qemu/include/qemu/atomic.h
<<
>>
Prefs
   1/*
   2 * Simple interface for atomic operations.
   3 *
   4 * Copyright (C) 2013 Red Hat, Inc.
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   9 * See the COPYING file in the top-level directory.
  10 *
  11 * See docs/devel/atomics.txt for discussion about the guarantees each
  12 * atomic primitive is meant to provide.
  13 */
  14
  15#ifndef QEMU_ATOMIC_H
  16#define QEMU_ATOMIC_H
  17
  18/* Compiler barrier */
  19#define barrier()   ({ asm volatile("" ::: "memory"); (void)0; })
  20
  21/* The variable that receives the old value of an atomically-accessed
  22 * variable must be non-qualified, because atomic builtins return values
  23 * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
  24 *
  25 * This macro has to handle types smaller than int manually, because of
  26 * implicit promotion.  int and larger types, as well as pointers, can be
  27 * converted to a non-qualified type just by applying a binary operator.
  28 */
  29#define typeof_strip_qual(expr)                                                    \
  30  typeof(                                                                          \
  31    __builtin_choose_expr(                                                         \
  32      __builtin_types_compatible_p(typeof(expr), bool) ||                          \
  33        __builtin_types_compatible_p(typeof(expr), const bool) ||                  \
  34        __builtin_types_compatible_p(typeof(expr), volatile bool) ||               \
  35        __builtin_types_compatible_p(typeof(expr), const volatile bool),           \
  36        (bool)1,                                                                   \
  37    __builtin_choose_expr(                                                         \
  38      __builtin_types_compatible_p(typeof(expr), signed char) ||                   \
  39        __builtin_types_compatible_p(typeof(expr), const signed char) ||           \
  40        __builtin_types_compatible_p(typeof(expr), volatile signed char) ||        \
  41        __builtin_types_compatible_p(typeof(expr), const volatile signed char),    \
  42        (signed char)1,                                                            \
  43    __builtin_choose_expr(                                                         \
  44      __builtin_types_compatible_p(typeof(expr), unsigned char) ||                 \
  45        __builtin_types_compatible_p(typeof(expr), const unsigned char) ||         \
  46        __builtin_types_compatible_p(typeof(expr), volatile unsigned char) ||      \
  47        __builtin_types_compatible_p(typeof(expr), const volatile unsigned char),  \
  48        (unsigned char)1,                                                          \
  49    __builtin_choose_expr(                                                         \
  50      __builtin_types_compatible_p(typeof(expr), signed short) ||                  \
  51        __builtin_types_compatible_p(typeof(expr), const signed short) ||          \
  52        __builtin_types_compatible_p(typeof(expr), volatile signed short) ||       \
  53        __builtin_types_compatible_p(typeof(expr), const volatile signed short),   \
  54        (signed short)1,                                                           \
  55    __builtin_choose_expr(                                                         \
  56      __builtin_types_compatible_p(typeof(expr), unsigned short) ||                \
  57        __builtin_types_compatible_p(typeof(expr), const unsigned short) ||        \
  58        __builtin_types_compatible_p(typeof(expr), volatile unsigned short) ||     \
  59        __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
  60        (unsigned short)1,                                                         \
  61      (expr)+0))))))
  62
  63#ifdef __ATOMIC_RELAXED
  64/* For C11 atomic ops */
  65
  66/* Manual memory barriers
  67 *
  68 *__atomic_thread_fence does not include a compiler barrier; instead,
  69 * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
  70 * semantics. If smp_wmb() is a no-op, absence of the barrier means that
  71 * the compiler is free to reorder stores on each side of the barrier.
  72 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
  73 */
  74
  75#define smp_mb()                     ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
  76#define smp_mb_release()             ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
  77#define smp_mb_acquire()             ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
  78
  79/* Most compilers currently treat consume and acquire the same, but really
  80 * no processors except Alpha need a barrier here.  Leave it in if
  81 * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
  82 */
  83#if defined(__SANITIZE_THREAD__)
  84#define smp_read_barrier_depends()   ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
  85#elif defined(__alpha__)
  86#define smp_read_barrier_depends()   asm volatile("mb":::"memory")
  87#else
  88#define smp_read_barrier_depends()   barrier()
  89#endif
  90
  91/*
  92 * A signal barrier forces all pending local memory ops to be observed before
  93 * a SIGSEGV is delivered to the *same* thread.  In practice this is exactly
  94 * the same as barrier(), but since we have the correct builtin, use it.
