qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  31
  32#define MAX_PHYS_ADDR_SPACE_BITS 62
  33#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  34
  35#define TYPE_MEMORY_REGION "qemu:memory-region"
  36#define MEMORY_REGION(obj) \
  37        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  38
  39#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  40#define IOMMU_MEMORY_REGION(obj) \
  41        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  42#define IOMMU_MEMORY_REGION_CLASS(klass) \
  43        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  44                         TYPE_IOMMU_MEMORY_REGION)
  45#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  46        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  47                         TYPE_IOMMU_MEMORY_REGION)
  48
  49extern bool global_dirty_log;
  50
  51typedef struct MemoryRegionOps MemoryRegionOps;
  52typedef struct MemoryRegionMmio MemoryRegionMmio;
  53
  54struct MemoryRegionMmio {
  55    CPUReadMemoryFunc *read[3];
  56    CPUWriteMemoryFunc *write[3];
  57};
  58
  59typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  60
  61/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  62typedef enum {
  63    IOMMU_NONE = 0,
  64    IOMMU_RO   = 1,
  65    IOMMU_WO   = 2,
  66    IOMMU_RW   = 3,
  67} IOMMUAccessFlags;
  68
  69#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  70
  71struct IOMMUTLBEntry {
  72    AddressSpace    *target_as;
  73    hwaddr           iova;
  74    hwaddr           translated_addr;
  75    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  76    IOMMUAccessFlags perm;
  77};
  78
  79/*
  80 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  81 * register with one or multiple IOMMU Notifier capability bit(s).
  82 */
  83typedef enum {
  84    IOMMU_NOTIFIER_NONE = 0,
  85    /* Notify cache invalidations */
  86    IOMMU_NOTIFIER_UNMAP = 0x1,
  87    /* Notify entry changes (newly created entries) */
  88    IOMMU_NOTIFIER_MAP = 0x2,
  89} IOMMUNotifierFlag;
  90
  91#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  92
  93struct IOMMUNotifier;
  94typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  95                            IOMMUTLBEntry *data);
  96
  97struct IOMMUNotifier {
  98    IOMMUNotify notify;
  99    IOMMUNotifierFlag notifier_flags;
 100    /* Notify for address space range start <= addr <= end */
 101    hwaddr start;
 102    hwaddr end;
 103    int iommu_idx;
 104    QLIST_ENTRY(IOMMUNotifier) node;
 105};
 106typedef struct IOMMUNotifier IOMMUNotifier;
 107
 108/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 109#define RAM_PREALLOC   (1 << 0)
 110
 111/* RAM is mmap-ed with MAP_SHARED */
 112#define RAM_SHARED     (1 << 1)
 113
 114/* Only a portion of RAM (used_length) is actually used, and migrated.
 115 * This used_length size can change across reboots.
 116 */
 117#define RAM_RESIZEABLE (1 << 2)
 118
 119/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 120 * zero the page and wake waiting processes.
 121 * (Set during postcopy)
 122 */
 123#define RAM_UF_ZEROPAGE (1 << 3)
 124
 125/* RAM can be migrated */
 126#define RAM_MIGRATABLE (1 << 4)
 127
 128/* RAM is a persistent kind memory */
 129#define RAM_PMEM (1 << 5)
 130
 131static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 132                                       IOMMUNotifierFlag flags,
 133                                       hwaddr start, hwaddr end,
 134                                       int iommu_idx)
 135{
 136    n->notify = fn;
 137    n->notifier_flags = flags;
 138    n->start = start;
 139    n->end = end;
 140    n->iommu_idx = iommu_idx;
 141}
 142
 143/*
 144 * Memory region callbacks
 145 */
 146struct MemoryRegionOps {
 147    /* Read from the memory region. @addr is relative to @mr; @size is
 148     * in bytes. */
 149    uint64_t (*read)(void *opaque,
 150                     hwaddr addr,
 151                     unsigned size);
 152    /* Write to the memory region. @addr is relative to @mr; @size is
 153     * in bytes. */
 154    void (*write)(void *opaque,
 155                  hwaddr addr,
 156                  uint64_t data,
 157                  unsigned size);
 158
 159    MemTxResult (*read_with_attrs)(void *opaque,
 160                                   hwaddr addr,
 161                                   uint64_t *data,
 162                                   unsigned size,
 163                                   MemTxAttrs attrs);
 164    MemTxResult (*write_with_attrs)(void *opaque,
 165                                    hwaddr addr,
 166                                    uint64_t data,
 167                                    unsigned size,
 168                                    MemTxAttrs attrs);
 169
 170    enum device_endian endianness;
 171    /* Guest-visible constraints: */
 172    struct {
 173        /* If nonzero, specify bounds on access sizes beyond which a machine
 174         * check is thrown.
 175         */
 176        unsigned min_access_size;
 177        unsigned max_access_size;
 178        /* If true, unaligned accesses are supported.  Otherwise unaligned
 179         * accesses throw machine checks.
 180         */
 181         bool unaligned;
 182        /*
 183         * If present, and returns #false, the transaction is not accepted
 184         * by the device (and results in machine dependent behaviour such
 185         * as a machine check exception).
 186         */
 187        bool (*accepts)(void *opaque, hwaddr addr,
 188                        unsigned size, bool is_write,
 189                        MemTxAttrs attrs);
 190    } valid;
 191    /* Internal implementation constraints: */
 192    struct {
 193        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 194         * will be rounded upwards and a partial result will be returned.
 195         */
 196        unsigned min_access_size;
 197        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 198         * will be done as a series of accesses with smaller sizes.
 199         */
 200        unsigned max_access_size;
 201        /* If true, unaligned accesses are supported.  Otherwise all accesses
 202         * are converted to (possibly multiple) naturally aligned accesses.
 203         */
 204        bool unaligned;
 205    } impl;
 206};
 207
 208enum IOMMUMemoryRegionAttr {
 209    IOMMU_ATTR_SPAPR_TCE_FD
 210};
 211
 212/**
 213 * IOMMUMemoryRegionClass:
 214 *
 215 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 216 * and provide an implementation of at least the @translate method here
 217 * to handle requests to the memory region. Other methods are optional.
 218 *
 219 * The IOMMU implementation must use the IOMMU notifier infrastructure
 220 * to report whenever mappings are changed, by calling
 221 * memory_region_notify_iommu() (or, if necessary, by calling
 222 * memory_region_notify_one() for each registered notifier).
 223 *
 224 * Conceptually an IOMMU provides a mapping from input address
 225 * to an output TLB entry. If the IOMMU is aware of memory transaction
 226 * attributes and the output TLB entry depends on the transaction
 227 * attributes, we represent this using IOMMU indexes. Each index
 228 * selects a particular translation table that the IOMMU has:
 229 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 230 *   @translate takes an input address and an IOMMU index
 231 * and the mapping returned can only depend on the input address and the
 232 * IOMMU index.
 233 *
 234 * Most IOMMUs don't care about the transaction attributes and support
 235 * only a single IOMMU index. A more complex IOMMU might have one index
 236 * for secure transactions and one for non-secure transactions.
 237 */
 238typedef struct IOMMUMemoryRegionClass {
 239    /* private */
 240    struct DeviceClass parent_class;
 241
 242    /*
 243     * Return a TLB entry that contains a given address.
 244     *
 245     * The IOMMUAccessFlags indicated via @flag are optional and may
 246     * be specified as IOMMU_NONE to indicate that the caller needs
 247     * the full translation information for both reads and writes. If
 248     * the access flags are specified then the IOMMU implementation
 249     * may use this as an optimization, to stop doing a page table
 250     * walk as soon as it knows that the requested permissions are not
 251     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 252     * full page table walk and report the permissions in the returned
 253     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 254     * return different mappings for reads and writes.)
 255     *
 256     * The returned information remains valid while the caller is
 257     * holding the big QEMU lock or is inside an RCU critical section;
 258     * if the caller wishes to cache the mapping beyond that it must
 259     * register an IOMMU notifier so it can invalidate its cached
 260     * information when the IOMMU mapping changes.
 261     *
 262     * @iommu: the IOMMUMemoryRegion
 263     * @hwaddr: address to be translated within the memory region
 264     * @flag: requested access permissions
 265     * @iommu_idx: IOMMU index for the translation
 266     */
 267    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 268                               IOMMUAccessFlags flag, int iommu_idx);
 269    /* Returns minimum supported page size in bytes.
 270     * If this method is not provided then the minimum is assumed to
 271     * be TARGET_PAGE_SIZE.
 272     *
 273     * @iommu: the IOMMUMemoryRegion
 274     */
 275    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 276    /* Called when IOMMU Notifier flag changes (ie when the set of
 277     * events which IOMMU users are requesting notification for changes).
 278     * Optional method -- need not be provided if the IOMMU does not
 279     * need to know exactly which events must be notified.
 280     *
 281     * @iommu: the IOMMUMemoryRegion
 282     * @old_flags: events which previously needed to be notified
 283     * @new_flags: events which now need to be notified
 284     */
 285    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 286                                IOMMUNotifierFlag old_flags,
 287                                IOMMUNotifierFlag new_flags);
 288    /* Called to handle memory_region_iommu_replay().
