical (or virtual in the case of VIO) location in the system
 240     * by chaining together the "location label" for each
 241     * encapsulating component.
 242     *
 243     * since this is more to do with diagnosing physical hardware
 244     * issues than guest compatibility, we choose location codes/DRC
 245     * names that adhere to the documented format, but avoid encoding
 246     * the entire topology information into the label/code, instead
 247     * just using the location codes based on the labels for the
 248     * endpoints (VIO/PCI adaptor connectors), which is basically just
 249     * "C" followed by an integer ID.
 250     *
 251     * DRC names as documented by PAPR+ v2.7, 13.5.2.4
 252     * location codes as documented by PAPR+ v2.7, 12.3.1.5
 253     */
 254    return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
 255}
 256
 257/*
 258 * dr-entity-sense sensor value
 259 * returned via get-sensor-state RTAS calls
 260 * as expected by state diagram in PAPR+ 2.7, 13.4
 261 * based on the current allocation/indicator/power states
 262 * for the DR connector.
 263 */
 264static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
 265{
 266    /* this assumes all PCI devices are assigned to a 'live insertion'
 267     * power domain, where QEMU manages power state automatically as
 268     * opposed to the guest. present, non-PCI resources are unaffected
 269     * by power state.
 270     */
 271    return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
 272        : SPAPR_DR_ENTITY_SENSE_EMPTY;
 273}
 274
 275static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
 276{
 277    switch (drc->state) {
 278    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 279        return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
 280    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 281    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 282    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 283        g_assert(drc->dev);
 284        return SPAPR_DR_ENTITY_SENSE_PRESENT;
 285    default:
 286        g_assert_not_reached();
 287    }
 288}
 289
 290static void prop_get_index(Object *obj, Visitor *v, const char *name,
 291                           void *opaque, Error **errp)
 292{
 293    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 294    uint32_t value = spapr_drc_index(drc);
 295    visit_type_uint32(v, name, &value, errp);
 296}
 297
 298static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
 299                         void *opaque, Error **errp)
 300{
 301    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 302    QNull *null = NULL;
 303    Error *err = NULL;
 304    int fdt_offset_next, fdt_offset, fdt_depth;
 305    void *fdt;
 306
 307    if (!drc->fdt) {
 308        visit_type_null(v, NULL, &null, errp);
 309        qobject_unref(null);
 310        return;
 311    }
 312
 313    fdt = drc->fdt;
 314    fdt_offset = drc->fdt_start_offset;
 315    fdt_depth = 0;
 316
 317    do {
 318        const char *name = NULL;
 319        const struct fdt_property *prop = NULL;
 320        int prop_len = 0, name_len = 0;
 321        uint32_t tag;
 322
 323        tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
 324        switch (tag) {
 325        case FDT_BEGIN_NODE:
 326            fdt_depth++;
 327            name = fdt_get_name(fdt, fdt_offset, &name_len);
 328            visit_start_struct(v, name, NULL, 0, &err);
 329            if (err) {
 330                error_propagate(errp, err);
 331                return;
 332            }
 333            break;
 334        case FDT_END_NODE:
 335            /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
 336            g_assert(fdt_depth > 0);
 337            visit_check_struct(v, &err);
 338            visit_end_struct(v, NULL);
 339            if (err) {
 340                error_propagate(errp, err);
 341                return;
 342            }
 343            fdt_depth--;
 344            break;
 345        case FDT_PROP: {
 346            int i;
 347            prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
 348            name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
 349            visit_start_list(v, name, NULL, 0, &err);
 350            if (err) {
 351                error_propagate(errp, err);
 352                return;
 353            }
 354            for (i = 0; i < prop_len; i++) {
 355                visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
 356                if (err) {
 357                    error_propagate(errp, err);
 358                    return;
 359                }
 360            }
 361            visit_check_list(v, &err);
 362            visit_end_list(v, NULL);
 363            if (err) {
 364                error_propagate(errp, err);
 365                return;
 366            }
 367            break;
 368        }
 369        default:
 370            error_report("device FDT in unexpected state: %d", tag);
