qemu/hw/xtensa/xtfpga.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "qapi/error.h"
  31#include "cpu.h"
  32#include "sysemu/sysemu.h"
  33#include "hw/boards.h"
  34#include "hw/loader.h"
  35#include "elf.h"
  36#include "exec/memory.h"
  37#include "exec/address-spaces.h"
  38#include "hw/char/serial.h"
  39#include "net/net.h"
  40#include "hw/sysbus.h"
  41#include "hw/block/flash.h"
  42#include "chardev/char.h"
  43#include "sysemu/device_tree.h"
  44#include "qemu/error-report.h"
  45#include "qemu/option.h"
  46#include "bootparam.h"
  47#include "xtensa_memory.h"
  48#include "hw/xtensa/mx_pic.h"
  49
  50typedef struct XtfpgaFlashDesc {
  51    hwaddr base;
  52    size_t size;
  53    size_t boot_base;
  54    size_t sector_size;
  55} XtfpgaFlashDesc;
  56
  57typedef struct XtfpgaBoardDesc {
  58    const XtfpgaFlashDesc *flash;
  59    size_t sram_size;
  60    const hwaddr *io;
  61} XtfpgaBoardDesc;
  62
  63typedef struct XtfpgaFpgaState {
  64    MemoryRegion iomem;
  65    uint32_t freq;
  66    uint32_t leds;
  67    uint32_t switches;
  68} XtfpgaFpgaState;
  69
  70static void xtfpga_fpga_reset(void *opaque)
  71{
  72    XtfpgaFpgaState *s = opaque;
  73
  74    s->leds = 0;
  75    s->switches = 0;
  76}
  77
  78static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
  79        unsigned size)
  80{
  81    XtfpgaFpgaState *s = opaque;
  82
  83    switch (addr) {
  84    case 0x0: /*build date code*/
  85        return 0x09272011;
  86
  87    case 0x4: /*processor clock frequency, Hz*/
  88        return s->freq;
  89
  90    case 0x8: /*LEDs (off = 0, on = 1)*/
  91        return s->leds;
  92
  93    case 0xc: /*DIP switches (off = 0, on = 1)*/
  94        return s->switches;
  95    }
  96    return 0;
  97}
  98
  99static void xtfpga_fpga_write(void *opaque, hwaddr addr,
 100        uint64_t val, unsigned size)
 101{
 102    XtfpgaFpgaState *s = opaque;
 103
 104    switch (addr) {
 105    case 0x8: /*LEDs (off = 0, on = 1)*/
 106        s->leds = val;
 107        break;
 108
 109    case 0x10: /*board reset*/
 110        if (val == 0xdead) {
 111            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 112        }
 113        break;
 114    }
 115}
 116
 117static const MemoryRegionOps xtfpga_fpga_ops = {
 118    .read = xtfpga_fpga_read,
 119    .write = xtfpga_fpga_write,
 120    .endianness = DEVICE_NATIVE_ENDIAN,
 121};
 122
 123static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
 124                                         hwaddr base, uint32_t freq)
 125{
 126    XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
 127
 128    memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
 129                          "xtfpga.fpga", 0x10000);
 130    memory_region_add_subregion(address_space, base, &s->iomem);
 131    s->freq = freq;
 132    xtfpga_fpga_reset(s);
 133    qemu_register_reset(xtfpga_fpga_reset, s);
 134    return s;
 135}
 136
 137static void xtfpga_net_init(MemoryRegion *address_space,
 138        hwaddr base,
 139        hwaddr descriptors,
 140        hwaddr buffers,
 141        qemu_irq irq, NICInfo *nd)
 142{
 143    DeviceState *dev;
 144    SysBusDevice *s;
 145    MemoryRegion *ram;
 146
 147    dev = qdev_create(NULL, "open_eth");
 148    qdev_set_nic_properties(dev, nd);
 149    qdev_init_nofail(dev);
 150
 151    s = SYS_BUS_DEVICE(dev);
 152    sysbus_connect_irq(s, 0, irq);
 153    memory_region_add_subregion(address_space, base,
 154            sysbus_mmio_get_region(s, 0));
 155    memory_region_add_subregion(address_space, descriptors,
 156            sysbus_mmio_get_region(s, 1));
 157
 158    ram = g_malloc(sizeof(*ram));
 159    memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
 160                           &error_fatal);
 161    vmstate_register_ram_global(ram);
 162    memory_region_add_subregion(address_space, buffers, ram);
 163}
 164
 165static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
 166                                      const XtfpgaBoardDesc *board,
 167                                      DriveInfo *dinfo, int be)
 168{
 169    SysBusDevice *s;
 170    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 171
