qemu/hw/watchdog/wdt_i6300esb.c
<<
>>
Prefs
   1/*
   2 * Virtual hardware watchdog.
   3 *
   4 * Copyright (C) 2009 Red Hat Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * By Richard W.M. Jones (rjones@redhat.com).
  20 */
  21
  22#include "qemu/osdep.h"
  23
  24#include "qemu/module.h"
  25#include "qemu/timer.h"
  26#include "sysemu/watchdog.h"
  27#include "hw/hw.h"
  28#include "hw/pci/pci.h"
  29
  30/*#define I6300ESB_DEBUG 1*/
  31
  32#ifdef I6300ESB_DEBUG
  33#define i6300esb_debug(fs,...) \
  34    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
  35#else
  36#define i6300esb_debug(fs,...)
  37#endif
  38
  39/* PCI configuration registers */
  40#define ESB_CONFIG_REG  0x60            /* Config register                   */
  41#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
  42
  43/* Memory mapped registers (offset from base address) */
  44#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
  45#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
  46#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
  47#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
  48
  49/* Lock register bits */
  50#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
  51#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
  52#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
  53
  54/* Config register bits */
  55#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
  56#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
  57#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
  58
  59/* Reload register bits */
  60#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
  61
  62/* Magic constants */
  63#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
  64#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
  65
  66/* Device state. */
  67struct I6300State {
  68    PCIDevice dev;
  69    MemoryRegion io_mem;
  70
  71    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
  72                                 * performed depends on the -watchdog-action
  73                                 * param passed on QEMU command line.
  74                                 */
  75    int clock_scale;            /* Clock scale. */
  76#define CLOCK_SCALE_1KHZ 0
  77#define CLOCK_SCALE_1MHZ 1
  78
  79    int int_type;               /* Interrupt type generated. */
  80#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
  81#define INT_TYPE_SMI 2
  82#define INT_TYPE_DISABLED 3
  83
  84    int free_run;               /* If true, reload timer on expiry. */
  85    int locked;                 /* If true, enabled field cannot be changed. */
  86    int enabled;                /* If true, watchdog is enabled. */
  87
  88    QEMUTimer *timer;           /* The actual watchdog timer. */
  89
  90    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
  91    uint32_t timer2_preload;
  92    int stage;                  /* Stage (1 or 2). */
  93
  94    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
  95                                 * registers, and we transition through
  96                                 * states 0 -> 1 -> 2 when this happens.
  97                                 */
  98
  99    int previous_reboot_flag;   /* If the watchdog caused the previous
 100                                 * reboot, this flag will be set.
 101                                 */
 102};
 103
 104typedef struct I6300State I6300State;
 105
 106#define TYPE_WATCHDOG_I6300ESB_DEVICE "i6300esb"
 107#define WATCHDOG_I6300ESB_DEVICE(obj) \
 108    OBJECT_CHECK(I6300State, (obj), TYPE_WATCHDOG_I6300ESB_DEVICE)
 109
 110/* This function is called when the watchdog has either been enabled
 111 * (hence it starts counting down) or has been keep-alived.