  95 */
  96#define signal_barrier()    __atomic_signal_fence(__ATOMIC_SEQ_CST)
  97
  98/* Sanity check that the size of an atomic operation isn't "overly large".
  99 * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
 100 * want to use them because we ought not need them, and this lets us do a
 101 * bit of sanity checking that other 32-bit hosts might build.
 102 *
 103 * That said, we have a problem on 64-bit ILP32 hosts in that in order to
 104 * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
 105 * We'd prefer not want to pull in everything else TCG related, so handle
 106 * those few cases by hand.
 107 *
 108 * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
 109 * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) &
 110 * n64 (LP64) ABIs are both detected using __mips64.
 111 */
 112#if defined(__x86_64__) || defined(__sparc__) || defined(__mips64)
 113# define ATOMIC_REG_SIZE  8
 114#else
 115# define ATOMIC_REG_SIZE  sizeof(void *)
 116#endif
 117
 118/* Weak atomic operations prevent the compiler moving other
 119 * loads/stores past the atomic operation load/store. However there is
 120 * no explicit memory barrier for the processor.
 121 *
 122 * The C11 memory model says that variables that are accessed from
 123 * different threads should at least be done with __ATOMIC_RELAXED
 124 * primitives or the result is undefined. Generally this has little to
 125 * no effect on the generated code but not using the atomic primitives
 126 * will get flagged by sanitizers as a violation.
 127 */
 128#define atomic_read__nocheck(ptr) \
 129    __atomic_load_n(ptr, __ATOMIC_RELAXED)
 130
 131#define atomic_read(ptr)                              \
 132    ({                                                \
 133    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
 134    atomic_read__nocheck(ptr);                        \
 135    })
 136
 137#define atomic_set__nocheck(ptr, i) \
 138    __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
 139
 140#define atomic_set(ptr, i)  do {                      \
 141    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
 142    atomic_set__nocheck(ptr, i);                      \
 143} while(0)
 144
 145/* See above: most compilers currently treat consume and acquire the
 146 * same, but this slows down atomic_rcu_read unnecessarily.
 147 */
 148#ifdef __SANITIZE_THREAD__
 149#define atomic_rcu_read__nocheck(ptr, valptr)           \
 150    __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
 151#else
 152#define atomic_rcu_read__nocheck(ptr, valptr)           \
 153    __atomic_load(ptr, valptr, __ATOMIC_RELAXED);       \
 154    smp_read_barrier_depends();
 155#endif
 156
 157#define atomic_rcu_read(ptr)                          \
 158    ({                                                \
 159    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
 160    typeof_strip_qual(*ptr) _val;                     \
 161    atomic_rcu_read__nocheck(ptr, &_val);             \
 162    _val;                                             \
 163    })
 164
 165#define atomic_rcu_set(ptr, i) do {                   \
 166    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
 167    __atomic_store_n(ptr, i, __ATOMIC_RELEASE);       \
 168} while(0)
 169
 170#define atomic_load_acquire(ptr)                        \
 171    ({                                                  \
 172    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);  \
 173    typeof_strip_qual(*ptr) _val;                       \
 174    __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE);        \
 175    _val;                                               \
 176    })
 177
 178#define atomic_store_release(ptr, i)  do {              \
 179    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);  \
 180    __atomic_store_n(ptr, i, __ATOMIC_RELEASE);         \
 181} while(0)
 182
 183
 184/* All the remaining operations are fully sequentially consistent */
 185
 186#define atomic_xchg__nocheck(ptr, i)    ({                  \
 187    __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST);        \
 188})
 189
 190#define atomic_xchg(ptr, i)    ({                           \
 191    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);      \
 192    atomic_xchg__nocheck(ptr, i);                           \
 193})
 194
 195/* Returns the eventual value, failed or not */
 196#define atomic_cmpxchg__nocheck(ptr, old, new)    ({                    \
 197    typeof_strip_qual(*ptr) _old = (old);                               \
 198    (void)__atomic_compare_exchange_n(ptr, &_old, new, false,           \
 199                              __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);      \
