qemu/include/qom/cpu.h
<<
>>
Prefs
   1/*
   2 * QEMU CPU model
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20#ifndef QEMU_CPU_H
  21#define QEMU_CPU_H
  22
  23#include "hw/qdev-core.h"
  24#include "disas/dis-asm.h"
  25#include "exec/hwaddr.h"
  26#include "exec/memattrs.h"
  27#include "qapi/qapi-types-run-state.h"
  28#include "qemu/bitmap.h"
  29#include "qemu/rcu_queue.h"
  30#include "qemu/queue.h"
  31#include "qemu/thread.h"
  32
  33typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
  34                                     void *opaque);
  35
  36/**
  37 * vaddr:
  38 * Type wide enough to contain any #target_ulong virtual address.
  39 */
  40typedef uint64_t vaddr;
  41#define VADDR_PRId PRId64
  42#define VADDR_PRIu PRIu64
  43#define VADDR_PRIo PRIo64
  44#define VADDR_PRIx PRIx64
  45#define VADDR_PRIX PRIX64
  46#define VADDR_MAX UINT64_MAX
  47
  48/**
  49 * SECTION:cpu
  50 * @section_id: QEMU-cpu
  51 * @title: CPU Class
  52 * @short_description: Base class for all CPUs
  53 */
  54
  55#define TYPE_CPU "cpu"
  56
  57/* Since this macro is used a lot in hot code paths and in conjunction with
  58 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
  59 * an unchecked cast.
  60 */
  61#define CPU(obj) ((CPUState *)(obj))
  62
  63#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
  64#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
  65
  66typedef enum MMUAccessType {
  67    MMU_DATA_LOAD  = 0,
  68    MMU_DATA_STORE = 1,
  69    MMU_INST_FETCH = 2
  70} MMUAccessType;
  71
  72typedef struct CPUWatchpoint CPUWatchpoint;
  73
  74typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
  75                                    bool is_write, bool is_exec, int opaque,
  76                                    unsigned size);
  77
  78struct TranslationBlock;
  79
  80/**
  81 * CPUClass:
  82 * @class_by_name: Callback to map -cpu command line model name to an
  83 * instantiatable CPU type.
  84 * @parse_features: Callback to parse command line arguments.
  85 * @reset: Callback to reset the #CPUState to its initial state.
  86 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
  87 * @has_work: Callback for checking if there is work to do.
  88 * @do_interrupt: Callback for interrupt handling.
  89 * @do_unassigned_access: Callback for unassigned access handling.
  90 * (this is deprecated: new targets should use do_transaction_failed instead)
  91 * @do_unaligned_access: Callback for unaligned access handling, if
  92 * the target defines #ALIGNED_ONLY.
  93 * @do_transaction_failed: Callback for handling failed memory transactions
  94 * (ie bus faults or external aborts; not MMU faults)
  95 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
  96 * runtime configurable endianness is currently big-endian. Non-configurable
  97 * CPUs can use the default implementation of this method. This method should
  98 * not be used by any callers other than the pre-1.0 virtio devices.
  99 * @memory_rw_debug: Callback for GDB memory access.
 100 * @dump_state: Callback for dumping state.
 101 * @dump_statistics: Callback for dumping statistics.
 102 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
 103 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
 104 * @get_memory_mapping: Callback for obtaining the memory mappings.
 105 * @set_pc: Callback for setting the Program Counter register. This
 106 *       should have the semantics used by the target architecture when
 107 *       setting the PC from a source such as an ELF file entry point;
 108 *       for example on Arm it will also set the Thumb mode bit based
 109 *       on the least significant bit of the new PC value.
 110 *       If the target behaviour here is anything other than "set
 111 *       the PC register to the value passed in" then the target must
 112 *       also implement the synchronize_from_tb hook.
 113 * @synchronize_from_tb: Callback for synchronizing state from a TCG
 114 *       #TranslationBlock. This is called when we abandon execution
 115 *       of a TB before starting it, and must set all parts of the CPU
 116 *       state which the previous TB in the chain may not have updated.
 117 *       This always includes at least the program counter; some targets
 118 *       will need to do more. If this hook is not implemented then the
 119 *       default is to call @set_pc(tb->pc).
 120 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
 121 *       address fault.  For system mode, if the access is valid, call
 122 *       tlb_set_page and return true; if the access is invalid, and
 123 *       probe is true, return false; otherwise raise an exception and
 124 *       do not return.  For user-only mode, always raise an exception
 125 *       and do not return.
 126 * @get_phys_page_debug: Callback for obtaining a physical address.
 127 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
 128 *       associated memory transaction attributes to use for the access.