 172    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 173                        &error_abort);
 174    qdev_prop_set_uint32(dev, "num-blocks",
 175                         board->flash->size / board->flash->sector_size);
 176    qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
 177    qdev_prop_set_uint8(dev, "width", 2);
 178    qdev_prop_set_bit(dev, "big-endian", be);
 179    qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
 180    qdev_init_nofail(dev);
 181    s = SYS_BUS_DEVICE(dev);
 182    memory_region_add_subregion(address_space, board->flash->base,
 183                                sysbus_mmio_get_region(s, 0));
 184    return PFLASH_CFI01(dev);
 185}
 186
 187static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
 188{
 189    XtensaCPU *cpu = opaque;
 190
 191    return cpu_get_phys_page_debug(CPU(cpu), addr);
 192}
 193
 194static void xtfpga_reset(void *opaque)
 195{
 196    XtensaCPU *cpu = opaque;
 197
 198    cpu_reset(CPU(cpu));
 199}
 200
 201static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
 202        unsigned size)
 203{
 204    return 0;
 205}
 206
 207static void xtfpga_io_write(void *opaque, hwaddr addr,
 208        uint64_t val, unsigned size)
 209{
 210}
 211
 212static const MemoryRegionOps xtfpga_io_ops = {
 213    .read = xtfpga_io_read,
 214    .write = xtfpga_io_write,
 215    .endianness = DEVICE_NATIVE_ENDIAN,
 216};
 217
 218static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
 219{
 220#ifdef TARGET_WORDS_BIGENDIAN
 221    int be = 1;
 222#else
 223    int be = 0;
 224#endif
 225    MemoryRegion *system_memory = get_system_memory();
 226    XtensaCPU *cpu = NULL;
 227    CPUXtensaState *env = NULL;
 228    MemoryRegion *system_io;
 229    XtensaMxPic *mx_pic = NULL;
 230    qemu_irq *extints;
 231    DriveInfo *dinfo;
 232    PFlashCFI01 *flash = NULL;
 233    QemuOpts *machine_opts = qemu_get_machine_opts();
 234    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
 235    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
 236    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
 237    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
 238    const unsigned system_io_size = 224 * MiB;
 239    uint32_t freq = 10000000;
 240    int n;
 241    unsigned int smp_cpus = machine->smp.cpus;
 242
 243    if (smp_cpus > 1) {
 244        mx_pic = xtensa_mx_pic_init(31);
 245        qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
 246    }
 247    for (n = 0; n < smp_cpus; n++) {
 248        CPUXtensaState *cenv = NULL;
 249
 250        cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
 251        cenv = &cpu->env;
 252        if (!env) {
 253            env = cenv;
 254            freq = env->config->clock_freq_khz * 1000;
 255        }
 256
 257        if (mx_pic) {
 258            MemoryRegion *mx_eri;
 259
 260            mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
 261                                                xtensa_get_extints(cenv),
 262                                                xtensa_get_runstall(cenv));
 263            memory_region_add_subregion(xtensa_get_er_region(cenv),
 264                                        0, mx_eri);
 265        }
 266        cenv->sregs[PRID] = n;
 267        xtensa_select_static_vectors(cenv, n != 0);
 268        qemu_register_reset(xtfpga_reset, cpu);
 269        /* Need MMU initialized prior to ELF loading,
 270         * so that ELF gets loaded into virtual addresses
 271         */
 272        cpu_reset(CPU(cpu));
 273    }
 274    if (smp_cpus > 1) {
 275        extints = xtensa_mx_pic_get_extints(mx_pic);
 276    } else {
 277        extints = xtensa_get_extints(env);
 278    }
 279
 280    if (env) {
 281        XtensaMemory sysram = env->config->sysram;
 282
 283        sysram.location[0].size = machine->ram_size;
 284        xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
 285                                     system_memory);
 286        xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
 287                                     system_memory);
 288        xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
 289                                     system_memory);