 112 */
 113static void i6300esb_restart_timer(I6300State *d, int stage)
 114{
 115    int64_t timeout;
 116
 117    if (!d->enabled)
 118        return;
 119
 120    d->stage = stage;
 121
 122    if (d->stage <= 1)
 123        timeout = d->timer1_preload;
 124    else
 125        timeout = d->timer2_preload;
 126
 127    if (d->clock_scale == CLOCK_SCALE_1KHZ)
 128        timeout <<= 15;
 129    else
 130        timeout <<= 5;
 131
 132    /* Get the timeout in nanoseconds. */
 133
 134    timeout = timeout * 30; /* on a PCI bus, 1 tick is 30 ns*/
 135
 136    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
 137
 138    timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
 139}
 140
 141/* This is called when the guest disables the watchdog. */
 142static void i6300esb_disable_timer(I6300State *d)
 143{
 144    i6300esb_debug("timer disabled\n");
 145
 146    timer_del(d->timer);
 147}
 148
 149static void i6300esb_reset(DeviceState *dev)
 150{
 151    PCIDevice *pdev = PCI_DEVICE(dev);
 152    I6300State *d = WATCHDOG_I6300ESB_DEVICE(pdev);
 153
 154    i6300esb_debug("I6300State = %p\n", d);
 155
 156    i6300esb_disable_timer(d);
 157
 158    /* NB: Don't change d->previous_reboot_flag in this function. */
 159
 160    d->reboot_enabled = 1;
 161    d->clock_scale = CLOCK_SCALE_1KHZ;
 162    d->int_type = INT_TYPE_IRQ;
 163    d->free_run = 0;
 164    d->locked = 0;
 165    d->enabled = 0;
 166    d->timer1_preload = 0xfffff;
 167    d->timer2_preload = 0xfffff;
 168    d->stage = 1;
 169    d->unlock_state = 0;
 170}
 171
 172/* This function is called when the watchdog expires.  Note that
 173 * the hardware has two timers, and so expiry happens in two stages.
 174 * If d->stage == 1 then we perform the first stage action (usually,
 175 * sending an interrupt) and then restart the timer again for the
 176 * second stage.  If the second stage expires then the watchdog
 177 * really has run out.
 178 */
 179static void i6300esb_timer_expired(void *vp)
 180{
 181    I6300State *d = vp;
 182
 183    i6300esb_debug("stage %d\n", d->stage);
 184
 185    if (d->stage == 1) {
 186        /* What to do at the end of stage 1? */
 187        switch (d->int_type) {
 188        case INT_TYPE_IRQ:
 189            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
 190            break;
 191        case INT_TYPE_SMI:
 192            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
 193            break;
 194        }
 195
 196        /* Start the second stage. */
 197        i6300esb_restart_timer(d, 2);
 198    } else {
 199        /* Second stage expired, reboot for real. */
 200        if (d->reboot_enabled) {
 201            d->previous_reboot_flag = 1;
 202            watchdog_perform_action(); /* This reboots, exits, etc */
 203            i6300esb_reset(DEVICE(d));
 204        }
 205
 206        /* In "free running mode" we start stage 1 again. */
 207        if (d->free_run)
 208            i6300esb_restart_timer(d, 1);
 209    }
 210}
 211
 212static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
 213                                  uint32_t data, int len)
 214{
 215    I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
 216    int old;
 217
 218    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
 219
 220    if (addr == ESB_CONFIG_REG && len == 2) {
 221        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
 222        d->clock_scale =
 223            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
 224        d->int_type = (data & ESB_WDT_INTTYPE);
 225    } else if (addr == ESB_LOCK_REG && len == 1) {
 226        if (!d->locked) {
 227            d->locked = (data & ESB_WDT_LOCK) != 0;
 228            d->free_run = (data & ESB_WDT_FUNC) != 0;
 229            old = d->enabled;
 230            d->enabled = (data & ESB_WDT_ENABLE) != 0;
 231            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
 232                i6300esb_restart_timer(d, 1);
 233            else if (!d->enabled)
 234                i6300esb_disable_timer(d);
 235        }
 236    } else {
 237        pci_default_write_config(dev, addr, data, len);
 238    }
 239}
 240
 241static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
 242{
 243    I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
 244    uint32_t data;
 245
 246    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
 247
 248    if (addr == ESB_CONFIG_REG && len == 2) {
 249        data =
 250            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
 251            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
 252            d->int_type;
 253        return data;
 254    } else if (addr == ESB_LOCK_REG && len == 1) {
 255        data =
 256            (d->free_run ? ESB_WDT_FUNC : 0) |
 257            (d->locked ? ESB_WDT_LOCK : 0) |
 258            (d->enabled ? ESB_WDT_ENABLE : 0);
 259        return data;
 260    } else {
 261        return pci_default_read_config(dev, addr, len);
 262    }
 263}
 264
 265static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
 266{
 267    i6300esb_debug ("addr = %x\n", (int) addr);
 268
 269    return 0;
 270}
 271
 272static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
 273{
 274    uint32_t data = 0;
 275    I6300State *d = vp;
 276
 277    i6300esb_debug("addr = %x\n", (int) addr);
 278
 279    if (addr == 0xc) {
 280        /* The previous reboot flag is really bit 9, but there is
 281         * a bug in the Linux driver where it thinks it's bit 12.