 200    _old;                                                               \
 201})
 202
 203#define atomic_cmpxchg(ptr, old, new)    ({                             \
 204    QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);                  \
 205    atomic_cmpxchg__nocheck(ptr, old, new);                             \
 206})
 207
 208/* Provide shorter names for GCC atomic builtins, return old value */
 209#define atomic_fetch_inc(ptr)  __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
 210#define atomic_fetch_dec(ptr)  __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
 211#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
 212#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
 213#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
 214#define atomic_fetch_or(ptr, n)  __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
 215#define atomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
 216
 217#define atomic_inc_fetch(ptr)    __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
 218#define atomic_dec_fetch(ptr)    __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
 219#define atomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
 220#define atomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
 221#define atomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
 222#define atomic_or_fetch(ptr, n)  __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
 223#define atomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
 224
 225/* And even shorter names that return void.  */
 226#define atomic_inc(ptr)    ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
 227#define atomic_dec(ptr)    ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
 228#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
 229#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
 230#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
 231#define atomic_or(ptr, n)  ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
 232#define atomic_xor(ptr, n) ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
 233
 234#else /* __ATOMIC_RELAXED */
 235
 236/*
 237 * We use GCC builtin if it's available, as that can use mfence on
 238 * 32-bit as well, e.g. if built with -march=pentium-m. However, on
 239 * i386 the spec is buggy, and the implementation followed it until
 240 * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
 241 */
 242#if defined(__i386__) || defined(__x86_64__)
 243#if !QEMU_GNUC_PREREQ(4, 4)
 244#if defined __x86_64__
 245#define smp_mb()    ({ asm volatile("mfence" ::: "memory"); (void)0; })
 246#else
 247#define smp_mb()    ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
 248#endif
 249#endif
 250#endif
 251
 252
 253#ifdef __alpha__
 254#define smp_read_barrier_depends()   asm volatile("mb":::"memory")
 255#endif
 256
 257#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
 258
 259/*
 260 * Because of the strongly ordered storage model, wmb() and rmb() are nops
 261 * here (a compiler barrier only).  QEMU doesn't do accesses to write-combining
 262 * qemu memory or non-temporal load/stores from C code.
 263 */
 264#define smp_mb_release()   barrier()
 265#define smp_mb_acquire()   barrier()
 266
 267/*
 268 * __sync_lock_test_and_set() is documented to be an acquire barrier only,
 269 * but it is a full barrier at the hardware level.  Add a compiler barrier
 270 * to make it a full barrier also at the compiler level.
 271 */
 272#define atomic_xchg(ptr, i)    (barrier(), __sync_lock_test_and_set(ptr, i))
 273
 274#elif defined(_ARCH_PPC)
 275
 276/*
 277 * We use an eieio() for wmb() on powerpc.  This assumes we don't
 278 * need to order cacheable and non-cacheable stores with respect to
 279 * each other.
 280 *
 281 * smp_mb has the same problem as on x86 for not-very-new GCC
 282 * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
 283 */
 284#define smp_wmb()          ({ asm volatile("eieio" ::: "memory"); (void)0; })
 285#if defined(__powerpc64__)
 286#define smp_mb_release()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
 287#define smp_mb_acquire()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
 288#else
 289#define smp_mb_release()   ({ asm volatile("sync" ::: "memory"); (void)0; })
 290#define smp_mb_acquire()   ({ asm volatile("sync" ::: "memory"); (void)0; })
 291#endif
 292#define smp_mb()           ({ asm volatile("sync" ::: "memory"); (void)0; })
 293
 294#endif /* _ARCH_PPC */
 295
 296/*
 297 * For (host) platforms we don't have explicit barrier definitions
 298 * for, we use the gcc __sync_synchronize() primitive to generate a
 299 * full barrier.  This should be safe on all platforms, though it may
 300 * be overkill for smp_mb_acquire() and smp_mb_release().