 290        xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
 291                                     system_memory);
 292        xtensa_create_memory_regions(&sysram, "xtensa.sysram",
 293                                     system_memory);
 294    }
 295
 296    system_io = g_malloc(sizeof(*system_io));
 297    memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
 298                          system_io_size);
 299    memory_region_add_subregion(system_memory, board->io[0], system_io);
 300    if (board->io[1]) {
 301        MemoryRegion *io = g_malloc(sizeof(*io));
 302
 303        memory_region_init_alias(io, NULL, "xtfpga.io.cached",
 304                                 system_io, 0, system_io_size);
 305        memory_region_add_subregion(system_memory, board->io[1], io);
 306    }
 307    xtfpga_fpga_init(system_io, 0x0d020000, freq);
 308    if (nd_table[0].used) {
 309        xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
 310                        extints[1], nd_table);
 311    }
 312
 313    serial_mm_init(system_io, 0x0d050020, 2, extints[0],
 314                   115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
 315
 316    dinfo = drive_get(IF_PFLASH, 0, 0);
 317    if (dinfo) {
 318        flash = xtfpga_flash_init(system_io, board, dinfo, be);
 319    }
 320
 321    /* Use presence of kernel file name as 'boot from SRAM' switch. */
 322    if (kernel_filename) {
 323        uint32_t entry_point = env->pc;
 324        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
 325        uint32_t tagptr = env->config->sysrom.location[0].addr +
 326            board->sram_size;
 327        uint32_t cur_tagptr;
 328        BpMemInfo memory_location = {
 329            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
 330            .start = tswap32(env->config->sysram.location[0].addr),
 331            .end = tswap32(env->config->sysram.location[0].addr +
 332                           machine->ram_size),
 333        };
 334        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
 335            machine->ram_size : 0x08000000;
 336        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
 337
 338        lowmem_end += env->config->sysram.location[0].addr;
 339        cur_lowmem += env->config->sysram.location[0].addr;
 340
 341        xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 342                                     system_memory);
 343
 344        if (kernel_cmdline) {
 345            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
 346        }
 347        if (dtb_filename) {
 348            bp_size += get_tag_size(sizeof(uint32_t));
 349        }
 350        if (initrd_filename) {
 351            bp_size += get_tag_size(sizeof(BpMemInfo));
 352        }
 353
 354        /* Put kernel bootparameters to the end of that SRAM */
 355        tagptr = (tagptr - bp_size) & ~0xff;
 356        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
 357        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
 358                             sizeof(memory_location), &memory_location);
 359
 360        if (kernel_cmdline) {
 361            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
 362                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
 363        }
 364#ifdef CONFIG_FDT
 365        if (dtb_filename) {
 366            int fdt_size;
 367            void *fdt = load_device_tree(dtb_filename, &fdt_size);
 368            uint32_t dtb_addr = tswap32(cur_lowmem);
 369
 370            if (!fdt) {
 371                error_report("could not load DTB '%s'", dtb_filename);
 372                exit(EXIT_FAILURE);
 373            }
 374
 375            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
 376            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
 377                                 sizeof(dtb_addr), &dtb_addr);
 378            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
 379        }
 380#else
 381        if (dtb_filename) {
 382            error_report("could not load DTB '%s': "
 383                         "FDT support is not configured in QEMU",
 384                         dtb_filename);
 385            exit(EXIT_FAILURE);
 386        }