 282         * Set both.
 283         */
 284        data = d->previous_reboot_flag ? 0x1200 : 0;
 285    }
 286
 287    return data;
 288}
 289
 290static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
 291{
 292    i6300esb_debug("addr = %x\n", (int) addr);
 293
 294    return 0;
 295}
 296
 297static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
 298{
 299    I6300State *d = vp;
 300
 301    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 302
 303    if (addr == 0xc && val == 0x80)
 304        d->unlock_state = 1;
 305    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 306        d->unlock_state = 2;
 307}
 308
 309static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
 310{
 311    I6300State *d = vp;
 312
 313    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
 314
 315    if (addr == 0xc && val == 0x80)
 316        d->unlock_state = 1;
 317    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 318        d->unlock_state = 2;
 319    else {
 320        if (d->unlock_state == 2) {
 321            if (addr == 0xc) {
 322                if ((val & 0x100) != 0)
 323                    /* This is the "ping" from the userspace watchdog in
 324                     * the guest ...
 325                     */
 326                    i6300esb_restart_timer(d, 1);
 327
 328                /* Setting bit 9 resets the previous reboot flag.
 329                 * There's a bug in the Linux driver where it sets
 330                 * bit 12 instead.
 331                 */
 332                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
 333                    d->previous_reboot_flag = 0;
 334                }
 335            }
 336
 337            d->unlock_state = 0;
 338        }
 339    }
 340}
 341
 342static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
 343{
 344    I6300State *d = vp;
 345
 346    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
 347
 348    if (addr == 0xc && val == 0x80)
 349        d->unlock_state = 1;
 350    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
 351        d->unlock_state = 2;
 352    else {
 353        if (d->unlock_state == 2) {
 354            if (addr == 0)
 355                d->timer1_preload = val & 0xfffff;
 356            else if (addr == 4)
 357                d->timer2_preload = val & 0xfffff;
 358
 359            d->unlock_state = 0;
 360        }
 361    }
 362}
 363
 364static uint64_t i6300esb_mem_readfn(void *opaque, hwaddr addr, unsigned size)
 365{
 366    switch (size) {
 367    case 1:
 368        return i6300esb_mem_readb(opaque, addr);
 369    case 2:
 370        return i6300esb_mem_readw(opaque, addr);
 371    case 4:
 372        return i6300esb_mem_readl(opaque, addr);
 373    default:
 374        g_assert_not_reached();
 375    }
 376}
 377
 378static void i6300esb_mem_writefn(void *opaque, hwaddr addr,
 379                                 uint64_t value, unsigned size)
 380{
 381    switch (size) {
 382    case 1:
 383        i6300esb_mem_writeb(opaque, addr, value);
 384        break;
 385    case 2:
 386        i6300esb_mem_writew(opaque, addr, value);
 387        break;
 388    case 4:
 389        i6300esb_mem_writel(opaque, addr, value);
 390        break;
 391    default:
 392        g_assert_not_reached();
 393    }
 394}
 395
 396static const MemoryRegionOps i6300esb_ops = {
 397    .read = i6300esb_mem_readfn,
 398    .write = i6300esb_mem_writefn,
 399    .valid.min_access_size = 1,
 400    .valid.max_access_size = 4,
 401    .endianness = DEVICE_LITTLE_ENDIAN,
 402};
 403
 404static const VMStateDescription vmstate_i6300esb = {
 405    .name = "i6300esb_wdt",
 406    /* With this VMSD's introduction, version_id/minimum_version_id were
 407     * erroneously set to sizeof(I6300State), causing a somewhat random
 408     * version_id to be set for every build. This eventually broke
 409     * migration.