 129 *       CPUs which use memory transaction attributes should implement this
 130 *       instead of get_phys_page_debug.
 131 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
 132 *       a memory access with the specified memory transaction attributes.
 133 * @gdb_read_register: Callback for letting GDB read a register.
 134 * @gdb_write_register: Callback for letting GDB write a register.
 135 * @debug_check_watchpoint: Callback: return true if the architectural
 136 *       watchpoint whose address has matched should really fire.
 137 * @debug_excp_handler: Callback for handling debug exceptions.
 138 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
 139 * 64-bit VM coredump.
 140 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 141 * note to a 32-bit VM coredump.
 142 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
 143 * 32-bit VM coredump.
 144 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 145 * note to a 32-bit VM coredump.
 146 * @vmsd: State description for migration.
 147 * @gdb_num_core_regs: Number of core registers accessible to GDB.
 148 * @gdb_core_xml_file: File name for core registers GDB XML description.
 149 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
 150 *           before the insn which triggers a watchpoint rather than after it.
 151 * @gdb_arch_name: Optional callback that returns the architecture name known
 152 * to GDB. The caller must free the returned string with g_free.
 153 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
 154 *   gdb stub. Returns a pointer to the XML contents for the specified XML file
 155 *   or NULL if the CPU doesn't have a dynamically generated content for it.
 156 * @cpu_exec_enter: Callback for cpu_exec preparation.
 157 * @cpu_exec_exit: Callback for cpu_exec cleanup.
 158 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
 159 * @disas_set_info: Setup architecture specific components of disassembly info
 160 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
 161 * address before attempting to match it against watchpoints.
 162 *
 163 * Represents a CPU family or model.
 164 */
 165typedef struct CPUClass {
 166    /*< private >*/
 167    DeviceClass parent_class;
 168    /*< public >*/
 169
 170    ObjectClass *(*class_by_name)(const char *cpu_model);
 171    void (*parse_features)(const char *typename, char *str, Error **errp);
 172
 173    void (*reset)(CPUState *cpu);
 174    int reset_dump_flags;
 175    bool (*has_work)(CPUState *cpu);
 176    void (*do_interrupt)(CPUState *cpu);
 177    CPUUnassignedAccess do_unassigned_access;
 178    void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
 179                                MMUAccessType access_type,
 180                                int mmu_idx, uintptr_t retaddr);
 181    void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
 182                                  unsigned size, MMUAccessType access_type,
 183                                  int mmu_idx, MemTxAttrs attrs,
 184                                  MemTxResult response, uintptr_t retaddr);
 185    bool (*virtio_is_big_endian)(CPUState *cpu);
 186    int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
 187                           uint8_t *buf, int len, bool is_write);
 188    void (*dump_state)(CPUState *cpu, FILE *, int flags);
 189    GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
 190    void (*dump_statistics)(CPUState *cpu, int flags);
 191    int64_t (*get_arch_id)(CPUState *cpu);
 192    bool (*get_paging_enabled)(const CPUState *cpu);
 193    void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
 194                               Error **errp);
 195    void (*set_pc)(CPUState *cpu, vaddr value);
 196    void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
 197    bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
 198                     MMUAccessType access_type, int mmu_idx,
 199                     bool probe, uintptr_t retaddr);
 200    hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
 201    hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
 202                                        MemTxAttrs *attrs);
 203    int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
 204    int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
 205    int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
 206    bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
 207    void (*debug_excp_handler)(CPUState *cpu);
 208
 209    int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
 210                            int cpuid, void *opaque);
 211    int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 212                                void *opaque);
 213    int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
 214                            int cpuid, void *opaque);
 215    int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 216                                void *opaque);
 217
 218    const struct VMStateDescription *vmsd;
 219    const char *gdb_core_xml_file;
 220    gchar * (*gdb_arch_name)(CPUState *cpu);
 221    const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
 222    void (*cpu_exec_enter)(CPUState *cpu);
 223    void (*cpu_exec_exit)(CPUState *cpu);
 224    bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
 225
 226    void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
 227    vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
 228    void (*tcg_initialize)(void);
 229
 230    /* Keep non-pointer data at the end to minimize holes.  */
 231    int gdb_num_core_regs;
 232    bool gdb_stop_before_watchpoint;
 233} CPUClass;
 234
 235/*
 236 * Low 16 bits: number of cycles left, used only in icount mode.
 237 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
 238 * for this CPU and return to its top level loop (even in non-icount mode).
 239 * This allows a single read-compare-cbranch-write sequence to test
 240 * for both decrementer underflow and exceptions.