 289     *
 290     * The default implementation of memory_region_iommu_replay() is to
 291     * call the IOMMU translate method for every page in the address space
 292     * with flag == IOMMU_NONE and then call the notifier if translate
 293     * returns a valid mapping. If this method is implemented then it
 294     * overrides the default behaviour, and must provide the full semantics
 295     * of memory_region_iommu_replay(), by calling @notifier for every
 296     * translation present in the IOMMU.
 297     *
 298     * Optional method -- an IOMMU only needs to provide this method
 299     * if the default is inefficient or produces undesirable side effects.
 300     *
 301     * Note: this is not related to record-and-replay functionality.
 302     */
 303    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 304
 305    /* Get IOMMU misc attributes. This is an optional method that
 306     * can be used to allow users of the IOMMU to get implementation-specific
 307     * information. The IOMMU implements this method to handle calls
 308     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 309     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 310     * the IOMMU supports. If the method is unimplemented then
 311     * memory_region_iommu_get_attr() will always return -EINVAL.
 312     *
 313     * @iommu: the IOMMUMemoryRegion
 314     * @attr: attribute being queried
 315     * @data: memory to fill in with the attribute data
 316     *
 317     * Returns 0 on success, or a negative errno; in particular
 318     * returns -EINVAL for unrecognized or unimplemented attribute types.
 319     */
 320    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 321                    void *data);
 322
 323    /* Return the IOMMU index to use for a given set of transaction attributes.
 324     *
 325     * Optional method: if an IOMMU only supports a single IOMMU index then
 326     * the default implementation of memory_region_iommu_attrs_to_index()
 327     * will return 0.
 328     *
 329     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 330     *
 331     * @iommu: the IOMMUMemoryRegion
 332     * @attrs: memory transaction attributes
 333     */
 334    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 335
 336    /* Return the number of IOMMU indexes this IOMMU supports.
 337     *
 338     * Optional method: if this method is not provided, then
 339     * memory_region_iommu_num_indexes() will return 1, indicating that
 340     * only a single IOMMU index is supported.
 341     *
 342     * @iommu: the IOMMUMemoryRegion
 343     */
 344    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 345} IOMMUMemoryRegionClass;
 346
 347typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 348typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 349
 350struct MemoryRegion {
 351    Object parent_obj;
 352
 353    /* All fields are private - violators will be prosecuted */
 354
 355    /* The following fields should fit in a cache line */
 356    bool romd_mode;
 357    bool ram;
 358    bool subpage;
 359    bool readonly; /* For RAM regions */
 360    bool nonvolatile;
 361    bool rom_device;
 362    bool flush_coalesced_mmio;
 363    bool global_locking;
 364    uint8_t dirty_log_mask;
 365    bool is_iommu;
 366    RAMBlock *ram_block;
 367    Object *owner;
 368
 369    const MemoryRegionOps *ops;
 370    void *opaque;
 371    MemoryRegion *container;
 372    Int128 size;
 373    hwaddr addr;
 374    void (*destructor)(MemoryRegion *mr);
 375    uint64_t align;
 376    bool terminates;
 377    bool ram_device;
 378    bool enabled;
 379    bool warning_printed; /* For reservations */
 380    uint8_t vga_logging_count;
 381    MemoryRegion *alias;
 382    hwaddr alias_offset;
 383    int32_t priority;
 384    QTAILQ_HEAD(, MemoryRegion) subregions;
 385    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 386    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 387    const char *name;
 388    unsigned ioeventfd_nb;
 389    MemoryRegionIoeventfd *ioeventfds;
 390};
 391
 392struct IOMMUMemoryRegion {
 393    MemoryRegion parent_obj;
 394
 395    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 396    IOMMUNotifierFlag iommu_notify_flags;
 397};
 398
 399#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 400    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 401
 402/**
 403 * MemoryListener: callbacks structure for updates to the physical memory map
 404 *
 405 * Allows a component to adjust to changes in the guest-visible memory map.
 406 * Use with memory_listener_register() and memory_listener_unregister().
 407 */
 408struct MemoryListener {
 409    void (*begin)(MemoryListener *listener);
 410    void (*commit)(MemoryListener *listener);
 411    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 412    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 413    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 414    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 415                      int old, int new);
 416    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 417                     int old, int new);
 418    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 419    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 420    void (*log_global_start)(MemoryListener *listener);
 421    void (*log_global_stop)(MemoryListener *listener);
 422    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 423                        bool match_data, uint64_t data, EventNotifier *e);
 424    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 425                        bool match_data, uint64_t data, EventNotifier *e);
 426    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 427                               hwaddr addr, hwaddr len);
 428    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
 429                               hwaddr addr, hwaddr len);
 430    /* Lower = earlier (during add), later (during del) */
 431    unsigned priority;
 432    AddressSpace *address_space;
 433    QTAILQ_ENTRY(MemoryListener) link;
 434    QTAILQ_ENTRY(MemoryListener) link_as;
 435};
 436
 437/**
 438 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 439 */
 440struct AddressSpace {
 441    /* All fields are private. */
 442    struct rcu_head rcu;
 443    char *name;
 444    MemoryRegion *root;
 445
 446    /* Accessed via RCU.  */
 447    struct FlatView *current_map;
 448
 449    int ioeventfd_nb;
 450    struct MemoryRegionIoeventfd *ioeventfds;
 451    QTAILQ_HEAD(, MemoryListener) listeners;
 452    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 453};
 454
 455typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 456typedef struct FlatRange FlatRange;
 457
 458/* Flattened global view of current active memory hierarchy.  Kept in sorted
 459 * order.
 460 */
 461struct FlatView {
 462    struct rcu_head rcu;
 463    unsigned ref;
 464    FlatRange *ranges;
 465    unsigned nr;
 466    unsigned nr_allocated;
 467    struct AddressSpaceDispatch *dispatch;
 468    MemoryRegion *root;
 469};
 470
 471static inline FlatView *address_space_to_flatview(AddressSpace *as)
 472{
 473    return atomic_rcu_read(&as->current_map);
 474}
 475
 476
 477/**
 478 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 479 *
 480 * @mr: the region, or %NULL if empty
 481 * @fv: the flat view of the address space the region is mapped in
 482 * @offset_within_region: the beginning of the section, relative to @mr's start
 483 * @size: the size of the section; will not exceed @mr's boundaries
 484 * @offset_within_address_space: the address of the first byte of the section
 485 *     relative to the region's address space
 486 * @readonly: writes to this section are ignored
 487 * @nonvolatile: this section is non-volatile
 488 */
 489struct MemoryRegionSection {
 490    Int128 size;
 491    MemoryRegion *mr;
 492    FlatView *fv;
 493    hwaddr offset_within_region;
 494    hwaddr offset_within_address_space;
 495    bool readonly;
 496    bool nonvolatile;
 497};
 498
 499static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
 500                                          MemoryRegionSection *b)
 501{
 502    return a->mr == b->mr &&
 503           a->fv == b->fv &&
 504           a->offset_within_region == b->offset_within_region &&
 505           a->offset_within_address_space == b->offset_within_address_space &&
 506           int128_eq(a->size, b->size) &&
 507           a->readonly == b->readonly &&
 508           a->nonvolatile == b->nonvolatile;
 509}
 510
 511/**
 512 * memory_region_init: Initialize a memory region
 513 *
 514 * The region typically acts as a container for other memory regions.  Use
 515 * memory_region_add_subregion() to add subregions.
 516 *
 517 * @mr: the #MemoryRegion to be initialized
 518 * @owner: the object that tracks the region's reference count
 519 * @name: used for debugging; not visible to the user or ABI
 520 * @size: size of the region; any subregions beyond this size will be clipped
 521 */
 522void memory_region_init(MemoryRegion *mr,
 523                        struct Object *owner,
 524                        const char *name,
 525                        uint64_t size);
 526
 527/**
 528 * memory_region_ref: Add 1 to a memory region's reference count
 529 *
 530 * Whenever memory regions are accessed outside the BQL, they need to be
 531 * preserved against hot-unplug.  MemoryRegions actually do not have their
 532 * own reference count; they piggyback on a QOM object, their "owner".
 533 * This function adds a reference to the owner.
 534 *
 535 * All MemoryRegions must have an owner if they can disappear, even if the
 536 * device they belong to operates exclusively under the BQL.  This is because
 537 * the region could be returned at any time by memory_region_find, and this
 538 * is usually under guest control.
 539 *
 540 * @mr: the #MemoryRegion
 541 */
 542void memory_region_ref(MemoryRegion *mr);
 543
 544/**
 545 * memory_region_unref: Remove 1 to a memory region's reference count
 546 *
 547 * Whenever memory regions are accessed outside the BQL, they need to be
 548 * preserved against hot-unplug.  MemoryRegions actually do not have their
 549 * own reference count; they piggyback on a QOM object, their "owner".
 550 * This function removes a reference to the owner and possibly destroys it.
 551 *
 552 * @mr: the #MemoryRegion
 553 */
 554void memory_region_unref(MemoryRegion *mr);
 555
 556/**
 557 * memory_region_init_io: Initialize an I/O memory region.
 558 *
 559 * Accesses into the region will cause the callbacks in @ops to be called.
 560 * if @size is nonzero, subregions will be clipped to @size.
 561 *
 562 * @mr: the #MemoryRegion to be initialized.
 563 * @owner: the object that tracks the region's reference count
 564 * @ops: a structure containing read and write callbacks to be used when
 565 *       I/O is performed on the region.