 371            abort();
 372        }
 373        fdt_offset = fdt_offset_next;
 374    } while (fdt_depth != 0);
 375}
 376
 377void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
 378{
 379    trace_spapr_drc_attach(spapr_drc_index(drc));
 380
 381    if (drc->dev) {
 382        error_setg(errp, "an attached device is still awaiting release");
 383        return;
 384    }
 385    g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
 386             || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
 387
 388    drc->dev = d;
 389
 390    object_property_add_link(OBJECT(drc), "device",
 391                             object_get_typename(OBJECT(drc->dev)),
 392                             (Object **)(&drc->dev),
 393                             NULL, 0, NULL);
 394}
 395
 396static void spapr_drc_release(SpaprDrc *drc)
 397{
 398    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 399
 400    drck->release(drc->dev);
 401
 402    drc->unplug_requested = false;
 403    g_free(drc->fdt);
 404    drc->fdt = NULL;
 405    drc->fdt_start_offset = 0;
 406    object_property_del(OBJECT(drc), "device", &error_abort);
 407    drc->dev = NULL;
 408}
 409
 410void spapr_drc_detach(SpaprDrc *drc)
 411{
 412    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 413
 414    trace_spapr_drc_detach(spapr_drc_index(drc));
 415
 416    g_assert(drc->dev);
 417
 418    drc->unplug_requested = true;
 419
 420    if (drc->state != drck->empty_state) {
 421        trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
 422        return;
 423    }
 424
 425    spapr_drc_release(drc);
 426}
 427
 428void spapr_drc_reset(SpaprDrc *drc)
 429{
 430    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 431
 432    trace_spapr_drc_reset(spapr_drc_index(drc));
 433
 434    /* immediately upon reset we can safely assume DRCs whose devices
 435     * are pending removal can be safely removed.
 436     */
 437    if (drc->unplug_requested) {
 438        spapr_drc_release(drc);
 439    }
 440
 441    if (drc->dev) {
 442        /* A device present at reset is ready to go, same as coldplugged */
 443        drc->state = drck->ready_state;
 444        /*
 445         * Ensure that we are able to send the FDT fragment again
 446         * via configure-connector call if the guest requests.
 447         */
 448        drc->ccs_offset = drc->fdt_start_offset;
 449        drc->ccs_depth = 0;
 450    } else {
 451        drc->state = drck->empty_state;
 452        drc->ccs_offset = -1;
 453        drc->ccs_depth = -1;
 454    }
 455}
 456
 457bool spapr_drc_needed(void *opaque)
 458{
 459    SpaprDrc *drc = (SpaprDrc *)opaque;
 460    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 461
 462    /* If no dev is plugged in there is no need to migrate the DRC state */
 463    if (!drc->dev) {
 464        return false;
 465    }
 466
 467    /*
 468     * We need to migrate the state if it's not equal to the expected
 469     * long-term state, which is the same as the coldplugged initial
 470     * state */
 471    return (drc->state != drck->ready_state);
 472}
 473
 474static const VMStateDescription vmstate_spapr_drc = {
 475    .name = "spapr_drc",
 476    .version_id = 1,
 477    .minimum_version_id = 1,
 478    .needed = spapr_drc_needed,
 479    .fields  = (VMStateField []) {
 480        VMSTATE_UINT32(state, SpaprDrc),
 481        VMSTATE_END_OF_LIST()
 482    }
 483};
 484
 485static void realize(DeviceState *d, Error **errp)
 486{
 487    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 488    Object *root_container;
 489    gchar *link_name;
 490    gchar *child_name;
 491    Error *err = NULL;
 492
 493    trace_spapr_drc_realize(spapr_drc_index(drc));
 494    /* NOTE: we do this as part of realize/unrealize due to the fact
 495     * that the guest will communicate with the DRC via RTAS calls
 496     * referencing the global DRC index. By unlinking the DRC
 497     * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
 498     * inaccessible by the guest, since lookups rely on this path
 499     * existing in the composition tree
 500     */
 501    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 502    link_name = g_strdup_printf("%x", spapr_drc_index(drc));
 503    child_name = object_get_canonical_path_component(OBJECT(drc));
 504    trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
 505    object_property_add_alias(root_container, link_name,
 506                              drc->owner, child_name, &err);
 507    g_free(child_name);
 508    g_free(link_name);
 509    if (err) {
 510        error_propagate(errp, err);
 511        return;
 512    }
 513    vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
 514                     drc);
 515    trace_spapr_drc_realize_complete(spapr_drc_index(drc));
 516}
 517
 518static void unrealize(DeviceState *d, Error **errp)
 519{
 520    SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
 521    Object *root_container;
 522    gchar *name;
 523