 387#endif
 388        if (initrd_filename) {
 389            BpMemInfo initrd_location = { 0 };
 390            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
 391                                           lowmem_end - cur_lowmem);
 392
 393            if (initrd_size < 0) {
 394                initrd_size = load_image_targphys(initrd_filename,
 395                                                  cur_lowmem,
 396                                                  lowmem_end - cur_lowmem);
 397            }
 398            if (initrd_size < 0) {
 399                error_report("could not load initrd '%s'", initrd_filename);
 400                exit(EXIT_FAILURE);
 401            }
 402            initrd_location.start = tswap32(cur_lowmem);
 403            initrd_location.end = tswap32(cur_lowmem + initrd_size);
 404            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
 405                                 sizeof(initrd_location), &initrd_location);
 406            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
 407        }
 408        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
 409        env->regs[2] = tagptr;
 410
 411        uint64_t elf_entry;
 412        uint64_t elf_lowaddr;
 413        int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
 414                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
 415        if (success > 0) {
 416            entry_point = elf_entry;
 417        } else {
 418            hwaddr ep;
 419            int is_linux;
 420            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
 421                                  translate_phys_addr, cpu);
 422            if (success > 0 && is_linux) {
 423                entry_point = ep;
 424            } else {
 425                error_report("could not load kernel '%s'",
 426                             kernel_filename);
 427                exit(EXIT_FAILURE);
 428            }
 429        }
 430        if (entry_point != env->pc) {
 431            uint8_t boot[] = {
 432#ifdef TARGET_WORDS_BIGENDIAN
 433                0x60, 0x00, 0x08,       /* j    1f */
 434                0x00,                   /* .literal_position */
 435                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 436                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 437                                        /* 1: */
 438                0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
 439                0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
 440                0x0a, 0x00, 0x00,       /* jx   a0 */
 441#else
 442                0x06, 0x02, 0x00,       /* j    1f */
 443                0x00,                   /* .literal_position */
 444                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 445                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 446                                        /* 1: */
 447                0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
 448                0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
 449                0xa0, 0x00, 0x00,       /* jx   a0 */
 450#endif
 451            };
 452            uint32_t entry_pc = tswap32(entry_point);
 453            uint32_t entry_a2 = tswap32(tagptr);
 454
 455            memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
 456            memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
 457            cpu_physical_memory_write(env->pc, boot, sizeof(boot));
 458        }
 459    } else {
 460        if (flash) {
 461            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
 462            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
 463            uint32_t size = env->config->sysrom.location[0].size;
 464
 465            if (board->flash->size - board->flash->boot_base < size) {
 466                size = board->flash->size - board->flash->boot_base;
 467            }
 468
 469            memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
 470                                     flash_mr, board->flash->boot_base, size);
 471            memory_region_add_subregion(system_memory,
 472                                        env->config->sysrom.location[0].addr,