 566 * @opaque: passed to the read and write callbacks of the @ops structure.
 567 * @name: used for debugging; not visible to the user or ABI
 568 * @size: size of the region.
 569 */
 570void memory_region_init_io(MemoryRegion *mr,
 571                           struct Object *owner,
 572                           const MemoryRegionOps *ops,
 573                           void *opaque,
 574                           const char *name,
 575                           uint64_t size);
 576
 577/**
 578 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 579 *                                    into the region will modify memory
 580 *                                    directly.
 581 *
 582 * @mr: the #MemoryRegion to be initialized.
 583 * @owner: the object that tracks the region's reference count
 584 * @name: Region name, becomes part of RAMBlock name used in migration stream
 585 *        must be unique within any device
 586 * @size: size of the region.
 587 * @errp: pointer to Error*, to store an error if it happens.
 588 *
 589 * Note that this function does not do anything to cause the data in the
 590 * RAM memory region to be migrated; that is the responsibility of the caller.
 591 */
 592void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 593                                      struct Object *owner,
 594                                      const char *name,
 595                                      uint64_t size,
 596                                      Error **errp);
 597
 598/**
 599 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 600 *                                           Accesses into the region will
 601 *                                           modify memory directly.
 602 *
 603 * @mr: the #MemoryRegion to be initialized.
 604 * @owner: the object that tracks the region's reference count
 605 * @name: Region name, becomes part of RAMBlock name used in migration stream
 606 *        must be unique within any device
 607 * @size: size of the region.
 608 * @share: allow remapping RAM to different addresses
 609 * @errp: pointer to Error*, to store an error if it happens.
 610 *
 611 * Note that this function is similar to memory_region_init_ram_nomigrate.
 612 * The only difference is part of the RAM region can be remapped.
 613 */
 614void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 615                                             struct Object *owner,
 616                                             const char *name,
 617                                             uint64_t size,
 618                                             bool share,
 619                                             Error **errp);
 620
 621/**
 622 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 623 *                                     RAM.  Accesses into the region will
 624 *                                     modify memory directly.  Only an initial
 625 *                                     portion of this RAM is actually used.
 626 *                                     The used size can change across reboots.
 627 *
 628 * @mr: the #MemoryRegion to be initialized.
 629 * @owner: the object that tracks the region's reference count
 630 * @name: Region name, becomes part of RAMBlock name used in migration stream
 631 *        must be unique within any device
 632 * @size: used size of the region.
 633 * @max_size: max size of the region.
 634 * @resized: callback to notify owner about used size change.
 635 * @errp: pointer to Error*, to store an error if it happens.
 636 *
 637 * Note that this function does not do anything to cause the data in the
 638 * RAM memory region to be migrated; that is the responsibility of the caller.
 639 */
 640void memory_region_init_resizeable_ram(MemoryRegion *mr,
 641                                       struct Object *owner,
 642                                       const char *name,
 643                                       uint64_t size,
 644                                       uint64_t max_size,
 645                                       void (*resized)(const char*,
 646                                                       uint64_t length,
 647                                                       void *host),
 648                                       Error **errp);
 649#ifdef CONFIG_POSIX
 650
 651/**
 652 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 653 *                                    mmap-ed backend.
 654 *
 655 * @mr: the #MemoryRegion to be initialized.
 656 * @owner: the object that tracks the region's reference count
 657 * @name: Region name, becomes part of RAMBlock name used in migration stream
 658 *        must be unique within any device
 659 * @size: size of the region.
 660 * @align: alignment of the region base address; if 0, the default alignment
 661 *         (getpagesize()) will be used.
 662 * @ram_flags: Memory region features:
 663 *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
 664 *             - RAM_PMEM: the memory is persistent memory
 665 *             Other bits are ignored now.
 666 * @path: the path in which to allocate the RAM.
 667 * @errp: pointer to Error*, to store an error if it happens.
 668 *
 669 * Note that this function does not do anything to cause the data in the
 670 * RAM memory region to be migrated; that is the responsibility of the caller.
 671 */
 672void memory_region_init_ram_from_file(MemoryRegion *mr,
 673                                      struct Object *owner,
 674                                      const char *name,
 675                                      uint64_t size,
 676                                      uint64_t align,
 677                                      uint32_t ram_flags,
 678                                      const char *path,
 679                                      Error **errp);
 680
 681/**
 682 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 683 *                                  mmap-ed backend.
 684 *
 685 * @mr: the #MemoryRegion to be initialized.
 686 * @owner: the object that tracks the region's reference count
 687 * @name: the name of the region.
 688 * @size: size of the region.
 689 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 690 * @fd: the fd to mmap.
 691 * @errp: pointer to Error*, to store an error if it happens.
 692 *
 693 * Note that this function does not do anything to cause the data in the
 694 * RAM memory region to be migrated; that is the responsibility of the caller.
 695 */
 696void memory_region_init_ram_from_fd(MemoryRegion *mr,
 697                                    struct Object *owner,
 698                                    const char *name,
 699                                    uint64_t size,
 700                                    bool share,
 701                                    int fd,
 702                                    Error **errp);
 703#endif
 704
 705/**
 706 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 707 *                              user-provided pointer.  Accesses into the
 708 *                              region will modify memory directly.
 709 *
 710 * @mr: the #MemoryRegion to be initialized.
 711 * @owner: the object that tracks the region's reference count
 712 * @name: Region name, becomes part of RAMBlock name used in migration stream
 713 *        must be unique within any device
 714 * @size: size of the region.
 715 * @ptr: memory to be mapped; must contain at least @size bytes.
 716 *
 717 * Note that this function does not do anything to cause the data in the
 718 * RAM memory region to be migrated; that is the responsibility of the caller.
 719 */
 720void memory_region_init_ram_ptr(MemoryRegion *mr,
 721                                struct Object *owner,
 722                                const char *name,
 723                                uint64_t size,
 724                                void *ptr);
 725
 726/**
 727 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 728 *                                     a user-provided pointer.
 729 *
 730 * A RAM device represents a mapping to a physical device, such as to a PCI
 731 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 732 * into the VM address space and access to the region will modify memory
 733 * directly.  However, the memory region should not be included in a memory
 734 * dump (device may not be enabled/mapped at the time of the dump), and
 735 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 736 * skip_dump flag.
 737 *
 738 * @mr: the #MemoryRegion to be initialized.
 739 * @owner: the object that tracks the region's reference count
 740 * @name: the name of the region.
 741 * @size: size of the region.
 742 * @ptr: memory to be mapped; must contain at least @size bytes.
 743 *
 744 * Note that this function does not do anything to cause the data in the
 745 * RAM memory region to be migrated; that is the responsibility of the caller.
 746 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 747 */
 748void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 749                                       struct Object *owner,
 750                                       const char *name,
 751                                       uint64_t size,
 752                                       void *ptr);
 753
 754/**
 755 * memory_region_init_alias: Initialize a memory region that aliases all or a
 756 *                           part of another memory region.
 757 *
 758 * @mr: the #MemoryRegion to be initialized.
 759 * @owner: the object that tracks the region's reference count
 760 * @name: used for debugging; not visible to the user or ABI
 761 * @orig: the region to be referenced; @mr will be equivalent to
 762 *        @orig between @offset and @offset + @size - 1.
 763 * @offset: start of the section in @orig to be referenced.
 764 * @size: size of the region.
 765 */
 766void memory_region_init_alias(MemoryRegion *mr,
 767                              struct Object *owner,
 768                              const char *name,
 769                              MemoryRegion *orig,
 770                              hwaddr offset,
 771                              uint64_t size);
 772
 773/**
 774 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 775 *
 776 * This has the same effect as calling memory_region_init_ram_nomigrate()
 777 * and then marking the resulting region read-only with
 778 * memory_region_set_readonly().
 779 *
 780 * Note that this function does not do anything to cause the data in the
 781 * RAM side of the memory region to be migrated; that is the responsibility
 782 * of the caller.
 783 *
 784 * @mr: the #MemoryRegion to be initialized.
 785 * @owner: the object that tracks the region's reference count
 786 * @name: Region name, becomes part of RAMBlock name used in migration stream
 787 *        must be unique within any device
 788 * @size: size of the region.
 789 * @errp: pointer to Error*, to store an error if it happens.
 790 */
 791void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 792                                      struct Object *owner,
 793                                      const char *name,
 794                                      uint64_t size,
 795                                      Error **errp);
 796
 797/**
 798 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 799 *                                 Writes are handled via callbacks.
 800 *
 801 * Note that this function does not do anything to cause the data in the
 802 * RAM side of the memory region to be migrated; that is the responsibility
 803 * of the caller.
 804 *
 805 * @mr: the #MemoryRegion to be initialized.
 806 * @owner: the object that tracks the region's reference count
 807 * @ops: callbacks for write access handling (must not be NULL).
 808 * @opaque: passed to the read and write callbacks of the @ops structure.
 809 * @name: Region name, becomes part of RAMBlock name used in migration stream
 810 *        must be unique within any device
 811 * @size: size of the region.
 812 * @errp: pointer to Error*, to store an error if it happens.
 813 */
 814void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 815                                             struct Object *owner,
 816                                             const MemoryRegionOps *ops,
 817                                             void *opaque,
 818                                             const char *name,
 819                                             uint64_t size,
 820                                             Error **errp);
 821
 822/**
 823 * memory_region_init_iommu: Initialize a memory region of a custom type
 824 * that translates addresses
 825 *
 826 * An IOMMU region translates addresses and forwards accesses to a target
 827 * memory region.