 524    trace_spapr_drc_unrealize(spapr_drc_index(drc));
 525    vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
 526    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 527    name = g_strdup_printf("%x", spapr_drc_index(drc));
 528    object_property_del(root_container, name, errp);
 529    g_free(name);
 530}
 531
 532SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
 533                                         uint32_t id)
 534{
 535    SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
 536    char *prop_name;
 537
 538    drc->id = id;
 539    drc->owner = owner;
 540    prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
 541                                spapr_drc_index(drc));
 542    object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
 543    object_unref(OBJECT(drc));
 544    object_property_set_bool(OBJECT(drc), true, "realized", NULL);
 545    g_free(prop_name);
 546
 547    return drc;
 548}
 549
 550static void spapr_dr_connector_instance_init(Object *obj)
 551{
 552    SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
 553    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 554
 555    object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
 556    object_property_add(obj, "index", "uint32", prop_get_index,
 557                        NULL, NULL, NULL, NULL);
 558    object_property_add(obj, "fdt", "struct", prop_get_fdt,
 559                        NULL, NULL, NULL, NULL);
 560    drc->state = drck->empty_state;
 561}
 562
 563static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
 564{
 565    DeviceClass *dk = DEVICE_CLASS(k);
 566
 567    dk->realize = realize;
 568    dk->unrealize = unrealize;
 569    /*
 570     * Reason: it crashes FIXME find and document the real reason
 571     */
 572    dk->user_creatable = false;
 573}
 574
 575static bool drc_physical_needed(void *opaque)
 576{
 577    SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
 578    SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
 579
 580    if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
 581        || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
 582        return false;
 583    }
 584    return true;
 585}
 586
 587static const VMStateDescription vmstate_spapr_drc_physical = {
 588    .name = "spapr_drc/physical",
 589    .version_id = 1,
 590    .minimum_version_id = 1,
 591    .needed = drc_physical_needed,
 592    .fields  = (VMStateField []) {
 593        VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
 594        VMSTATE_END_OF_LIST()
 595    }
 596};
 597
 598static void drc_physical_reset(void *opaque)
 599{
 600    SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
 601    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
 602
 603    if (drc->dev) {
 604        drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
 605    } else {
 606        drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
 607    }
 608}
 609
 610static void realize_physical(DeviceState *d, Error **errp)
 611{
 612    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 613    Error *local_err = NULL;
 614
 615    realize(d, &local_err);
 616    if (local_err) {
 617        error_propagate(errp, local_err);
 618        return;
 619    }
 620
 621    vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
 622                     &vmstate_spapr_drc_physical, drcp);
 623    qemu_register_reset(drc_physical_reset, drcp);
 624}
 625
 626static void unrealize_physical(DeviceState *d, Error **errp)
 627{
 628    SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 629    Error *local_err = NULL;
 630
 631    unrealize(d, &local_err);
 632    if (local_err) {
 633        error_propagate(errp, local_err);
 634        return;
 635    }
 636
 637    vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
 638    qemu_unregister_reset(drc_physical_reset, drcp);
 639}
 640
 641static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
 642{
 643    DeviceClass *dk = DEVICE_CLASS(k);
 644    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 645
 646    dk->realize = realize_physical;
 647    dk->unrealize = unrealize_physical;
 648    drck->dr_entity_sense = physical_entity_sense;
 649    drck->isolate = drc_isolate_physical;
 650    drck->unisolate = drc_unisolate_physical;
 651    drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
 652    drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
 653}
 654
 655static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
 656{
 657    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 658
 659    drck->dr_entity_sense = logical_entity_sense;
 660    drck->isolate = drc_isolate_logical;
 661    drck->unisolate = drc_unisolate_logical;
 662    drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
 663    drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 664}
 665
 666static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
 667{
 668    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 669