 301 */
 302#ifndef smp_mb
 303#define smp_mb()           __sync_synchronize()
 304#endif
 305
 306#ifndef smp_mb_acquire
 307#define smp_mb_acquire()   __sync_synchronize()
 308#endif
 309
 310#ifndef smp_mb_release
 311#define smp_mb_release()   __sync_synchronize()
 312#endif
 313
 314#ifndef smp_read_barrier_depends
 315#define smp_read_barrier_depends()   barrier()
 316#endif
 317
 318#ifndef signal_barrier
 319#define signal_barrier()    barrier()
 320#endif
 321
 322/* These will only be atomic if the processor does the fetch or store
 323 * in a single issue memory operation
 324 */
 325#define atomic_read__nocheck(p)   (*(__typeof__(*(p)) volatile*) (p))
 326#define atomic_set__nocheck(p, i) ((*(__typeof__(*(p)) volatile*) (p)) = (i))
 327
 328#define atomic_read(ptr)       atomic_read__nocheck(ptr)
 329#define atomic_set(ptr, i)     atomic_set__nocheck(ptr,i)
 330
 331/**
 332 * atomic_rcu_read - reads a RCU-protected pointer to a local variable
 333 * into a RCU read-side critical section. The pointer can later be safely
 334 * dereferenced within the critical section.
 335 *
 336 * This ensures that the pointer copy is invariant thorough the whole critical
 337 * section.
 338 *
 339 * Inserts memory barriers on architectures that require them (currently only
 340 * Alpha) and documents which pointers are protected by RCU.
 341 *
 342 * atomic_rcu_read also includes a compiler barrier to ensure that
 343 * value-speculative optimizations (e.g. VSS: Value Speculation
 344 * Scheduling) does not perform the data read before the pointer read
 345 * by speculating the value of the pointer.
 346 *
 347 * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
 348 */
 349#define atomic_rcu_read(ptr)    ({                \
 350    typeof(*ptr) _val = atomic_read(ptr);         \
 351    smp_read_barrier_depends();                   \
 352    _val;                                         \
 353})
 354
 355/**
 356 * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
 357 * meant to be read by RCU read-side critical sections.
 358 *
 359 * Documents which pointers will be dereferenced by RCU read-side critical
 360 * sections and adds the required memory barriers on architectures requiring
 361 * them. It also makes sure the compiler does not reorder code initializing the
 362 * data structure before its publication.
 363 *
 364 * Should match atomic_rcu_read().
 365 */
 366#define atomic_rcu_set(ptr, i)  do {              \
 367    smp_wmb();                                    \
 368    atomic_set(ptr, i);                           \
 369} while (0)
 370
 371#define atomic_load_acquire(ptr)    ({      \
 372    typeof(*ptr) _val = atomic_read(ptr);   \
 373    smp_mb_acquire();                       \
 374    _val;                                   \
 375})
 376
 377#define atomic_store_release(ptr, i)  do {  \
 378    smp_mb_release();                       \
 379    atomic_set(ptr, i);                     \
 380} while (0)
 381
 382#ifndef atomic_xchg
 383#if defined(__clang__)
 384#define atomic_xchg(ptr, i)    __sync_swap(ptr, i)
 385#else
 386/* __sync_lock_test_and_set() is documented to be an acquire barrier only.  */
 387#define atomic_xchg(ptr, i)    (smp_mb(), __sync_lock_test_and_set(ptr, i))
 388#endif
 389#endif
 390#define atomic_xchg__nocheck  atomic_xchg
 391
 392/* Provide shorter names for GCC atomic builtins.  */
 393#define atomic_fetch_inc(ptr)  __sync_fetch_and_add(ptr, 1)
 394#define atomic_fetch_dec(ptr)  __sync_fetch_and_add(ptr, -1)
 395#define atomic_fetch_add(ptr, n) __sync_fetch_and_add(ptr, n)
 396#define atomic_fetch_sub(ptr, n) __sync_fetch_and_sub(ptr, n)
 397#define atomic_fetch_and(ptr, n) __sync_fetch_and_and(ptr, n)
 398#define atomic_fetch_or(ptr, n) __sync_fetch_and_or(ptr, n)
 399#define atomic_fetch_xor(ptr, n) __sync_fetch_and_xor(ptr, n)
 400