 473                                        flash_io);
 474        } else {
 475            xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 476                                         system_memory);
 477        }
 478    }
 479}
 480
 481#define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
 482
 483static const hwaddr xtfpga_mmu_io[2] = {
 484    0xf0000000,
 485};
 486
 487static const hwaddr xtfpga_nommu_io[2] = {
 488    0x90000000,
 489    0x70000000,
 490};
 491
 492static const XtfpgaFlashDesc lx60_flash = {
 493    .base = 0x08000000,
 494    .size = 0x00400000,
 495    .sector_size = 0x10000,
 496};
 497
 498static void xtfpga_lx60_init(MachineState *machine)
 499{
 500    static const XtfpgaBoardDesc lx60_board = {
 501        .flash = &lx60_flash,
 502        .sram_size = 0x20000,
 503        .io = xtfpga_mmu_io,
 504    };
 505    xtfpga_init(&lx60_board, machine);
 506}
 507
 508static void xtfpga_lx60_nommu_init(MachineState *machine)
 509{
 510    static const XtfpgaBoardDesc lx60_board = {
 511        .flash = &lx60_flash,
 512        .sram_size = 0x20000,
 513        .io = xtfpga_nommu_io,
 514    };
 515    xtfpga_init(&lx60_board, machine);
 516}
 517
 518static const XtfpgaFlashDesc lx200_flash = {
 519    .base = 0x08000000,
 520    .size = 0x01000000,
 521    .sector_size = 0x20000,
 522};
 523
 524static void xtfpga_lx200_init(MachineState *machine)
 525{
 526    static const XtfpgaBoardDesc lx200_board = {
 527        .flash = &lx200_flash,
 528        .sram_size = 0x2000000,
 529        .io = xtfpga_mmu_io,
 530    };
 531    xtfpga_init(&lx200_board, machine);
 532}
 533
 534static void xtfpga_lx200_nommu_init(MachineState *machine)
 535{
 536    static const XtfpgaBoardDesc lx200_board = {
 537        .flash = &lx200_flash,
 538        .sram_size = 0x2000000,
 539        .io = xtfpga_nommu_io,
 540    };
 541    xtfpga_init(&lx200_board, machine);
 542}
 543
 544static const XtfpgaFlashDesc ml605_flash = {
 545    .base = 0x08000000,
 546    .size = 0x01000000,
 547    .sector_size = 0x20000,
 548};
 549
 550static void xtfpga_ml605_init(MachineState *machine)
 551{
 552    static const XtfpgaBoardDesc ml605_board = {
 553        .flash = &ml605_flash,
 554        .sram_size = 0x2000000,
 555        .io = xtfpga_mmu_io,
 556    };
 557    xtfpga_init(&ml605_board, machine);
 558}
 559
 560static void xtfpga_ml605_nommu_init(MachineState *machine)
 561{
 562    static const XtfpgaBoardDesc ml605_board = {
 563        .flash = &ml605_flash,
 564        .sram_size = 0x2000000,
 565        .io = xtfpga_nommu_io,
 566    };
 567    xtfpga_init(&ml605_board, machine);
 568}
 569
 570static const XtfpgaFlashDesc kc705_flash = {
 571    .base = 0x00000000,
 572    .size = 0x08000000,
 573    .boot_base = 0x06000000,
 574    .sector_size = 0x20000,
 575};
 576
 577static void xtfpga_kc705_init(MachineState *machine)
 578{
 579    static const XtfpgaBoardDesc kc705_board = {
 580        .flash = &kc705_flash,
 581        .sram_size = 0x2000000,
 582        .io = xtfpga_mmu_io,
 583    };
 584    xtfpga_init(&kc705_board, machine);
 585}
 586
 587static void xtfpga_kc705_nommu_init(MachineState *machine)
 588{
 589    static const XtfpgaBoardDesc kc705_board = {
 590        .flash = &kc705_flash,
 591        .sram_size = 0x2000000,
 592        .io = xtfpga_nommu_io,
 593    };
 594    xtfpga_init(&kc705_board, machine);
 595}
 596
 597static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
 598{
 599    MachineClass *mc = MACHINE_CLASS(oc);
 600
 601    mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 602    mc->init = xtfpga_lx60_init;
 603    mc->max_cpus = 32;
 604    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 605    mc->default_ram_size = 64 * MiB;
 606}
 607
 608static const TypeInfo xtfpga_lx60_type = {
 609    .name = MACHINE_TYPE_NAME("lx60"),
 610    .parent = TYPE_MACHINE,
 611    .class_init = xtfpga_lx60_class_init,
 612};
 613
 614static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
 615{
 616    MachineClass *mc = MACHINE_CLASS(oc);
 617
 618    mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 619    mc->init = xtfpga_lx60_nommu_init;