 241 */
 242typedef union IcountDecr {
 243    uint32_t u32;
 244    struct {
 245#ifdef HOST_WORDS_BIGENDIAN
 246        uint16_t high;
 247        uint16_t low;
 248#else
 249        uint16_t low;
 250        uint16_t high;
 251#endif
 252    } u16;
 253} IcountDecr;
 254
 255typedef struct CPUBreakpoint {
 256    vaddr pc;
 257    int flags; /* BP_* */
 258    QTAILQ_ENTRY(CPUBreakpoint) entry;
 259} CPUBreakpoint;
 260
 261struct CPUWatchpoint {
 262    vaddr vaddr;
 263    vaddr len;
 264    vaddr hitaddr;
 265    MemTxAttrs hitattrs;
 266    int flags; /* BP_* */
 267    QTAILQ_ENTRY(CPUWatchpoint) entry;
 268};
 269
 270struct KVMState;
 271struct kvm_run;
 272
 273struct hax_vcpu_state;
 274
 275#define TB_JMP_CACHE_BITS 12
 276#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
 277
 278/* work queue */
 279
 280/* The union type allows passing of 64 bit target pointers on 32 bit
 281 * hosts in a single parameter
 282 */
 283typedef union {
 284    int           host_int;
 285    unsigned long host_ulong;
 286    void         *host_ptr;
 287    vaddr         target_ptr;
 288} run_on_cpu_data;
 289
 290#define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
 291#define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
 292#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
 293#define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
 294#define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
 295
 296typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
 297
 298struct qemu_work_item;
 299
 300#define CPU_UNSET_NUMA_NODE_ID -1
 301#define CPU_TRACE_DSTATE_MAX_EVENTS 32
 302
 303/**
 304 * CPUState:
 305 * @cpu_index: CPU index (informative).
 306 * @cluster_index: Identifies which cluster this CPU is in.
 307 *   For boards which don't define clusters or for "loose" CPUs not assigned
 308 *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
 309 *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
 310 *   QOM parent.
 311 * @nr_cores: Number of cores within this CPU package.
 312 * @nr_threads: Number of threads within this CPU.
 313 * @running: #true if CPU is currently running (lockless).
 314 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
 315 * valid under cpu_list_lock.
 316 * @created: Indicates whether the CPU thread has been successfully created.
 317 * @interrupt_request: Indicates a pending interrupt request.
 318 * @halted: Nonzero if the CPU is in suspended state.
 319 * @stop: Indicates a pending stop request.
 320 * @stopped: Indicates the CPU has been artificially stopped.
 321 * @unplug: Indicates a pending CPU unplug request.
 322 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
 323 * @singlestep_enabled: Flags for single-stepping.
 324 * @icount_extra: Instructions until next timer event.
 325 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
 326 * requires that IO only be performed on the last instruction of a TB
 327 * so that interrupts take effect immediately.
 328 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
 329 *            AddressSpaces this CPU has)
 330 * @num_ases: number of CPUAddressSpaces in @cpu_ases
 331 * @as: Pointer to the first AddressSpace, for the convenience of targets which
 332 *      only have a single AddressSpace
 333 * @env_ptr: Pointer to subclass-specific CPUArchState field.
 334 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
 335 * @gdb_regs: Additional GDB registers.
 336 * @gdb_num_regs: Number of total registers accessible to GDB.
 337 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
 338 * @next_cpu: Next CPU sharing TB cache.
 339 * @opaque: User data.
 340 * @mem_io_pc: Host Program Counter at which the memory was accessed.
 341 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
 342 * @kvm_fd: vCPU file descriptor for KVM.
 343 * @work_mutex: Lock to prevent multiple access to queued_work_*.
 344 * @queued_work_first: First asynchronous work pending.
 345 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
 346 *                        to @trace_dstate).
 347 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
 348 * @ignore_memory_transaction_failures: Cached copy of the MachineState
 349 *    flag of the same name: allows the board to suppress calling of the
 350 *    CPU do_transaction_failed hook function.
 351 *
 352 * State of one CPU core or thread.