 401#define atomic_inc_fetch(ptr)  __sync_add_and_fetch(ptr, 1)
 402#define atomic_dec_fetch(ptr)  __sync_add_and_fetch(ptr, -1)
 403#define atomic_add_fetch(ptr, n) __sync_add_and_fetch(ptr, n)
 404#define atomic_sub_fetch(ptr, n) __sync_sub_and_fetch(ptr, n)
 405#define atomic_and_fetch(ptr, n) __sync_and_and_fetch(ptr, n)
 406#define atomic_or_fetch(ptr, n) __sync_or_and_fetch(ptr, n)
 407#define atomic_xor_fetch(ptr, n) __sync_xor_and_fetch(ptr, n)
 408
 409#define atomic_cmpxchg(ptr, old, new) __sync_val_compare_and_swap(ptr, old, new)
 410#define atomic_cmpxchg__nocheck(ptr, old, new)  atomic_cmpxchg(ptr, old, new)
 411
 412/* And even shorter names that return void.  */
 413#define atomic_inc(ptr)        ((void) __sync_fetch_and_add(ptr, 1))
 414#define atomic_dec(ptr)        ((void) __sync_fetch_and_add(ptr, -1))
 415#define atomic_add(ptr, n)     ((void) __sync_fetch_and_add(ptr, n))
 416#define atomic_sub(ptr, n)     ((void) __sync_fetch_and_sub(ptr, n))
 417#define atomic_and(ptr, n)     ((void) __sync_fetch_and_and(ptr, n))
 418#define atomic_or(ptr, n)      ((void) __sync_fetch_and_or(ptr, n))
 419#define atomic_xor(ptr, n)     ((void) __sync_fetch_and_xor(ptr, n))
 420
 421#endif /* __ATOMIC_RELAXED */
 422
 423#ifndef smp_wmb
 424#define smp_wmb()   smp_mb_release()
 425#endif
 426#ifndef smp_rmb
 427#define smp_rmb()   smp_mb_acquire()
 428#endif
 429
 430/* This is more efficient than a store plus a fence.  */
 431#if !defined(__SANITIZE_THREAD__)
 432#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
 433#define atomic_mb_set(ptr, i)  ((void)atomic_xchg(ptr, i))
 434#endif
 435#endif
 436
 437/* atomic_mb_read/set semantics map Java volatile variables. They are
 438 * less expensive on some platforms (notably POWER) than fully
 439 * sequentially consistent operations.
 440 *
 441 * As long as they are used as paired operations they are safe to
 442 * use. See docs/devel/atomics.txt for more discussion.
 443 */
 444
 445#ifndef atomic_mb_read
 446#define atomic_mb_read(ptr)                             \
 447    atomic_load_acquire(ptr)
 448#endif
 449
 450#ifndef atomic_mb_set
 451#define atomic_mb_set(ptr, i)  do {                     \
 452    atomic_store_release(ptr, i);                       \
 453    smp_mb();                                           \
 454} while(0)
 455#endif
 456
 457#define atomic_fetch_inc_nonzero(ptr) ({                                \
 458    typeof_strip_qual(*ptr) _oldn = atomic_read(ptr);                   \
 459    while (_oldn && atomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) {   \
 460        _oldn = atomic_read(ptr);                                       \
 461    }                                                                   \
 462    _oldn;                                                              \
 463})
 464
 465/* Abstractions to access atomically (i.e. "once") i64/u64 variables */
 466#ifdef CONFIG_ATOMIC64
 467static inline int64_t atomic_read_i64(const int64_t *ptr)
 468{
 469    /* use __nocheck because sizeof(void *) might be < sizeof(u64) */
 470    return atomic_read__nocheck(ptr);
 471}
 472
 473static inline uint64_t atomic_read_u64(const uint64_t *ptr)
 474{
 475    return atomic_read__nocheck(ptr);
 476}
 477
 478static inline void atomic_set_i64(int64_t *ptr, int64_t val)
 479{
 480    atomic_set__nocheck(ptr, val);
 481}
 482
 483static inline void atomic_set_u64(uint64_t *ptr, uint64_t val)
 484{
 485    atomic_set__nocheck(ptr, val);
 486}
 487
 488static inline void atomic64_init(void)
 489{
 490}
 491#else /* !CONFIG_ATOMIC64 */
 492int64_t  atomic_read_i64(const int64_t *ptr);
 493uint64_t atomic_read_u64(const uint64_t *ptr);
 494void atomic_set_i64(int64_t *ptr, int64_t val);
 495void atomic_set_u64(uint64_t *ptr, uint64_t val);
 496void atomic64_init(void);
 497#endif /* !CONFIG_ATOMIC64 */
 498
 499#endif /* QEMU_ATOMIC_H */
 500