 670    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
 671    drck->typename = "CPU";
 672    drck->drc_name_prefix = "CPU ";
 673    drck->release = spapr_core_release;
 674    drck->dt_populate = spapr_core_dt_populate;
 675}
 676
 677static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
 678{
 679    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 680
 681    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
 682    drck->typename = "28";
 683    drck->drc_name_prefix = "C";
 684    drck->release = spapr_phb_remove_pci_device_cb;
 685    drck->dt_populate = spapr_pci_dt_populate;
 686}
 687
 688static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
 689{
 690    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 691
 692    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
 693    drck->typename = "MEM";
 694    drck->drc_name_prefix = "LMB ";
 695    drck->release = spapr_lmb_release;
 696    drck->dt_populate = spapr_lmb_dt_populate;
 697}
 698
 699static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
 700{
 701    SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 702
 703    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
 704    drck->typename = "PHB";
 705    drck->drc_name_prefix = "PHB ";
 706    drck->release = spapr_phb_release;
 707    drck->dt_populate = spapr_phb_dt_populate;
 708}
 709
 710static const TypeInfo spapr_dr_connector_info = {
 711    .name          = TYPE_SPAPR_DR_CONNECTOR,
 712    .parent        = TYPE_DEVICE,
 713    .instance_size = sizeof(SpaprDrc),
 714    .instance_init = spapr_dr_connector_instance_init,
 715    .class_size    = sizeof(SpaprDrcClass),
 716    .class_init    = spapr_dr_connector_class_init,
 717    .abstract      = true,
 718};
 719
 720static const TypeInfo spapr_drc_physical_info = {
 721    .name          = TYPE_SPAPR_DRC_PHYSICAL,
 722    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 723    .instance_size = sizeof(SpaprDrcPhysical),
 724    .class_init    = spapr_drc_physical_class_init,
 725    .abstract      = true,
 726};
 727
 728static const TypeInfo spapr_drc_logical_info = {
 729    .name          = TYPE_SPAPR_DRC_LOGICAL,
 730    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 731    .class_init    = spapr_drc_logical_class_init,
 732    .abstract      = true,
 733};
 734
 735static const TypeInfo spapr_drc_cpu_info = {
 736    .name          = TYPE_SPAPR_DRC_CPU,
 737    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 738    .class_init    = spapr_drc_cpu_class_init,
 739};
 740
 741static const TypeInfo spapr_drc_pci_info = {
 742    .name          = TYPE_SPAPR_DRC_PCI,
 743    .parent        = TYPE_SPAPR_DRC_PHYSICAL,
 744    .class_init    = spapr_drc_pci_class_init,
 745};
 746
 747static const TypeInfo spapr_drc_lmb_info = {
 748    .name          = TYPE_SPAPR_DRC_LMB,
 749    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 750    .class_init    = spapr_drc_lmb_class_init,
 751};
 752
 753static const TypeInfo spapr_drc_phb_info = {
 754    .name          = TYPE_SPAPR_DRC_PHB,
 755    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 756    .instance_size = sizeof(SpaprDrc),
 757    .class_init    = spapr_drc_phb_class_init,
 758};
 759
 760/* helper functions for external users */
 761
 762SpaprDrc *spapr_drc_by_index(uint32_t index)
 763{
 764    Object *obj;
 765    gchar *name;
 766
 767    name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
 768    obj = object_resolve_path(name, NULL);
 769    g_free(name);
 770
 771    return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
 772}
 773
 774SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
 775{
 776    SpaprDrcClass *drck
 777        = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
 778
 779    return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
 780                              | (id & DRC_INDEX_ID_MASK));
 781}
 782
 783/**
 784 * spapr_dt_drc
 785 *
 786 * @fdt: libfdt device tree
 787 * @path: path in the DT to generate properties
 788 * @owner: parent Object/DeviceState for which to generate DRC
 789 *         descriptions for
 790 * @drc_type_mask: mask of SpaprDrcType values corresponding
 791 *   to the types of DRCs to generate entries for
 792 *
 793 * generate OF properties to describe DRC topology/indices to guests
 794 *
 795 * as documented in PAPR+ v2.1, 13.5.2
 796 */
 797int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
 798{
 799    Object *root_container;
 800    ObjectProperty *prop;
 801    ObjectPropertyIterator iter;
 802    uint32_t drc_count = 0;
 803    GArray *drc_indexes, *drc_power_domains;
 804    GString *drc_names, *drc_types;
 805    int ret;
 806
 807    /* the first entry of each properties is a 32-bit integer encoding
 808     * the number of elements in the array. we won't know this until
 809     * we complete the iteration through all the matching DRCs, but
 810     * reserve the space now and set the offsets accordingly so we
 811     * can fill them in later.