 353 */
 354struct CPUState {
 355    /*< private >*/
 356    DeviceState parent_obj;
 357    /*< public >*/
 358
 359    int nr_cores;
 360    int nr_threads;
 361
 362    struct QemuThread *thread;
 363#ifdef _WIN32
 364    HANDLE hThread;
 365#endif
 366    int thread_id;
 367    bool running, has_waiter;
 368    struct QemuCond *halt_cond;
 369    bool thread_kicked;
 370    bool created;
 371    bool stop;
 372    bool stopped;
 373    bool unplug;
 374    bool crash_occurred;
 375    bool exit_request;
 376    uint32_t cflags_next_tb;
 377    /* updates protected by BQL */
 378    uint32_t interrupt_request;
 379    int singlestep_enabled;
 380    int64_t icount_budget;
 381    int64_t icount_extra;
 382    uint64_t random_seed;
 383    sigjmp_buf jmp_env;
 384
 385    QemuMutex work_mutex;
 386    struct qemu_work_item *queued_work_first, *queued_work_last;
 387
 388    CPUAddressSpace *cpu_ases;
 389    int num_ases;
 390    AddressSpace *as;
 391    MemoryRegion *memory;
 392
 393    void *env_ptr; /* CPUArchState */
 394    IcountDecr *icount_decr_ptr;
 395
 396    /* Accessed in parallel; all accesses must be atomic */
 397    struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
 398
 399    struct GDBRegisterState *gdb_regs;
 400    int gdb_num_regs;
 401    int gdb_num_g_regs;
 402    QTAILQ_ENTRY(CPUState) node;
 403
 404    /* ice debug support */
 405    QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
 406
 407    QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
 408    CPUWatchpoint *watchpoint_hit;
 409
 410    void *opaque;
 411
 412    /* In order to avoid passing too many arguments to the MMIO helpers,
 413     * we store some rarely used information in the CPU context.
 414     */
 415    uintptr_t mem_io_pc;
 416    vaddr mem_io_vaddr;
 417    /*
 418     * This is only needed for the legacy cpu_unassigned_access() hook;
 419     * when all targets using it have been converted to use
 420     * cpu_transaction_failed() instead it can be removed.
 421     */
 422    MMUAccessType mem_io_access_type;
 423
 424    int kvm_fd;
 425    struct KVMState *kvm_state;
 426    struct kvm_run *kvm_run;
 427
 428    /* Used for events with 'vcpu' and *without* the 'disabled' properties */
 429    DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
 430    DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
 431
 432    /* TODO Move common fields from CPUArchState here. */
 433    int cpu_index;
 434    int cluster_index;
 435    uint32_t halted;
 436    uint32_t can_do_io;
 437    int32_t exception_index;
 438
 439    /* shared by kvm, hax and hvf */
 440    bool vcpu_dirty;
 441
 442    /* Used to keep track of an outstanding cpu throttle thread for migration
 443     * autoconverge
 444     */
 445    bool throttle_thread_scheduled;
 446
 447    bool ignore_memory_transaction_failures;
 448
 449    struct hax_vcpu_state *hax_vcpu;
 450
 451    int hvf_fd;
 452
 453    /* track IOMMUs whose translations we've cached in the TCG TLB */
 454    GArray *iommu_notifiers;
 455};
 456
 457typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
 458extern CPUTailQ cpus;
 459
 460#define first_cpu        QTAILQ_FIRST_RCU(&cpus)
 461#define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
 462#define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
 463#define CPU_FOREACH_SAFE(cpu, next_cpu) \
 464    QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
 465
 466extern __thread CPUState *current_cpu;
 467
 468static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
 469{
 470    unsigned int i;
 471
 472    for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
 473        atomic_set(&cpu->tb_jmp_cache[i], NULL);
 474    }
 475}
 476
 477/**
 478 * qemu_tcg_mttcg_enabled:
 479 * Check whether we are running MultiThread TCG or not.
 480 *
 481 * Returns: %true if we are in MTTCG mode %false otherwise.
 482 */
 483extern bool mttcg_enabled;
 484#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
 485
 486/**
 487 * cpu_paging_enabled:
 488 * @cpu: The CPU whose state is to be inspected.
 489 *
 490 * Returns: %true if paging is enabled, %false otherwise.
 491 */
 492bool cpu_paging_enabled(const CPUState *cpu);
 493
 494/**
 495 * cpu_get_memory_mapping:
 496 * @cpu: The CPU whose memory mappings are to be obtained.
 497 * @list: Where to write the memory mappings to.
 498 * @errp: Pointer for reporting an #Error.