 828 *
 829 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
 830 * @_iommu_mr should be a pointer to enough memory for an instance of
 831 * that subclass, @instance_size is the size of that subclass, and
 832 * @mrtypename is its name. This function will initialize @_iommu_mr as an
 833 * instance of the subclass, and its methods will then be called to handle
 834 * accesses to the memory region. See the documentation of
 835 * #IOMMUMemoryRegionClass for further details.
 836 *
 837 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 838 * @instance_size: the IOMMUMemoryRegion subclass instance size
 839 * @mrtypename: the type name of the #IOMMUMemoryRegion
 840 * @owner: the object that tracks the region's reference count
 841 * @name: used for debugging; not visible to the user or ABI
 842 * @size: size of the region.
 843 */
 844void memory_region_init_iommu(void *_iommu_mr,
 845                              size_t instance_size,
 846                              const char *mrtypename,
 847                              Object *owner,
 848                              const char *name,
 849                              uint64_t size);
 850
 851/**
 852 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 853 *                          region will modify memory directly.
 854 *
 855 * @mr: the #MemoryRegion to be initialized
 856 * @owner: the object that tracks the region's reference count (must be
 857 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 858 * @name: name of the memory region
 859 * @size: size of the region in bytes
 860 * @errp: pointer to Error*, to store an error if it happens.
 861 *
 862 * This function allocates RAM for a board model or device, and
 863 * arranges for it to be migrated (by calling vmstate_register_ram()
 864 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 865 * @owner is NULL).
 866 *
 867 * TODO: Currently we restrict @owner to being either NULL (for
 868 * global RAM regions with no owner) or devices, so that we can
 869 * give the RAM block a unique name for migration purposes.
 870 * We should lift this restriction and allow arbitrary Objects.
 871 * If you pass a non-NULL non-device @owner then we will assert.
 872 */
 873void memory_region_init_ram(MemoryRegion *mr,
 874                            struct Object *owner,
 875                            const char *name,
 876                            uint64_t size,
 877                            Error **errp);
 878
 879/**
 880 * memory_region_init_rom: Initialize a ROM memory region.
 881 *
 882 * This has the same effect as calling memory_region_init_ram()
 883 * and then marking the resulting region read-only with
 884 * memory_region_set_readonly(). This includes arranging for the
 885 * contents to be migrated.
 886 *
 887 * TODO: Currently we restrict @owner to being either NULL (for
 888 * global RAM regions with no owner) or devices, so that we can
 889 * give the RAM block a unique name for migration purposes.
 890 * We should lift this restriction and allow arbitrary Objects.
 891 * If you pass a non-NULL non-device @owner then we will assert.
 892 *
 893 * @mr: the #MemoryRegion to be initialized.
 894 * @owner: the object that tracks the region's reference count
 895 * @name: Region name, becomes part of RAMBlock name used in migration stream
 896 *        must be unique within any device
 897 * @size: size of the region.
 898 * @errp: pointer to Error*, to store an error if it happens.
 899 */
 900void memory_region_init_rom(MemoryRegion *mr,
 901                            struct Object *owner,
 902                            const char *name,
 903                            uint64_t size,
 904                            Error **errp);
 905
 906/**
 907 * memory_region_init_rom_device:  Initialize a ROM memory region.
 908 *                                 Writes are handled via callbacks.
 909 *
 910 * This function initializes a memory region backed by RAM for reads
 911 * and callbacks for writes, and arranges for the RAM backing to
 912 * be migrated (by calling vmstate_register_ram()
 913 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 914 * @owner is NULL).
 915 *
 916 * TODO: Currently we restrict @owner to being either NULL (for
 917 * global RAM regions with no owner) or devices, so that we can
 918 * give the RAM block a unique name for migration purposes.
 919 * We should lift this restriction and allow arbitrary Objects.
 920 * If you pass a non-NULL non-device @owner then we will assert.
 921 *
 922 * @mr: the #MemoryRegion to be initialized.
 923 * @owner: the object that tracks the region's reference count
 924 * @ops: callbacks for write access handling (must not be NULL).
 925 * @name: Region name, becomes part of RAMBlock name used in migration stream
 926 *        must be unique within any device
 927 * @size: size of the region.
 928 * @errp: pointer to Error*, to store an error if it happens.
 929 */
 930void memory_region_init_rom_device(MemoryRegion *mr,
 931                                   struct Object *owner,
 932                                   const MemoryRegionOps *ops,
 933                                   void *opaque,
 934                                   const char *name,
 935                                   uint64_t size,
 936                                   Error **errp);
 937
 938
 939/**
 940 * memory_region_owner: get a memory region's owner.
 941 *
 942 * @mr: the memory region being queried.
 943 */
 944struct Object *memory_region_owner(MemoryRegion *mr);
 945
 946/**
 947 * memory_region_size: get a memory region's size.
 948 *
 949 * @mr: the memory region being queried.
 950 */
 951uint64_t memory_region_size(MemoryRegion *mr);
 952
 953/**
 954 * memory_region_is_ram: check whether a memory region is random access
 955 *
 956 * Returns %true if a memory region is random access.
 957 *
 958 * @mr: the memory region being queried
 959 */
 960static inline bool memory_region_is_ram(MemoryRegion *mr)
 961{
 962    return mr->ram;
 963}
 964
 965/**
 966 * memory_region_is_ram_device: check whether a memory region is a ram device
 967 *
 968 * Returns %true if a memory region is a device backed ram region
 969 *
 970 * @mr: the memory region being queried
 971 */
 972bool memory_region_is_ram_device(MemoryRegion *mr);
 973
 974/**
 975 * memory_region_is_romd: check whether a memory region is in ROMD mode
 976 *
 977 * Returns %true if a memory region is a ROM device and currently set to allow
 978 * direct reads.
 979 *
 980 * @mr: the memory region being queried
 981 */
 982static inline bool memory_region_is_romd(MemoryRegion *mr)
 983{
 984    return mr->rom_device && mr->romd_mode;
 985}
 986
 987/**
 988 * memory_region_get_iommu: check whether a memory region is an iommu
 989 *
 990 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 991 * otherwise NULL.
 992 *
 993 * @mr: the memory region being queried
 994 */
 995static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 996{
 997    if (mr->alias) {
 998        return memory_region_get_iommu(mr->alias);
 999    }
1000    if (mr->is_iommu) {
1001        return (IOMMUMemoryRegion *) mr;
1002    }
1003    return NULL;
1004}
1005
1006/**
1007 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1008 *   if an iommu or NULL if not
1009 *
1010 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1011 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1012 *
1013 * @mr: the memory region being queried
1014 */
1015static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1016        IOMMUMemoryRegion *iommu_mr)
1017{
1018    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1019}
1020
1021#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1022
1023/**
1024 * memory_region_iommu_get_min_page_size: get minimum supported page size
1025 * for an iommu
1026 *
1027 * Returns minimum supported page size for an iommu.
1028 *
1029 * @iommu_mr: the memory region being queried
1030 */
1031uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1032
1033/**
1034 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1035 *
1036 * The notification type will be decided by entry.perm bits:
1037 *
1038 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1039 * - For MAP (newly added entry) notifies: set entry.perm to the
1040 *   permission of the page (which is definitely !IOMMU_NONE).
1041 *
1042 * Note: for any IOMMU implementation, an in-place mapping change
1043 * should be notified with an UNMAP followed by a MAP.
1044 *
1045 * @iommu_mr: the memory region that was changed
1046 * @iommu_idx: the IOMMU index for the translation table which has changed
1047 * @entry: the new entry in the IOMMU translation table.  The entry
1048 *         replaces all old entries for the same virtual I/O address range.
1049 *         Deleted entries have .@perm == 0.
1050 */
1051void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1052                                int iommu_idx,
1053                                IOMMUTLBEntry entry);
1054
1055/**
1056 * memory_region_notify_one: notify a change in an IOMMU translation
1057 *                           entry to a single notifier
1058 *
1059 * This works just like memory_region_notify_iommu(), but it only
1060 * notifies a specific notifier, not all of them.
1061 *
1062 * @notifier: the notifier to be notified
1063 * @entry: the new entry in the IOMMU translation table.  The entry
1064 *         replaces all old entries for the same virtual I/O address range.
1065 *         Deleted entries have .@perm == 0.
1066 */
1067void memory_region_notify_one(IOMMUNotifier *notifier,
1068                              IOMMUTLBEntry *entry);
1069
1070/**
1071 * memory_region_register_iommu_notifier: register a notifier for changes to
1072 * IOMMU translation entries.
1073 *
1074 * @mr: the memory region to observe
1075 * @n: the IOMMUNotifier to be added; the notify callback receives a
1076 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1077 *     ceases to be valid on exit from the notifier.
1078 */
1079void memory_region_register_iommu_notifier(MemoryRegion *mr,
1080                                           IOMMUNotifier *n);
1081
1082/**
1083 * memory_region_iommu_replay: replay existing IOMMU translations to
1084 * a notifier with the minimum page granularity returned by
1085 * mr->iommu_ops->get_page_size().
1086 *
1087 * Note: this is not related to record-and-replay functionality.