 812     */
 813    drc_indexes = g_array_new(false, true, sizeof(uint32_t));
 814    drc_indexes = g_array_set_size(drc_indexes, 1);
 815    drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
 816    drc_power_domains = g_array_set_size(drc_power_domains, 1);
 817    drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 818    drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 819
 820    /* aliases for all DRConnector objects will be rooted in QOM
 821     * composition tree at DRC_CONTAINER_PATH
 822     */
 823    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 824
 825    object_property_iter_init(&iter, root_container);
 826    while ((prop = object_property_iter_next(&iter))) {
 827        Object *obj;
 828        SpaprDrc *drc;
 829        SpaprDrcClass *drck;
 830        uint32_t drc_index, drc_power_domain;
 831
 832        if (!strstart(prop->type, "link<", NULL)) {
 833            continue;
 834        }
 835
 836        obj = object_property_get_link(root_container, prop->name, NULL);
 837        drc = SPAPR_DR_CONNECTOR(obj);
 838        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 839
 840        if (owner && (drc->owner != owner)) {
 841            continue;
 842        }
 843
 844        if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
 845            continue;
 846        }
 847
 848        drc_count++;
 849
 850        /* ibm,drc-indexes */
 851        drc_index = cpu_to_be32(spapr_drc_index(drc));
 852        g_array_append_val(drc_indexes, drc_index);
 853
 854        /* ibm,drc-power-domains */
 855        drc_power_domain = cpu_to_be32(-1);
 856        g_array_append_val(drc_power_domains, drc_power_domain);
 857
 858        /* ibm,drc-names */
 859        drc_names = g_string_append(drc_names, spapr_drc_name(drc));
 860        drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
 861
 862        /* ibm,drc-types */
 863        drc_types = g_string_append(drc_types, drck->typename);
 864        drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
 865    }
 866
 867    /* now write the drc count into the space we reserved at the
 868     * beginning of the arrays previously
 869     */
 870    *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
 871    *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
 872    *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
 873    *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
 874
 875    ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
 876                      drc_indexes->data,
 877                      drc_indexes->len * sizeof(uint32_t));
 878    if (ret) {
 879        error_report("Couldn't create ibm,drc-indexes property");
 880        goto out;
 881    }
 882
 883    ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
 884                      drc_power_domains->data,
 885                      drc_power_domains->len * sizeof(uint32_t));
 886    if (ret) {
 887        error_report("Couldn't finalize ibm,drc-power-domains property");
 888        goto out;
 889    }
 890
 891    ret = fdt_setprop(fdt, offset, "ibm,drc-names",
 892                      drc_names->str, drc_names->len);
 893    if (ret) {
 894        error_report("Couldn't finalize ibm,drc-names property");
 895        goto out;
 896    }
 897
 898    ret = fdt_setprop(fdt, offset, "ibm,drc-types",
 899                      drc_types->str, drc_types->len);
 900    if (ret) {
 901        error_report("Couldn't finalize ibm,drc-types property");
 902        goto out;
 903    }
 904
 905out:
 906    g_array_free(drc_indexes, true);
 907    g_array_free(drc_power_domains, true);
 908    g_string_free(drc_names, true);
 909    g_string_free(drc_types, true);
 910
 911    return ret;
 912}
 913
 914/*
 915 * RTAS calls
 916 */
 917
 918static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
 919{
 920    SpaprDrc *drc = spapr_drc_by_index(idx);
 921    SpaprDrcClass *drck;
 922
 923    if (!drc) {
 924        return RTAS_OUT_NO_SUCH_INDICATOR;
 925    }
 926
 927    trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
 928
 929    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 930
 931    switch (state) {
 932    case SPAPR_DR_ISOLATION_STATE_ISOLATED:
 933        return drck->isolate(drc);
 934
 935    case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
 936        return drck->unisolate(drc);
 937
 938    default:
 939        return RTAS_OUT_PARAM_ERROR;
 940    }
 941}
 942
 943static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
 944{
 945    SpaprDrc *drc = spapr_drc_by_index(idx);
 946
 947    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
 948        return RTAS_OUT_NO_SUCH_INDICATOR;
 949    }
 950
 951    trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
 952
 953    switch (state) {
 954    case SPAPR_DR_ALLOCATION_STATE_USABLE:
 955        return drc_set_usable(drc);
 956
 957    case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
 958        return drc_set_unusable(drc);
 959
 960    default:
 961        return RTAS_OUT_PARAM_ERROR;
 962    }
 963}
 964
 965static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
 966{
 967    SpaprDrc *drc = spapr_drc_by_index(idx);
 968
 969    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