 499 */
 500void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
 501                            Error **errp);
 502
 503/**
 504 * cpu_write_elf64_note:
 505 * @f: pointer to a function that writes memory to a file
 506 * @cpu: The CPU whose memory is to be dumped
 507 * @cpuid: ID number of the CPU
 508 * @opaque: pointer to the CPUState struct
 509 */
 510int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
 511                         int cpuid, void *opaque);
 512
 513/**
 514 * cpu_write_elf64_qemunote:
 515 * @f: pointer to a function that writes memory to a file
 516 * @cpu: The CPU whose memory is to be dumped
 517 * @cpuid: ID number of the CPU
 518 * @opaque: pointer to the CPUState struct
 519 */
 520int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 521                             void *opaque);
 522
 523/**
 524 * cpu_write_elf32_note:
 525 * @f: pointer to a function that writes memory to a file
 526 * @cpu: The CPU whose memory is to be dumped
 527 * @cpuid: ID number of the CPU
 528 * @opaque: pointer to the CPUState struct
 529 */
 530int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
 531                         int cpuid, void *opaque);
 532
 533/**
 534 * cpu_write_elf32_qemunote:
 535 * @f: pointer to a function that writes memory to a file
 536 * @cpu: The CPU whose memory is to be dumped
 537 * @cpuid: ID number of the CPU
 538 * @opaque: pointer to the CPUState struct
 539 */
 540int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 541                             void *opaque);
 542
 543/**
 544 * cpu_get_crash_info:
 545 * @cpu: The CPU to get crash information for
 546 *
 547 * Gets the previously saved crash information.
 548 * Caller is responsible for freeing the data.
 549 */
 550GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
 551
 552/**
 553 * CPUDumpFlags:
 554 * @CPU_DUMP_CODE:
 555 * @CPU_DUMP_FPU: dump FPU register state, not just integer
 556 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
 557 */
 558enum CPUDumpFlags {
 559    CPU_DUMP_CODE = 0x00010000,
 560    CPU_DUMP_FPU  = 0x00020000,
 561    CPU_DUMP_CCOP = 0x00040000,
 562};
 563
 564/**
 565 * cpu_dump_state:
 566 * @cpu: The CPU whose state is to be dumped.
 567 * @f: If non-null, dump to this stream, else to current print sink.
 568 *
 569 * Dumps CPU state.
 570 */
 571void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
 572
 573/**
 574 * cpu_dump_statistics:
 575 * @cpu: The CPU whose state is to be dumped.
 576 * @flags: Flags what to dump.
 577 *
 578 * Dump CPU statistics to the current monitor if we have one, else to
 579 * stdout.
 580 */
 581void cpu_dump_statistics(CPUState *cpu, int flags);
 582
 583#ifndef CONFIG_USER_ONLY
 584/**
 585 * cpu_get_phys_page_attrs_debug:
 586 * @cpu: The CPU to obtain the physical page address for.
 587 * @addr: The virtual address.
 588 * @attrs: Updated on return with the memory transaction attributes to use
 589 *         for this access.
 590 *
 591 * Obtains the physical page corresponding to a virtual one, together
 592 * with the corresponding memory transaction attributes to use for the access.
 593 * Use it only for debugging because no protection checks are done.
 594 *
 595 * Returns: Corresponding physical page address or -1 if no page found.
 596 */
 597static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 598                                                   MemTxAttrs *attrs)
 599{
 600    CPUClass *cc = CPU_GET_CLASS(cpu);
 601
 602    if (cc->get_phys_page_attrs_debug) {
 603        return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
 604    }
 605    /* Fallback for CPUs which don't implement the _attrs_ hook */
 606    *attrs = MEMTXATTRS_UNSPECIFIED;
 607    return cc->get_phys_page_debug(cpu, addr);
 608}
 609
 610/**
 611 * cpu_get_phys_page_debug:
 612 * @cpu: The CPU to obtain the physical page address for.
 613 * @addr: The virtual address.
 614 *
 615 * Obtains the physical page corresponding to a virtual one.
 616 * Use it only for debugging because no protection checks are done.
 617 *
 618 * Returns: Corresponding physical page address or -1 if no page found.
 619 */
 620static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
 621{
 622    MemTxAttrs attrs = {};
 623
 624    return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
 625}
 626
 627/** cpu_asidx_from_attrs:
 628 * @cpu: CPU
 629 * @attrs: memory transaction attributes
 630 *
 631 * Returns the address space index specifying the CPU AddressSpace
 632 * to use for a memory access with the given transaction attributes.
 633 */
 634static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
 635{
 636    CPUClass *cc = CPU_GET_CLASS(cpu);
 637    int ret = 0;
 638
 639    if (cc->asidx_from_attrs) {
 640        ret = cc->asidx_from_attrs(cpu, attrs);
 641        assert(ret < cpu->num_ases && ret >= 0);
 642    }
 643    return ret;
 644}
 645#endif
 646
 647/**
 648 * cpu_list_add:
 649 * @cpu: The CPU to be added to the list of CPUs.
 650 */
 651void cpu_list_add(CPUState *cpu);
 652
 653/**
 654 * cpu_list_remove:
 655 * @cpu: The CPU to be removed from the list of CPUs.
 656 */
 657void cpu_list_remove(CPUState *cpu);
 658
 659/**
 660 * cpu_reset:
 661 * @cpu: The CPU whose state is to be reset.