1088 *
1089 * @iommu_mr: the memory region to observe
1090 * @n: the notifier to which to replay iommu mappings
1091 */
1092void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1093
1094/**
1095 * memory_region_iommu_replay_all: replay existing IOMMU translations
1096 * to all the notifiers registered.
1097 *
1098 * Note: this is not related to record-and-replay functionality.
1099 *
1100 * @iommu_mr: the memory region to observe
1101 */
1102void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1103
1104/**
1105 * memory_region_unregister_iommu_notifier: unregister a notifier for
1106 * changes to IOMMU translation entries.
1107 *
1108 * @mr: the memory region which was observed and for which notity_stopped()
1109 *      needs to be called
1110 * @n: the notifier to be removed.
1111 */
1112void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1113                                             IOMMUNotifier *n);
1114
1115/**
1116 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1117 * defined on the IOMMU.
1118 *
1119 * Returns 0 on success, or a negative errno otherwise. In particular,
1120 * -EINVAL indicates that the IOMMU does not support the requested
1121 * attribute.
1122 *
1123 * @iommu_mr: the memory region
1124 * @attr: the requested attribute
1125 * @data: a pointer to the requested attribute data
1126 */
1127int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1128                                 enum IOMMUMemoryRegionAttr attr,
1129                                 void *data);
1130
1131/**
1132 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1133 * use for translations with the given memory transaction attributes.
1134 *
1135 * @iommu_mr: the memory region
1136 * @attrs: the memory transaction attributes
1137 */
1138int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1139                                       MemTxAttrs attrs);
1140
1141/**
1142 * memory_region_iommu_num_indexes: return the total number of IOMMU
1143 * indexes that this IOMMU supports.
1144 *
1145 * @iommu_mr: the memory region
1146 */
1147int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1148
1149/**
1150 * memory_region_name: get a memory region's name
1151 *
1152 * Returns the string that was used to initialize the memory region.
1153 *
1154 * @mr: the memory region being queried
1155 */
1156const char *memory_region_name(const MemoryRegion *mr);
1157
1158/**
1159 * memory_region_is_logging: return whether a memory region is logging writes
1160 *
1161 * Returns %true if the memory region is logging writes for the given client
1162 *
1163 * @mr: the memory region being queried
1164 * @client: the client being queried
1165 */
1166bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1167
1168/**
1169 * memory_region_get_dirty_log_mask: return the clients for which a
1170 * memory region is logging writes.
1171 *
1172 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1173 * are the bit indices.
1174 *
1175 * @mr: the memory region being queried
1176 */
1177uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1178
1179/**
1180 * memory_region_is_rom: check whether a memory region is ROM
1181 *
1182 * Returns %true if a memory region is read-only memory.
1183 *
1184 * @mr: the memory region being queried
1185 */
1186static inline bool memory_region_is_rom(MemoryRegion *mr)
1187{
1188    return mr->ram && mr->readonly;
1189}
1190
1191/**
1192 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1193 *
1194 * Returns %true is a memory region is non-volatile memory.
1195 *
1196 * @mr: the memory region being queried
1197 */
1198static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1199{
1200    return mr->nonvolatile;
1201}
1202
1203/**
1204 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1205 *
1206 * Returns a file descriptor backing a file-based RAM memory region,
1207 * or -1 if the region is not a file-based RAM memory region.
1208 *
1209 * @mr: the RAM or alias memory region being queried.
1210 */
1211int memory_region_get_fd(MemoryRegion *mr);
1212
1213/**
1214 * memory_region_from_host: Convert a pointer into a RAM memory region
1215 * and an offset within it.
1216 *
1217 * Given a host pointer inside a RAM memory region (created with
1218 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1219 * the MemoryRegion and the offset within it.
1220 *
1221 * Use with care; by the time this function returns, the returned pointer is
1222 * not protected by RCU anymore.  If the caller is not within an RCU critical
1223 * section and does not hold the iothread lock, it must have other means of
1224 * protecting the pointer, such as a reference to the region that includes
1225 * the incoming ram_addr_t.
1226 *
1227 * @ptr: the host pointer to be converted
1228 * @offset: the offset within memory region
1229 */
1230MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1231
1232/**
1233 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1234 *
1235 * Returns a host pointer to a RAM memory region (created with
1236 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1237 *
1238 * Use with care; by the time this function returns, the returned pointer is
1239 * not protected by RCU anymore.  If the caller is not within an RCU critical
1240 * section and does not hold the iothread lock, it must have other means of
1241 * protecting the pointer, such as a reference to the region that includes
1242 * the incoming ram_addr_t.
1243 *
1244 * @mr: the memory region being queried.
1245 */
1246void *memory_region_get_ram_ptr(MemoryRegion *mr);
1247
1248/* memory_region_ram_resize: Resize a RAM region.
1249 *
1250 * Only legal before guest might have detected the memory size: e.g. on
1251 * incoming migration, or right after reset.
1252 *
1253 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1254 * @newsize: the new size the region
1255 * @errp: pointer to Error*, to store an error if it happens.
1256 */
1257void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1258                              Error **errp);
1259
1260/**
1261 * memory_region_set_log: Turn dirty logging on or off for a region.
1262 *
1263 * Turns dirty logging on or off for a specified client (display, migration).
1264 * Only meaningful for RAM regions.
1265 *
1266 * @mr: the memory region being updated.
1267 * @log: whether dirty logging is to be enabled or disabled.
1268 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1269 */
1270void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1271
1272/**
1273 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1274 *
1275 * Marks a range of bytes as dirty, after it has been dirtied outside
1276 * guest code.
1277 *
1278 * @mr: the memory region being dirtied.
1279 * @addr: the address (relative to the start of the region) being dirtied.
1280 * @size: size of the range being dirtied.
1281 */
1282void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1283                             hwaddr size);
1284
1285/**
1286 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1287 *
1288 * This function is called when the caller wants to clear the remote
1289 * dirty bitmap of a memory range within the memory region.  This can
1290 * be used by e.g. KVM to manually clear dirty log when
1291 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1292 * kernel.
1293 *
1294 * @mr:     the memory region to clear the dirty log upon
1295 * @start:  start address offset within the memory region
1296 * @len:    length of the memory region to clear dirty bitmap
1297 */
1298void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1299                                      hwaddr len);
1300
1301/**
1302 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1303 *                                         bitmap and clear it.
1304 *
1305 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1306 * returns the snapshot.  The snapshot can then be used to query dirty
1307 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1308 * querying the same page multiple times, which is especially useful for
1309 * display updates where the scanlines often are not page aligned.
1310 *
1311 * The dirty bitmap region which gets copyed into the snapshot (and
1312 * cleared afterwards) can be larger than requested.  The boundaries
1313 * are rounded up/down so complete bitmap longs (covering 64 pages on
1314 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1315 * isn't a problem for display updates as the extra pages are outside
1316 * the visible area, and in case the visible area changes a full
1317 * display redraw is due anyway.  Should other use cases for this
1318 * function emerge we might have to revisit this implementation
1319 * detail.
1320 *
1321 * Use g_free to release DirtyBitmapSnapshot.
1322 *
1323 * @mr: the memory region being queried.
1324 * @addr: the address (relative to the start of the region) being queried.
1325 * @size: the size of the range being queried.
1326 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1327 */
1328DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1329                                                            hwaddr addr,
1330                                                            hwaddr size,
1331                                                            unsigned client);
1332
1333/**
1334 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1335 *                                   in the specified dirty bitmap snapshot.
1336 *
1337 * @mr: the memory region being queried.
1338 * @snap: the dirty bitmap snapshot
1339 * @addr: the address (relative to the start of the region) being queried.
1340 * @size: the size of the range being queried.
1341 */
1342bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1343                                      DirtyBitmapSnapshot *snap,
1344                                      hwaddr addr, hwaddr size);
1345
1346/**
1347 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1348 *                            client.
1349 *
1350 * Marks a range of pages as no longer dirty.
1351 *
1352 * @mr: the region being updated.
1353 * @addr: the start of the subrange being cleaned.
1354 * @size: the size of the subrange being cleaned.
1355 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1356 *          %DIRTY_MEMORY_VGA.
1357 */
1358void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1359                               hwaddr size, unsigned client);
1360
1361/**
1362 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1363 *                                 TBs (for self-modifying code).
1364 *
1365 * The MemoryRegionOps->write() callback of a ROM device must use this function
1366 * to mark byte ranges that have been modified internally, such as by directly
1367 * accessing the memory returned by memory_region_get_ram_ptr().
1368 *
1369 * This function marks the range dirty and invalidates TBs so that TCG can
1370 * detect self-modifying code.
1371 *
1372 * @mr: the region being flushed.
1373 * @addr: the start, relative to the start of the region, of the range being
1374 *        flushed.
1375 * @size: the size, in bytes, of the range being flushed.
1376 */
1377void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1378
1379/**
1380 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1381 *
1382 * Allows a memory region to be marked as read-only (turning it into a ROM).
1383 * only useful on RAM regions.
1384 *
1385 * @mr: the region being updated.
1386 * @readonly: whether rhe region is to be ROM or RAM.
1387 */
1388void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1389
1390/**
1391 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1392 *
1393 * Allows a memory region to be marked as non-volatile.
1394 * only useful on RAM regions.
1395 *
1396 * @mr: the region being updated.