 970        return RTAS_OUT_NO_SUCH_INDICATOR;
 971    }
 972    if ((state != SPAPR_DR_INDICATOR_INACTIVE)
 973        && (state != SPAPR_DR_INDICATOR_ACTIVE)
 974        && (state != SPAPR_DR_INDICATOR_IDENTIFY)
 975        && (state != SPAPR_DR_INDICATOR_ACTION)) {
 976        return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
 977    }
 978
 979    trace_spapr_drc_set_dr_indicator(idx, state);
 980    SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
 981    return RTAS_OUT_SUCCESS;
 982}
 983
 984static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
 985                               uint32_t token,
 986                               uint32_t nargs, target_ulong args,
 987                               uint32_t nret, target_ulong rets)
 988{
 989    uint32_t type, idx, state;
 990    uint32_t ret = RTAS_OUT_SUCCESS;
 991
 992    if (nargs != 3 || nret != 1) {
 993        ret = RTAS_OUT_PARAM_ERROR;
 994        goto out;
 995    }
 996
 997    type = rtas_ld(args, 0);
 998    idx = rtas_ld(args, 1);
 999    state = rtas_ld(args, 2);
1000
1001    switch (type) {
1002    case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1003        ret = rtas_set_isolation_state(idx, state);
1004        break;
1005    case RTAS_SENSOR_TYPE_DR:
1006        ret = rtas_set_dr_indicator(idx, state);
1007        break;
1008    case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1009        ret = rtas_set_allocation_state(idx, state);
1010        break;
1011    default:
1012        ret = RTAS_OUT_NOT_SUPPORTED;
1013    }
1014
1015out:
1016    rtas_st(rets, 0, ret);
1017}
1018
1019static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1020                                  uint32_t token, uint32_t nargs,
1021                                  target_ulong args, uint32_t nret,
1022                                  target_ulong rets)
1023{
1024    uint32_t sensor_type;
1025    uint32_t sensor_index;
1026    uint32_t sensor_state = 0;
1027    SpaprDrc *drc;
1028    SpaprDrcClass *drck;
1029    uint32_t ret = RTAS_OUT_SUCCESS;
1030
1031    if (nargs != 2 || nret != 2) {
1032        ret = RTAS_OUT_PARAM_ERROR;
1033        goto out;
1034    }
1035
1036    sensor_type = rtas_ld(args, 0);
1037    sensor_index = rtas_ld(args, 1);
1038
1039    if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1040        /* currently only DR-related sensors are implemented */
1041        trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1042                                                        sensor_type);
1043        ret = RTAS_OUT_NOT_SUPPORTED;
1044        goto out;
1045    }
1046
1047    drc = spapr_drc_by_index(sensor_index);
1048    if (!drc) {
1049        trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1050        ret = RTAS_OUT_PARAM_ERROR;
1051        goto out;
1052    }
1053    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1054    sensor_state = drck->dr_entity_sense(drc);
1055
1056out:
1057    rtas_st(rets, 0, ret);
1058    rtas_st(rets, 1, sensor_state);
1059}
1060
1061/* configure-connector work area offsets, int32_t units for field
1062 * indexes, bytes for field offset/len values.
1063 *
1064 * as documented by PAPR+ v2.7, 13.5.3.5
1065 */
1066#define CC_IDX_NODE_NAME_OFFSET 2
1067#define CC_IDX_PROP_NAME_OFFSET 2
1068#define CC_IDX_PROP_LEN 3
1069#define CC_IDX_PROP_DATA_OFFSET 4
1070#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1071#define CC_WA_LEN 4096
1072
1073static void configure_connector_st(target_ulong addr, target_ulong offset,
1074                                   const void *buf, size_t len)
1075{
1076    cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1077                              buf, MIN(len, CC_WA_LEN - offset));
1078}
1079
1080static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1081                                         SpaprMachineState *spapr,
1082                                         uint32_t token, uint32_t nargs,
1083                                         target_ulong args, uint32_t nret,
1084                                         target_ulong rets)
1085{
1086    uint64_t wa_addr;
1087    uint64_t wa_offset;
1088    uint32_t drc_index;
1089    SpaprDrc *drc;
1090    SpaprDrcClass *drck;
1091    SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1092    int rc;
1093
1094    if (nargs != 2 || nret != 1) {
1095        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1096        return;
1097    }
1098
1099    wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1100
1101    drc_index = rtas_ld(wa_addr, 0);
1102    drc = spapr_drc_by_index(drc_index);
1103    if (!drc) {
1104        trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1105        rc = RTAS_OUT_PARAM_ERROR;
1106        goto out;
1107    }
1108
1109    if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1110        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1111        && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1112        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1113        /*
1114         * Need to unisolate the device before configuring
1115         * or it should already be in configured state to
1116         * allow configure-connector be called repeatedly.