 662 */
 663void cpu_reset(CPUState *cpu);
 664
 665/**
 666 * cpu_class_by_name:
 667 * @typename: The CPU base type.
 668 * @cpu_model: The model string without any parameters.
 669 *
 670 * Looks up a CPU #ObjectClass matching name @cpu_model.
 671 *
 672 * Returns: A #CPUClass or %NULL if not matching class is found.
 673 */
 674ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
 675
 676/**
 677 * cpu_create:
 678 * @typename: The CPU type.
 679 *
 680 * Instantiates a CPU and realizes the CPU.
 681 *
 682 * Returns: A #CPUState or %NULL if an error occurred.
 683 */
 684CPUState *cpu_create(const char *typename);
 685
 686/**
 687 * parse_cpu_option:
 688 * @cpu_option: The -cpu option including optional parameters.
 689 *
 690 * processes optional parameters and registers them as global properties
 691 *
 692 * Returns: type of CPU to create or prints error and terminates process
 693 *          if an error occurred.
 694 */
 695const char *parse_cpu_option(const char *cpu_option);
 696
 697/**
 698 * cpu_has_work:
 699 * @cpu: The vCPU to check.
 700 *
 701 * Checks whether the CPU has work to do.
 702 *
 703 * Returns: %true if the CPU has work, %false otherwise.
 704 */
 705static inline bool cpu_has_work(CPUState *cpu)
 706{
 707    CPUClass *cc = CPU_GET_CLASS(cpu);
 708
 709    g_assert(cc->has_work);
 710    return cc->has_work(cpu);
 711}
 712
 713/**
 714 * qemu_cpu_is_self:
 715 * @cpu: The vCPU to check against.
 716 *
 717 * Checks whether the caller is executing on the vCPU thread.
 718 *
 719 * Returns: %true if called from @cpu's thread, %false otherwise.
 720 */
 721bool qemu_cpu_is_self(CPUState *cpu);
 722
 723/**
 724 * qemu_cpu_kick:
 725 * @cpu: The vCPU to kick.
 726 *
 727 * Kicks @cpu's thread.
 728 */
 729void qemu_cpu_kick(CPUState *cpu);
 730
 731/**
 732 * cpu_is_stopped:
 733 * @cpu: The CPU to check.
 734 *
 735 * Checks whether the CPU is stopped.
 736 *
 737 * Returns: %true if run state is not running or if artificially stopped;
 738 * %false otherwise.
 739 */
 740bool cpu_is_stopped(CPUState *cpu);
 741
 742/**
 743 * do_run_on_cpu:
 744 * @cpu: The vCPU to run on.
 745 * @func: The function to be executed.
 746 * @data: Data to pass to the function.
 747 * @mutex: Mutex to release while waiting for @func to run.
 748 *
 749 * Used internally in the implementation of run_on_cpu.
 750 */
 751void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 752                   QemuMutex *mutex);
 753
 754/**
 755 * run_on_cpu:
 756 * @cpu: The vCPU to run on.
 757 * @func: The function to be executed.
 758 * @data: Data to pass to the function.
 759 *
 760 * Schedules the function @func for execution on the vCPU @cpu.
 761 */
 762void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 763
 764/**
 765 * async_run_on_cpu:
 766 * @cpu: The vCPU to run on.
 767 * @func: The function to be executed.
 768 * @data: Data to pass to the function.
 769 *
 770 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
 771 */
 772void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 773
 774/**
 775 * async_safe_run_on_cpu:
 776 * @cpu: The vCPU to run on.
 777 * @func: The function to be executed.
 778 * @data: Data to pass to the function.
 779 *
 780 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
 781 * while all other vCPUs are sleeping.
 782 *
 783 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
 784 * BQL.
 785 */
 786void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 787
 788/**
 789 * qemu_get_cpu:
 790 * @index: The CPUState@cpu_index value of the CPU to obtain.
 791 *
 792 * Gets a CPU matching @index.
 793 *
 794 * Returns: The CPU or %NULL if there is no matching CPU.
 795 */
 796CPUState *qemu_get_cpu(int index);
 797
 798/**
 799 * cpu_exists:
 800 * @id: Guest-exposed CPU ID to lookup.
 801 *
 802 * Search for CPU with specified ID.
 803 *
 804 * Returns: %true - CPU is found, %false - CPU isn't found.
 805 */
 806bool cpu_exists(int64_t id);
 807
 808/**
 809 * cpu_by_arch_id:
 810 * @id: Guest-exposed CPU ID of the CPU to obtain.
 811 *
 812 * Get a CPU with matching @id.
 813 *
 814 * Returns: The CPU or %NULL if there is no matching CPU.