1397 * @nonvolatile: whether rhe region is to be non-volatile.
1398 */
1399void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1400
1401/**
1402 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1403 *
1404 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1405 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1406 * device is mapped to guest memory and satisfies read access directly.
1407 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1408 * Writes are always handled by the #MemoryRegion.write function.
1409 *
1410 * @mr: the memory region to be updated
1411 * @romd_mode: %true to put the region into ROMD mode
1412 */
1413void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1414
1415/**
1416 * memory_region_set_coalescing: Enable memory coalescing for the region.
1417 *
1418 * Enabled writes to a region to be queued for later processing. MMIO ->write
1419 * callbacks may be delayed until a non-coalesced MMIO is issued.
1420 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1421 *
1422 * @mr: the memory region to be write coalesced
1423 */
1424void memory_region_set_coalescing(MemoryRegion *mr);
1425
1426/**
1427 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1428 *                               a region.
1429 *
1430 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1431 * Multiple calls can be issued coalesced disjoint ranges.
1432 *
1433 * @mr: the memory region to be updated.
1434 * @offset: the start of the range within the region to be coalesced.
1435 * @size: the size of the subrange to be coalesced.
1436 */
1437void memory_region_add_coalescing(MemoryRegion *mr,
1438                                  hwaddr offset,
1439                                  uint64_t size);
1440
1441/**
1442 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1443 *
1444 * Disables any coalescing caused by memory_region_set_coalescing() or
1445 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1446 * hardware.
1447 *
1448 * @mr: the memory region to be updated.
1449 */
1450void memory_region_clear_coalescing(MemoryRegion *mr);
1451
1452/**
1453 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1454 *                                    accesses.
1455 *
1456 * Ensure that pending coalesced MMIO request are flushed before the memory
1457 * region is accessed. This property is automatically enabled for all regions
1458 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1459 *
1460 * @mr: the memory region to be updated.
1461 */
1462void memory_region_set_flush_coalesced(MemoryRegion *mr);
1463
1464/**
1465 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1466 *                                      accesses.
1467 *
1468 * Clear the automatic coalesced MMIO flushing enabled via
1469 * memory_region_set_flush_coalesced. Note that this service has no effect on
1470 * memory regions that have MMIO coalescing enabled for themselves. For them,
1471 * automatic flushing will stop once coalescing is disabled.
1472 *
1473 * @mr: the memory region to be updated.
1474 */
1475void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1476
1477/**
1478 * memory_region_clear_global_locking: Declares that access processing does
1479 *                                     not depend on the QEMU global lock.
1480 *
1481 * By clearing this property, accesses to the memory region will be processed
1482 * outside of QEMU's global lock (unless the lock is held on when issuing the
1483 * access request). In this case, the device model implementing the access
1484 * handlers is responsible for synchronization of concurrency.
1485 *
1486 * @mr: the memory region to be updated.
1487 */
1488void memory_region_clear_global_locking(MemoryRegion *mr);
1489
1490/**
1491 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1492 *                            is written to a location.
1493 *
1494 * Marks a word in an IO region (initialized with memory_region_init_io())
1495 * as a trigger for an eventfd event.  The I/O callback will not be called.
1496 * The caller must be prepared to handle failure (that is, take the required
1497 * action if the callback _is_ called).
1498 *
1499 * @mr: the memory region being updated.
1500 * @addr: the address within @mr that is to be monitored
1501 * @size: the size of the access to trigger the eventfd
1502 * @match_data: whether to match against @data, instead of just @addr
1503 * @data: the data to match against the guest write
1504 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1505 **/
1506void memory_region_add_eventfd(MemoryRegion *mr,
1507                               hwaddr addr,
1508                               unsigned size,
1509                               bool match_data,
1510                               uint64_t data,
1511                               EventNotifier *e);
1512
1513/**
1514 * memory_region_del_eventfd: Cancel an eventfd.
1515 *
1516 * Cancels an eventfd trigger requested by a previous
1517 * memory_region_add_eventfd() call.
1518 *
1519 * @mr: the memory region being updated.
1520 * @addr: the address within @mr that is to be monitored
1521 * @size: the size of the access to trigger the eventfd
1522 * @match_data: whether to match against @data, instead of just @addr
1523 * @data: the data to match against the guest write
1524 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1525 */
1526void memory_region_del_eventfd(MemoryRegion *mr,
1527                               hwaddr addr,
1528                               unsigned size,
1529                               bool match_data,
1530                               uint64_t data,
1531                               EventNotifier *e);
1532
1533/**
1534 * memory_region_add_subregion: Add a subregion to a container.
1535 *
1536 * Adds a subregion at @offset.  The subregion may not overlap with other
1537 * subregions (except for those explicitly marked as overlapping).  A region
1538 * may only be added once as a subregion (unless removed with
1539 * memory_region_del_subregion()); use memory_region_init_alias() if you
1540 * want a region to be a subregion in multiple locations.
1541 *
1542 * @mr: the region to contain the new subregion; must be a container
1543 *      initialized with memory_region_init().
1544 * @offset: the offset relative to @mr where @subregion is added.
1545 * @subregion: the subregion to be added.
1546 */
1547void memory_region_add_subregion(MemoryRegion *mr,
1548                                 hwaddr offset,
1549                                 MemoryRegion *subregion);
1550/**
1551 * memory_region_add_subregion_overlap: Add a subregion to a container
1552 *                                      with overlap.
1553 *
1554 * Adds a subregion at @offset.  The subregion may overlap with other
1555 * subregions.  Conflicts are resolved by having a higher @priority hide a
1556 * lower @priority. Subregions without priority are taken as @priority 0.
1557 * A region may only be added once as a subregion (unless removed with
1558 * memory_region_del_subregion()); use memory_region_init_alias() if you
1559 * want a region to be a subregion in multiple locations.
1560 *
1561 * @mr: the region to contain the new subregion; must be a container
1562 *      initialized with memory_region_init().
1563 * @offset: the offset relative to @mr where @subregion is added.
1564 * @subregion: the subregion to be added.
1565 * @priority: used for resolving overlaps; highest priority wins.
1566 */
1567void memory_region_add_subregion_overlap(MemoryRegion *mr,
1568                                         hwaddr offset,
1569                                         MemoryRegion *subregion,
1570                                         int priority);
1571
1572/**
1573 * memory_region_get_ram_addr: Get the ram address associated with a memory
1574 *                             region
1575 */
1576ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1577
1578uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1579/**
1580 * memory_region_del_subregion: Remove a subregion.
1581 *
1582 * Removes a subregion from its container.
1583 *
1584 * @mr: the container to be updated.
1585 * @subregion: the region being removed; must be a current subregion of @mr.
1586 */
1587void memory_region_del_subregion(MemoryRegion *mr,
1588                                 MemoryRegion *subregion);
1589
1590/*
1591 * memory_region_set_enabled: dynamically enable or disable a region
1592 *
1593 * Enables or disables a memory region.  A disabled memory region
1594 * ignores all accesses to itself and its subregions.  It does not
1595 * obscure sibling subregions with lower priority - it simply behaves as
1596 * if it was removed from the hierarchy.
1597 *
1598 * Regions default to being enabled.
1599 *
1600 * @mr: the region to be updated
1601 * @enabled: whether to enable or disable the region
1602 */
1603void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1604
1605/*
1606 * memory_region_set_address: dynamically update the address of a region
1607 *
1608 * Dynamically updates the address of a region, relative to its container.
1609 * May be used on regions are currently part of a memory hierarchy.
1610 *
1611 * @mr: the region to be updated
1612 * @addr: new address, relative to container region
1613 */
1614void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1615
1616/*
1617 * memory_region_set_size: dynamically update the size of a region.
1618 *
1619 * Dynamically updates the size of a region.
1620 *
1621 * @mr: the region to be updated
1622 * @size: used size of the region.
1623 */
1624void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1625
1626/*
1627 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1628 *
1629 * Dynamically updates the offset into the target region that an alias points
1630 * to, as if the fourth argument to memory_region_init_alias() has changed.
1631 *
1632 * @mr: the #MemoryRegion to be updated; should be an alias.
1633 * @offset: the new offset into the target memory region
1634 */
1635void memory_region_set_alias_offset(MemoryRegion *mr,
1636                                    hwaddr offset);
1637
1638/**
1639 * memory_region_present: checks if an address relative to a @container
1640 * translates into #MemoryRegion within @container
1641 *
1642 * Answer whether a #MemoryRegion within @container covers the address
1643 * @addr.
1644 *
1645 * @container: a #MemoryRegion within which @addr is a relative address
1646 * @addr: the area within @container to be searched
1647 */
1648bool memory_region_present(MemoryRegion *container, hwaddr addr);
1649
1650/**
1651 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1652 * into any address space.
1653 *
1654 * @mr: a #MemoryRegion which should be checked if it's mapped
1655 */
1656bool memory_region_is_mapped(MemoryRegion *mr);
1657
1658/**
1659 * memory_region_find: translate an address/size relative to a
1660 * MemoryRegion into a #MemoryRegionSection.
1661 *
1662 * Locates the first #MemoryRegion within @mr that overlaps the range
1663 * given by @addr and @size.
1664 *
1665 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1666 * It will have the following characteristics:
1667 *    .@size = 0 iff no overlap was found
1668 *    .@mr is non-%NULL iff an overlap was found
1669 *
1670 * Remember that in the return value the @offset_within_region is
1671 * relative to the returned region (in the .@mr field), not to the
1672 * @mr argument.