1117         */
1118        rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1119        goto out;
1120    }
1121
1122    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1123
1124    if (!drc->fdt) {
1125        Error *local_err = NULL;
1126        void *fdt;
1127        int fdt_size;
1128
1129        fdt = create_device_tree(&fdt_size);
1130
1131        if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1132                              &local_err)) {
1133            g_free(fdt);
1134            error_free(local_err);
1135            rc = SPAPR_DR_CC_RESPONSE_ERROR;
1136            goto out;
1137        }
1138
1139        drc->fdt = fdt;
1140        drc->ccs_offset = drc->fdt_start_offset;
1141        drc->ccs_depth = 0;
1142    }
1143
1144    do {
1145        uint32_t tag;
1146        const char *name;
1147        const struct fdt_property *prop;
1148        int fdt_offset_next, prop_len;
1149
1150        tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1151
1152        switch (tag) {
1153        case FDT_BEGIN_NODE:
1154            drc->ccs_depth++;
1155            name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1156
1157            /* provide the name of the next OF node */
1158            wa_offset = CC_VAL_DATA_OFFSET;
1159            rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1160            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1161            resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1162            break;
1163        case FDT_END_NODE:
1164            drc->ccs_depth--;
1165            if (drc->ccs_depth == 0) {
1166                uint32_t drc_index = spapr_drc_index(drc);
1167
1168                /* done sending the device tree, move to configured state */
1169                trace_spapr_drc_set_configured(drc_index);
1170                drc->state = drck->ready_state;
1171                /*
1172                 * Ensure that we are able to send the FDT fragment
1173                 * again via configure-connector call if the guest requests.
1174                 */
1175                drc->ccs_offset = drc->fdt_start_offset;
1176                drc->ccs_depth = 0;
1177                fdt_offset_next = drc->fdt_start_offset;
1178                resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1179            } else {
1180                resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1181            }
1182            break;
1183        case FDT_PROP:
1184            prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1185                                              &prop_len);
1186            name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1187
1188            /* provide the name of the next OF property */
1189            wa_offset = CC_VAL_DATA_OFFSET;
1190            rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1191            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1192
1193            /* provide the length and value of the OF property. data gets
1194             * placed immediately after NULL terminator of the OF property's
1195             * name string
1196             */
1197            wa_offset += strlen(name) + 1,
1198            rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1199            rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1200            configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1201            resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1202            break;
1203        case FDT_END:
1204            resp = SPAPR_DR_CC_RESPONSE_ERROR;
1205        default:
1206            /* keep seeking for an actionable tag */
1207            break;
1208        }
1209        if (drc->ccs_offset >= 0) {
1210            drc->ccs_offset = fdt_offset_next;
1211        }
1212    } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1213
1214    rc = resp;
1215out:
1216    rtas_st(rets, 0, rc);
1217}
1218
1219static void spapr_drc_register_types(void)
1220{
1221    type_register_static(&spapr_dr_connector_info);
1222    type_register_static(&spapr_drc_physical_info);
1223    type_register_static(&spapr_drc_logical_info);
1224    type_register_static(&spapr_drc_cpu_info);
1225    type_register_static(&spapr_drc_pci_info);
1226    type_register_static(&spapr_drc_lmb_info);
1227    type_register_static(&spapr_drc_phb_info);
1228
1229    spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1230                        rtas_set_indicator);
1231    spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1232                        rtas_get_sensor_state);
1233    spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1234                        rtas_ibm_configure_connector);
1235}
1236type_init(spapr_drc_register_types)
1237