 815 */
 816CPUState *cpu_by_arch_id(int64_t id);
 817
 818/**
 819 * cpu_throttle_set:
 820 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
 821 *
 822 * Throttles all vcpus by forcing them to sleep for the given percentage of
 823 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
 824 * (example: 10ms sleep for every 30ms awake).
 825 *
 826 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
 827 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
 828 * is called.
 829 */
 830void cpu_throttle_set(int new_throttle_pct);
 831
 832/**
 833 * cpu_throttle_stop:
 834 *
 835 * Stops the vcpu throttling started by cpu_throttle_set.
 836 */
 837void cpu_throttle_stop(void);
 838
 839/**
 840 * cpu_throttle_active:
 841 *
 842 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
 843 */
 844bool cpu_throttle_active(void);
 845
 846/**
 847 * cpu_throttle_get_percentage:
 848 *
 849 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
 850 *
 851 * Returns: The throttle percentage in range 1 to 99.
 852 */
 853int cpu_throttle_get_percentage(void);
 854
 855#ifndef CONFIG_USER_ONLY
 856
 857typedef void (*CPUInterruptHandler)(CPUState *, int);
 858
 859extern CPUInterruptHandler cpu_interrupt_handler;
 860
 861/**
 862 * cpu_interrupt:
 863 * @cpu: The CPU to set an interrupt on.
 864 * @mask: The interrupts to set.
 865 *
 866 * Invokes the interrupt handler.
 867 */
 868static inline void cpu_interrupt(CPUState *cpu, int mask)
 869{
 870    cpu_interrupt_handler(cpu, mask);
 871}
 872
 873#else /* USER_ONLY */
 874
 875void cpu_interrupt(CPUState *cpu, int mask);
 876
 877#endif /* USER_ONLY */
 878
 879#ifdef NEED_CPU_H
 880
 881#ifdef CONFIG_SOFTMMU
 882static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
 883                                         bool is_write, bool is_exec,
 884                                         int opaque, unsigned size)
 885{
 886    CPUClass *cc = CPU_GET_CLASS(cpu);
 887
 888    if (cc->do_unassigned_access) {
 889        cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
 890    }
 891}
 892
 893static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 894                                        MMUAccessType access_type,
 895                                        int mmu_idx, uintptr_t retaddr)
 896{
 897    CPUClass *cc = CPU_GET_CLASS(cpu);
 898
 899    cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
 900}
 901
 902static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
 903                                          vaddr addr, unsigned size,
 904                                          MMUAccessType access_type,
 905                                          int mmu_idx, MemTxAttrs attrs,
 906                                          MemTxResult response,
 907                                          uintptr_t retaddr)
 908{
 909    CPUClass *cc = CPU_GET_CLASS(cpu);
 910
 911    if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
 912        cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
 913                                  mmu_idx, attrs, response, retaddr);
 914    }
 915}
 916#endif
 917
 918#endif /* NEED_CPU_H */
 919
 920/**
 921 * cpu_set_pc:
 922 * @cpu: The CPU to set the program counter for.
 923 * @addr: Program counter value.
 924 *
 925 * Sets the program counter for a CPU.
 926 */
 927static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
 928{
 929    CPUClass *cc = CPU_GET_CLASS(cpu);
 930
 931    cc->set_pc(cpu, addr);
 932}
 933
 934/**
 935 * cpu_reset_interrupt:
 936 * @cpu: The CPU to clear the interrupt on.
 937 * @mask: The interrupt mask to clear.
 938 *
 939 * Resets interrupts on the vCPU @cpu.
 940 */
 941void cpu_reset_interrupt(CPUState *cpu, int mask);
 942
 943/**
 944 * cpu_exit:
 945 * @cpu: The CPU to exit.
 946 *
 947 * Requests the CPU @cpu to exit execution.
 948 */
 949void cpu_exit(CPUState *cpu);
 950
 951/**
 952 * cpu_resume:
 953 * @cpu: The CPU to resume.
 954 *
 955 * Resumes CPU, i.e. puts CPU into runnable state.
 956 */
 957void cpu_resume(CPUState *cpu);
 958
 959/**
 960 * cpu_remove:
 961 * @cpu: The CPU to remove.
 962 *
 963 * Requests the CPU to be removed.
 964 */
 965void cpu_remove(CPUState *cpu);
 966
 967 /**
 968 * cpu_remove_sync:
 969 * @cpu: The CPU to remove.
 970 *
 971 * Requests the CPU to be removed and waits till it is removed.
 972 */
 973void cpu_remove_sync(CPUState *cpu);
 974
 975/**
 976 * process_queued_cpu_work() - process all items on CPU work queue
 977 * @cpu: The CPU which work queue to process.