1673 *
1674 * Similarly, the .@offset_within_address_space is relative to the
1675 * address space that contains both regions, the passed and the
1676 * returned one.  However, in the special case where the @mr argument
1677 * has no container (and thus is the root of the address space), the
1678 * following will hold:
1679 *    .@offset_within_address_space >= @addr
1680 *    .@offset_within_address_space + .@size <= @addr + @size
1681 *
1682 * @mr: a MemoryRegion within which @addr is a relative address
1683 * @addr: start of the area within @as to be searched
1684 * @size: size of the area to be searched
1685 */
1686MemoryRegionSection memory_region_find(MemoryRegion *mr,
1687                                       hwaddr addr, uint64_t size);
1688
1689/**
1690 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1691 *
1692 * Synchronizes the dirty page log for all address spaces.
1693 */
1694void memory_global_dirty_log_sync(void);
1695
1696/**
1697 * memory_region_transaction_begin: Start a transaction.
1698 *
1699 * During a transaction, changes will be accumulated and made visible
1700 * only when the transaction ends (is committed).
1701 */
1702void memory_region_transaction_begin(void);
1703
1704/**
1705 * memory_region_transaction_commit: Commit a transaction and make changes
1706 *                                   visible to the guest.
1707 */
1708void memory_region_transaction_commit(void);
1709
1710/**
1711 * memory_listener_register: register callbacks to be called when memory
1712 *                           sections are mapped or unmapped into an address
1713 *                           space
1714 *
1715 * @listener: an object containing the callbacks to be called
1716 * @filter: if non-%NULL, only regions in this address space will be observed
1717 */
1718void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1719
1720/**
1721 * memory_listener_unregister: undo the effect of memory_listener_register()
1722 *
1723 * @listener: an object containing the callbacks to be removed
1724 */
1725void memory_listener_unregister(MemoryListener *listener);
1726
1727/**
1728 * memory_global_dirty_log_start: begin dirty logging for all regions
1729 */
1730void memory_global_dirty_log_start(void);
1731
1732/**
1733 * memory_global_dirty_log_stop: end dirty logging for all regions
1734 */
1735void memory_global_dirty_log_stop(void);
1736
1737void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1738
1739/**
1740 * memory_region_dispatch_read: perform a read directly to the specified
1741 * MemoryRegion.
1742 *
1743 * @mr: #MemoryRegion to access
1744 * @addr: address within that region
1745 * @pval: pointer to uint64_t which the data is written to
1746 * @size: size of the access in bytes
1747 * @attrs: memory transaction attributes to use for the access
1748 */
1749MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1750                                        hwaddr addr,
1751                                        uint64_t *pval,
1752                                        unsigned size,
1753                                        MemTxAttrs attrs);
1754/**
1755 * memory_region_dispatch_write: perform a write directly to the specified
1756 * MemoryRegion.
1757 *
1758 * @mr: #MemoryRegion to access
1759 * @addr: address within that region
1760 * @data: data to write
1761 * @size: size of the access in bytes
1762 * @attrs: memory transaction attributes to use for the access
1763 */
1764MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1765                                         hwaddr addr,
1766                                         uint64_t data,
1767                                         unsigned size,
1768                                         MemTxAttrs attrs);
1769
1770/**
1771 * address_space_init: initializes an address space
1772 *
1773 * @as: an uninitialized #AddressSpace
1774 * @root: a #MemoryRegion that routes addresses for the address space
1775 * @name: an address space name.  The name is only used for debugging
1776 *        output.
1777 */
1778void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1779
1780/**
1781 * address_space_destroy: destroy an address space
1782 *
1783 * Releases all resources associated with an address space.  After an address space
1784 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1785 * as well.
1786 *
1787 * @as: address space to be destroyed
1788 */
1789void address_space_destroy(AddressSpace *as);
1790
1791/**
1792 * address_space_remove_listeners: unregister all listeners of an address space
1793 *
1794 * Removes all callbacks previously registered with memory_listener_register()
1795 * for @as.
1796 *
1797 * @as: an initialized #AddressSpace
1798 */
1799void address_space_remove_listeners(AddressSpace *as);
1800
1801/**
1802 * address_space_rw: read from or write to an address space.
1803 *
1804 * Return a MemTxResult indicating whether the operation succeeded
1805 * or failed (eg unassigned memory, device rejected the transaction,
1806 * IOMMU fault).
1807 *
1808 * @as: #AddressSpace to be accessed
1809 * @addr: address within that address space
1810 * @attrs: memory transaction attributes
1811 * @buf: buffer with the data transferred
1812 * @len: the number of bytes to read or write
1813 * @is_write: indicates the transfer direction
1814 */
1815MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1816                             MemTxAttrs attrs, uint8_t *buf,
1817                             hwaddr len, bool is_write);
1818
1819/**
1820 * address_space_write: write to address space.
1821 *
1822 * Return a MemTxResult indicating whether the operation succeeded
1823 * or failed (eg unassigned memory, device rejected the transaction,
1824 * IOMMU fault).
1825 *
1826 * @as: #AddressSpace to be accessed
1827 * @addr: address within that address space
1828 * @attrs: memory transaction attributes
1829 * @buf: buffer with the data transferred
1830 * @len: the number of bytes to write
1831 */
1832MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1833                                MemTxAttrs attrs,
1834                                const uint8_t *buf, hwaddr len);
1835
1836/**
1837 * address_space_write_rom: write to address space, including ROM.
1838 *
1839 * This function writes to the specified address space, but will
1840 * write data to both ROM and RAM. This is used for non-guest
1841 * writes like writes from the gdb debug stub or initial loading
1842 * of ROM contents.
1843 *
1844 * Note that portions of the write which attempt to write data to
1845 * a device will be silently ignored -- only real RAM and ROM will
1846 * be written to.
1847 *
1848 * Return a MemTxResult indicating whether the operation succeeded
1849 * or failed (eg unassigned memory, device rejected the transaction,
1850 * IOMMU fault).
1851 *
1852 * @as: #AddressSpace to be accessed
1853 * @addr: address within that address space
1854 * @attrs: memory transaction attributes
1855 * @buf: buffer with the data transferred
1856 * @len: the number of bytes to write
1857 */
1858MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1859                                    MemTxAttrs attrs,
1860                                    const uint8_t *buf, hwaddr len);
1861
1862/* address_space_ld*: load from an address space
1863 * address_space_st*: store to an address space
1864 *
1865 * These functions perform a load or store of the byte, word,
1866 * longword or quad to the specified address within the AddressSpace.
1867 * The _le suffixed functions treat the data as little endian;
1868 * _be indicates big endian; no suffix indicates "same endianness
1869 * as guest CPU".
1870 *
1871 * The "guest CPU endianness" accessors are deprecated for use outside
1872 * target-* code; devices should be CPU-agnostic and use either the LE
1873 * or the BE accessors.
1874 *
1875 * @as #AddressSpace to be accessed
1876 * @addr: address within that address space
1877 * @val: data value, for stores
1878 * @attrs: memory transaction attributes
1879 * @result: location to write the success/failure of the transaction;
1880 *   if NULL, this information is discarded
1881 */
1882
1883#define SUFFIX
1884#define ARG1         as
1885#define ARG1_DECL    AddressSpace *as
1886#include "exec/memory_ldst.inc.h"
1887
1888#define SUFFIX
1889#define ARG1         as
1890#define ARG1_DECL    AddressSpace *as
1891#include "exec/memory_ldst_phys.inc.h"
1892
1893struct MemoryRegionCache {
1894    void *ptr;
1895    hwaddr xlat;
1896    hwaddr len;
1897    FlatView *fv;
1898    MemoryRegionSection mrs;
1899    bool is_write;
1900};
1901
1902#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1903
1904
1905/* address_space_ld*_cached: load from a cached #MemoryRegion
1906 * address_space_st*_cached: store into a cached #MemoryRegion
1907 *
1908 * These functions perform a load or store of the byte, word,
1909 * longword or quad to the specified address.  The address is
1910 * a physical address in the AddressSpace, but it must lie within
1911 * a #MemoryRegion that was mapped with address_space_cache_init.
1912 *
1913 * The _le suffixed functions treat the data as little endian;
1914 * _be indicates big endian; no suffix indicates "same endianness
1915 * as guest CPU".
1916 *
1917 * The "guest CPU endianness" accessors are deprecated for use outside
1918 * target-* code; devices should be CPU-agnostic and use either the LE
1919 * or the BE accessors.