 620    mc->max_cpus = 32;
 621    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 622    mc->default_ram_size = 64 * MiB;
 623}
 624
 625static const TypeInfo xtfpga_lx60_nommu_type = {
 626    .name = MACHINE_TYPE_NAME("lx60-nommu"),
 627    .parent = TYPE_MACHINE,
 628    .class_init = xtfpga_lx60_nommu_class_init,
 629};
 630
 631static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
 632{
 633    MachineClass *mc = MACHINE_CLASS(oc);
 634
 635    mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 636    mc->init = xtfpga_lx200_init;
 637    mc->max_cpus = 32;
 638    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 639    mc->default_ram_size = 96 * MiB;
 640}
 641
 642static const TypeInfo xtfpga_lx200_type = {
 643    .name = MACHINE_TYPE_NAME("lx200"),
 644    .parent = TYPE_MACHINE,
 645    .class_init = xtfpga_lx200_class_init,
 646};
 647
 648static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
 649{
 650    MachineClass *mc = MACHINE_CLASS(oc);
 651
 652    mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 653    mc->init = xtfpga_lx200_nommu_init;
 654    mc->max_cpus = 32;
 655    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 656    mc->default_ram_size = 96 * MiB;
 657}
 658
 659static const TypeInfo xtfpga_lx200_nommu_type = {
 660    .name = MACHINE_TYPE_NAME("lx200-nommu"),
 661    .parent = TYPE_MACHINE,
 662    .class_init = xtfpga_lx200_nommu_class_init,
 663};
 664
 665static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
 666{
 667    MachineClass *mc = MACHINE_CLASS(oc);
 668
 669    mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 670    mc->init = xtfpga_ml605_init;
 671    mc->max_cpus = 32;
 672    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 673    mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 674}
 675
 676static const TypeInfo xtfpga_ml605_type = {
 677    .name = MACHINE_TYPE_NAME("ml605"),
 678    .parent = TYPE_MACHINE,
 679    .class_init = xtfpga_ml605_class_init,
 680};
 681
 682static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
 683{
 684    MachineClass *mc = MACHINE_CLASS(oc);
 685
 686    mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 687    mc->init = xtfpga_ml605_nommu_init;
 688    mc->max_cpus = 32;
 689    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 690    mc->default_ram_size = 256 * MiB;
 691}
 692
 693static const TypeInfo xtfpga_ml605_nommu_type = {
 694    .name = MACHINE_TYPE_NAME("ml605-nommu"),
 695    .parent = TYPE_MACHINE,
 696    .class_init = xtfpga_ml605_nommu_class_init,
 697};
 698
 699static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
 700{
 701    MachineClass *mc = MACHINE_CLASS(oc);
 702
 703    mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 704    mc->init = xtfpga_kc705_init;
 705    mc->max_cpus = 32;
 706    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 707    mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 708}
 709
 710static const TypeInfo xtfpga_kc705_type = {
 711    .name = MACHINE_TYPE_NAME("kc705"),
 712    .parent = TYPE_MACHINE,
 713    .class_init = xtfpga_kc705_class_init,
 714};
 715
 716static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
 717{
 718    MachineClass *mc = MACHINE_CLASS(oc);
 719
 720    mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 721    mc->init = xtfpga_kc705_nommu_init;
 722    mc->max_cpus = 32;
 723    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 724    mc->default_ram_size = 256 * MiB;
 725}
 726
 727static const TypeInfo xtfpga_kc705_nommu_type = {
 728    .name = MACHINE_TYPE_NAME("kc705-nommu"),
 729    .parent = TYPE_MACHINE,
 730    .class_init = xtfpga_kc705_nommu_class_init,
 731};
 732
 733static void xtfpga_machines_init(void)
 734{
 735    type_register_static(&xtfpga_lx60_type);
 736    type_register_static(&xtfpga_lx200_type);
 737    type_register_static(&xtfpga_ml605_type);
 738    type_register_static(&xtfpga_kc705_type);
 739    type_register_static(&xtfpga_lx60_nommu_type);
 740    type_register_static(&xtfpga_lx200_nommu_type);
 741    type_register_static(&xtfpga_ml605_nommu_type);
 742    type_register_static(&xtfpga_kc705_nommu_type);
 743}
 744
 745type_init(xtfpga_machines_init)
 746