 978 */
 979void process_queued_cpu_work(CPUState *cpu);
 980
 981/**
 982 * cpu_exec_start:
 983 * @cpu: The CPU for the current thread.
 984 *
 985 * Record that a CPU has started execution and can be interrupted with
 986 * cpu_exit.
 987 */
 988void cpu_exec_start(CPUState *cpu);
 989
 990/**
 991 * cpu_exec_end:
 992 * @cpu: The CPU for the current thread.
 993 *
 994 * Record that a CPU has stopped execution and exclusive sections
 995 * can be executed without interrupting it.
 996 */
 997void cpu_exec_end(CPUState *cpu);
 998
 999/**
1000 * start_exclusive:
1001 *
1002 * Wait for a concurrent exclusive section to end, and then start
1003 * a section of work that is run while other CPUs are not running
1004 * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1005 * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1006 * during the exclusive section go to sleep until this CPU calls
1007 * end_exclusive.
1008 */
1009void start_exclusive(void);
1010
1011/**
1012 * end_exclusive:
1013 *
1014 * Concludes an exclusive execution section started by start_exclusive.
1015 */
1016void end_exclusive(void);
1017
1018/**
1019 * qemu_init_vcpu:
1020 * @cpu: The vCPU to initialize.
1021 *
1022 * Initializes a vCPU.
1023 */
1024void qemu_init_vcpu(CPUState *cpu);
1025
1026#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1027#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1028#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1029
1030/**
1031 * cpu_single_step:
1032 * @cpu: CPU to the flags for.
1033 * @enabled: Flags to enable.
1034 *
1035 * Enables or disables single-stepping for @cpu.
1036 */
1037void cpu_single_step(CPUState *cpu, int enabled);
1038
1039/* Breakpoint/watchpoint flags */
1040#define BP_MEM_READ           0x01
1041#define BP_MEM_WRITE          0x02
1042#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1043#define BP_STOP_BEFORE_ACCESS 0x04
1044/* 0x08 currently unused */
1045#define BP_GDB                0x10
1046#define BP_CPU                0x20
1047#define BP_ANY                (BP_GDB | BP_CPU)
1048#define BP_WATCHPOINT_HIT_READ 0x40
1049#define BP_WATCHPOINT_HIT_WRITE 0x80
1050#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1051
1052int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1053                          CPUBreakpoint **breakpoint);
1054int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1055void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1056void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1057
1058/* Return true if PC matches an installed breakpoint.  */
1059static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1060{
1061    CPUBreakpoint *bp;
1062
1063    if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1064        QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1065            if (bp->pc == pc && (bp->flags & mask)) {
1066                return true;
1067            }
1068        }
1069    }
1070    return false;
1071}
1072
1073int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1074                          int flags, CPUWatchpoint **watchpoint);
1075int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1076                          vaddr len, int flags);
1077void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1078void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1079
1080/**
1081 * cpu_get_address_space:
1082 * @cpu: CPU to get address space from
1083 * @asidx: index identifying which address space to get
1084 *
1085 * Return the requested address space of this CPU. @asidx
1086 * specifies which address space to read.
1087 */
1088AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1089
1090void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1091    GCC_FMT_ATTR(2, 3);
1092extern Property cpu_common_props[];
1093void cpu_exec_initfn(CPUState *cpu);
1094void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1095void cpu_exec_unrealizefn(CPUState *cpu);
1096
1097/**
1098 * target_words_bigendian:
1099 * Returns true if the (default) endianness of the target is big endian,
1100 * false otherwise. Note that in target-specific code, you can use
1101 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1102 * code should normally never need to know about the endianness of the
1103 * target, so please do *not* use this function unless you know very well
1104 * what you are doing!
1105 */
1106bool target_words_bigendian(void);
1107
1108#ifdef NEED_CPU_H
1109
1110#ifdef CONFIG_SOFTMMU
1111extern const struct VMStateDescription vmstate_cpu_common;
1112#else
1113#define vmstate_cpu_common vmstate_dummy
1114#endif
1115
1116#define VMSTATE_CPU() {                                                     \
1117    .name = "parent_obj",                                                   \
1118    .size = sizeof(CPUState),                                               \
1119    .vmsd = &vmstate_cpu_common,                                            \
1120    .flags = VMS_STRUCT,                                                    \
1121    .offset = 0,                                                            \
1122}
1123
1124#endif /* NEED_CPU_H */
1125
1126#define UNASSIGNED_CPU_INDEX -1
1127#define UNASSIGNED_CLUSTER_INDEX -1
1128
1129#endif
1130