1920 *
1921 * @cache: previously initialized #MemoryRegionCache to be accessed
1922 * @addr: address within the address space
1923 * @val: data value, for stores
1924 * @attrs: memory transaction attributes
1925 * @result: location to write the success/failure of the transaction;
1926 *   if NULL, this information is discarded
1927 */
1928
1929#define SUFFIX       _cached_slow
1930#define ARG1         cache
1931#define ARG1_DECL    MemoryRegionCache *cache
1932#include "exec/memory_ldst.inc.h"
1933
1934/* Inline fast path for direct RAM access.  */
1935static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1936    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1937{
1938    assert(addr < cache->len);
1939    if (likely(cache->ptr)) {
1940        return ldub_p(cache->ptr + addr);
1941    } else {
1942        return address_space_ldub_cached_slow(cache, addr, attrs, result);
1943    }
1944}
1945
1946static inline void address_space_stb_cached(MemoryRegionCache *cache,
1947    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1948{
1949    assert(addr < cache->len);
1950    if (likely(cache->ptr)) {
1951        stb_p(cache->ptr + addr, val);
1952    } else {
1953        address_space_stb_cached_slow(cache, addr, val, attrs, result);
1954    }
1955}
1956
1957#define ENDIANNESS   _le
1958#include "exec/memory_ldst_cached.inc.h"
1959
1960#define ENDIANNESS   _be
1961#include "exec/memory_ldst_cached.inc.h"
1962
1963#define SUFFIX       _cached
1964#define ARG1         cache
1965#define ARG1_DECL    MemoryRegionCache *cache
1966#include "exec/memory_ldst_phys.inc.h"
1967
1968/* address_space_cache_init: prepare for repeated access to a physical
1969 * memory region
1970 *
1971 * @cache: #MemoryRegionCache to be filled
1972 * @as: #AddressSpace to be accessed
1973 * @addr: address within that address space
1974 * @len: length of buffer
1975 * @is_write: indicates the transfer direction
1976 *
1977 * Will only work with RAM, and may map a subset of the requested range by
1978 * returning a value that is less than @len.  On failure, return a negative
1979 * errno value.
1980 *
1981 * Because it only works with RAM, this function can be used for
1982 * read-modify-write operations.  In this case, is_write should be %true.
1983 *
1984 * Note that addresses passed to the address_space_*_cached functions
1985 * are relative to @addr.
1986 */
1987int64_t address_space_cache_init(MemoryRegionCache *cache,
1988                                 AddressSpace *as,
1989                                 hwaddr addr,
1990                                 hwaddr len,
1991                                 bool is_write);
1992
1993/**
1994 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1995 *
1996 * @cache: The #MemoryRegionCache to operate on.
1997 * @addr: The first physical address that was written, relative to the
1998 * address that was passed to @address_space_cache_init.
1999 * @access_len: The number of bytes that were written starting at @addr.
2000 */
2001void address_space_cache_invalidate(MemoryRegionCache *cache,
2002                                    hwaddr addr,
2003                                    hwaddr access_len);
2004
2005/**
2006 * address_space_cache_destroy: free a #MemoryRegionCache
2007 *
2008 * @cache: The #MemoryRegionCache whose memory should be released.
2009 */
2010void address_space_cache_destroy(MemoryRegionCache *cache);
2011
2012/* address_space_get_iotlb_entry: translate an address into an IOTLB
2013 * entry. Should be called from an RCU critical section.
2014 */
2015IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2016                                            bool is_write, MemTxAttrs attrs);
2017
2018/* address_space_translate: translate an address range into an address space
2019 * into a MemoryRegion and an address range into that section.  Should be
2020 * called from an RCU critical section, to avoid that the last reference
2021 * to the returned region disappears after address_space_translate returns.
2022 *
2023 * @fv: #FlatView to be accessed
2024 * @addr: address within that address space
2025 * @xlat: pointer to address within the returned memory region section's
2026 * #MemoryRegion.
2027 * @len: pointer to length
2028 * @is_write: indicates the transfer direction
2029 * @attrs: memory attributes
2030 */
2031MemoryRegion *flatview_translate(FlatView *fv,
2032                                 hwaddr addr, hwaddr *xlat,
2033                                 hwaddr *len, bool is_write,
2034                                 MemTxAttrs attrs);
2035
2036static inline MemoryRegion *address_space_translate(AddressSpace *as,
2037                                                    hwaddr addr, hwaddr *xlat,
2038                                                    hwaddr *len, bool is_write,
2039                                                    MemTxAttrs attrs)
2040{
2041    return flatview_translate(address_space_to_flatview(as),
2042                              addr, xlat, len, is_write, attrs);
2043}
2044
2045/* address_space_access_valid: check for validity of accessing an address
2046 * space range
2047 *
2048 * Check whether memory is assigned to the given address space range, and
2049 * access is permitted by any IOMMU regions that are active for the address
2050 * space.
2051 *
2052 * For now, addr and len should be aligned to a page size.  This limitation
2053 * will be lifted in the future.
2054 *
2055 * @as: #AddressSpace to be accessed
2056 * @addr: address within that address space
2057 * @len: length of the area to be checked
2058 * @is_write: indicates the transfer direction
2059 * @attrs: memory attributes
2060 */
2061bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2062                                bool is_write, MemTxAttrs attrs);
2063
2064/* address_space_map: map a physical memory region into a host virtual address
2065 *
2066 * May map a subset of the requested range, given by and returned in @plen.
2067 * May return %NULL if resources needed to perform the mapping are exhausted.
2068 * Use only for reads OR writes - not for read-modify-write operations.
2069 * Use cpu_register_map_client() to know when retrying the map operation is
2070 * likely to succeed.
2071 *
2072 * @as: #AddressSpace to be accessed
2073 * @addr: address within that address space
2074 * @plen: pointer to length of buffer; updated on return
2075 * @is_write: indicates the transfer direction
2076 * @attrs: memory attributes
2077 */
2078void *address_space_map(AddressSpace *as, hwaddr addr,
2079                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2080
2081/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2082 *
2083 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2084 * the amount of memory that was actually read or written by the caller.
2085 *
2086 * @as: #AddressSpace used
2087 * @buffer: host pointer as returned by address_space_map()
2088 * @len: buffer length as returned by address_space_map()
2089 * @access_len: amount of data actually transferred
2090 * @is_write: indicates the transfer direction
2091 */
2092void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2093                         int is_write, hwaddr access_len);
2094
2095
2096/* Internal functions, part of the implementation of address_space_read.  */
2097MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2098                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2099MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2100                                   MemTxAttrs attrs, uint8_t *buf,
2101                                   hwaddr len, hwaddr addr1, hwaddr l,
2102                                   MemoryRegion *mr);
2103void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2104
2105/* Internal functions, part of the implementation of address_space_read_cached
2106 * and address_space_write_cached.  */
2107void address_space_read_cached_slow(MemoryRegionCache *cache,
2108                                    hwaddr addr, void *buf, hwaddr len);
2109void address_space_write_cached_slow(MemoryRegionCache *cache,
2110                                     hwaddr addr, const void *buf, hwaddr len);
2111
2112static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2113{
2114    if (is_write) {
2115        return memory_region_is_ram(mr) &&
2116               !mr->readonly && !memory_region_is_ram_device(mr);
2117    } else {
2118        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2119               memory_region_is_romd(mr);
2120    }
2121}
2122
2123/**
2124 * address_space_read: read from an address space.
2125 *
2126 * Return a MemTxResult indicating whether the operation succeeded
2127 * or failed (eg unassigned memory, device rejected the transaction,
2128 * IOMMU fault).  Called within RCU critical section.
2129 *
2130 * @as: #AddressSpace to be accessed
2131 * @addr: address within that address space
2132 * @attrs: memory transaction attributes
2133 * @buf: buffer with the data transferred
2134 */
2135static inline __attribute__((__always_inline__))
2136MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2137                               MemTxAttrs attrs, uint8_t *buf,
2138                               hwaddr len)
2139{
2140    MemTxResult result = MEMTX_OK;
2141    hwaddr l, addr1;
2142    void *ptr;
2143    MemoryRegion *mr;
2144    FlatView *fv;
2145
2146    if (__builtin_constant_p(len)) {
2147        if (len) {
2148            rcu_read_lock();
2149            fv = address_space_to_flatview(as);
2150            l = len;
2151            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2152            if (len == l && memory_access_is_direct(mr, false)) {
2153                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2154                memcpy(buf, ptr, len);
2155            } else {
2156                result = flatview_read_continue(fv, addr, attrs, buf, len,
2157                                                addr1, l, mr);
2158            }
2159            rcu_read_unlock();
2160        }
2161    } else {
2162        result = address_space_read_full(as, addr, attrs, buf, len);
2163    }
2164    return result;
2165}
2166
2167/**
2168 * address_space_read_cached: read from a cached RAM region
2169 *
2170 * @cache: Cached region to be addressed
2171 * @addr: address relative to the base of the RAM region
2172 * @buf: buffer with the data transferred
2173 * @len: length of the data transferred
2174 */
2175static inline void
2176address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2177                          void *buf, hwaddr len)
2178{
2179    assert(addr < cache->len && len <= cache->len - addr);
2180    if (likely(cache->ptr)) {
2181        memcpy(buf, cache->ptr + addr, len);
2182    } else {
2183        address_space_read_cached_slow(cache, addr, buf, len);
2184    }
2185}
2186
2187/**
2188 * address_space_write_cached: write to a cached RAM region
2189 *
2190 * @cache: Cached region to be addressed
2191 * @addr: address relative to the base of the RAM region
2192 * @buf: buffer with the data transferred
2193 * @len: length of the data transferred
2194 */
2195static inline void
2196address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2197                           void *buf, hwaddr len)
2198{
2199    assert(addr < cache->len && len <= cache->len - addr);
2200    if (likely(cache->ptr)) {
2201        memcpy(cache->ptr + addr, buf, len);
2202    } else {
2203        address_space_write_cached_slow(cache, addr, buf, len);
2204    }
2205}
2206
2207#endif
2208
2209#endif
2210