 410     *
 411     * To correct this without breaking old->new migration for older
 412     * versions of QEMU, we've set version_id to a value high enough
 413     * to exceed all past values of sizeof(I6300State) across various
 414     * build environments, and have reset minimum_version_id to 1,
 415     * since this VMSD has never changed and thus can accept all past
 416     * versions.
 417     *
 418     * For future changes we can treat these values as we normally would.
 419     */
 420    .version_id = 10000,
 421    .minimum_version_id = 1,
 422    .fields = (VMStateField[]) {
 423        VMSTATE_PCI_DEVICE(dev, I6300State),
 424        VMSTATE_INT32(reboot_enabled, I6300State),
 425        VMSTATE_INT32(clock_scale, I6300State),
 426        VMSTATE_INT32(int_type, I6300State),
 427        VMSTATE_INT32(free_run, I6300State),
 428        VMSTATE_INT32(locked, I6300State),
 429        VMSTATE_INT32(enabled, I6300State),
 430        VMSTATE_TIMER_PTR(timer, I6300State),
 431        VMSTATE_UINT32(timer1_preload, I6300State),
 432        VMSTATE_UINT32(timer2_preload, I6300State),
 433        VMSTATE_INT32(stage, I6300State),
 434        VMSTATE_INT32(unlock_state, I6300State),
 435        VMSTATE_INT32(previous_reboot_flag, I6300State),
 436        VMSTATE_END_OF_LIST()
 437    }
 438};
 439
 440static void i6300esb_realize(PCIDevice *dev, Error **errp)
 441{
 442    I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
 443
 444    i6300esb_debug("I6300State = %p\n", d);
 445
 446    d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
 447    d->previous_reboot_flag = 0;
 448
 449    memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
 450                          "i6300esb", 0x10);
 451    pci_register_bar(&d->dev, 0, 0, &d->io_mem);
 452}
 453
 454static void i6300esb_exit(PCIDevice *dev)
 455{
 456    I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
 457
 458    timer_del(d->timer);
 459    timer_free(d->timer);
 460}
 461
 462static WatchdogTimerModel model = {
 463    .wdt_name = "i6300esb",
 464    .wdt_description = "Intel 6300ESB",
 465};
 466
 467static void i6300esb_class_init(ObjectClass *klass, void *data)
 468{
 469    DeviceClass *dc = DEVICE_CLASS(klass);
 470    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 471
 472    k->config_read = i6300esb_config_read;
 473    k->config_write = i6300esb_config_write;
 474    k->realize = i6300esb_realize;
 475    k->exit = i6300esb_exit;
 476    k->vendor_id = PCI_VENDOR_ID_INTEL;
 477    k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
 478    k->class_id = PCI_CLASS_SYSTEM_OTHER;
 479    dc->reset = i6300esb_reset;
 480    dc->vmsd = &vmstate_i6300esb;
 481    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 482}
 483
 484static const TypeInfo i6300esb_info = {
 485    .name          = TYPE_WATCHDOG_I6300ESB_DEVICE,
 486    .parent        = TYPE_PCI_DEVICE,
 487    .instance_size = sizeof(I6300State),
 488    .class_init    = i6300esb_class_init,
 489    .interfaces = (InterfaceInfo[]) {
 490        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
 491        { },
 492    },
 493};
 494
 495static void i6300esb_register_types(void)
 496{
 497    watchdog_add_model(&model);
 498    type_register_static(&i6300esb_info);
 499}
 500
 501type_init(i6300esb_register_types)
 502