qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19#include "qemu/queue.h"
  20
  21/* This is the size of the host kernel's sigset_t, needed where we make
  22 * direct system calls that take a sigset_t pointer and a size.
  23 */
  24#define SIGSET_T_SIZE (_NSIG / 8)
  25
  26/* This struct is used to hold certain information about the image.
  27 * Basically, it replicates in user space what would be certain
  28 * task_struct fields in the kernel
  29 */
  30struct image_info {
  31        abi_ulong       load_bias;
  32        abi_ulong       load_addr;
  33        abi_ulong       start_code;
  34        abi_ulong       end_code;
  35        abi_ulong       start_data;
  36        abi_ulong       end_data;
  37        abi_ulong       start_brk;
  38        abi_ulong       brk;
  39        abi_ulong       start_mmap;
  40        abi_ulong       start_stack;
  41        abi_ulong       stack_limit;
  42        abi_ulong       entry;
  43        abi_ulong       code_offset;
  44        abi_ulong       data_offset;
  45        abi_ulong       saved_auxv;
  46        abi_ulong       auxv_len;
  47        abi_ulong       arg_start;
  48        abi_ulong       arg_end;
  49        abi_ulong       arg_strings;
  50        abi_ulong       env_strings;
  51        abi_ulong       file_string;
  52        uint32_t        elf_flags;
  53        int             personality;
  54        abi_ulong       alignment;
  55
  56        /* The fields below are used in FDPIC mode.  */
  57        abi_ulong       loadmap_addr;
  58        uint16_t        nsegs;
  59        void           *loadsegs;
  60        abi_ulong       pt_dynamic_addr;
  61        abi_ulong       interpreter_loadmap_addr;
  62        abi_ulong       interpreter_pt_dynamic_addr;
  63        struct image_info *other_info;
  64#ifdef TARGET_MIPS
  65        int             fp_abi;
  66        int             interp_fp_abi;
  67#endif
  68};
  69
  70#ifdef TARGET_I386
  71/* Information about the current linux thread */
  72struct vm86_saved_state {
  73    uint32_t eax; /* return code */
  74    uint32_t ebx;
  75    uint32_t ecx;
  76    uint32_t edx;
  77    uint32_t esi;
  78    uint32_t edi;
  79    uint32_t ebp;
  80    uint32_t esp;
  81    uint32_t eflags;
  82    uint32_t eip;
  83    uint16_t cs, ss, ds, es, fs, gs;
  84};
  85#endif
  86
  87#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  88/* FPU emulator */
  89#include "nwfpe/fpa11.h"
  90#endif
  91
  92#define MAX_SIGQUEUE_SIZE 1024
  93
  94struct emulated_sigtable {
  95    int pending; /* true if signal is pending */
  96    target_siginfo_t info;
  97};
  98
  99/* NOTE: we force a big alignment so that the stack stored after is
 100   aligned too */
 101typedef struct TaskState {
 102    pid_t ts_tid;     /* tid (or pid) of this task */
 103#ifdef TARGET_ARM
 104# ifdef TARGET_ABI32
 105    /* FPA state */
 106    FPA11 fpa;
 107# endif
 108    int swi_errno;
 109#endif
 110#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 111    abi_ulong target_v86;
 112    struct vm86_saved_state vm86_saved_regs;
 113    struct target_vm86plus_struct vm86plus;
 114    uint32_t v86flags;
 115    uint32_t v86mask;
 116#endif
 117    abi_ulong child_tidptr;
 118#ifdef TARGET_M68K
 119    abi_ulong tp_value;
 120#endif
 121#if defined(TARGET_ARM) || defined(TARGET_M68K)
 122    /* Extra fields for semihosted binaries.  */
 123    abi_ulong heap_base;
 124    abi_ulong heap_limit;
 125#endif
 126    abi_ulong stack_base;
 127    int used; /* non zero if used */
 128    struct image_info *info;
 129    struct linux_binprm *bprm;
 130
 131    struct emulated_sigtable sync_signal;
 132    struct emulated_sigtable sigtab[TARGET_NSIG];
 133    /* This thread's signal mask, as requested by the guest program.
 134     * The actual signal mask of this thread may differ:
 135     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 136     *  + sometimes we block all signals to avoid races
 137     */
 138    sigset_t signal_mask;
 139    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 140     * currently in the middle of such a syscall
 141     */
 142    sigset_t sigsuspend_mask;
 143    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 144    int in_sigsuspend;
 145
 146    /* Nonzero if process_pending_signals() needs to do something (either
 147     * handle a pending signal or unblock signals).
 148     * This flag is written from a signal handler so should be accessed via
 149     * the atomic_read() and atomic_set() functions. (It is not accessed
 150     * from multiple threads.)
 151     */
 152    int signal_pending;
 153
 154    /* This thread's sigaltstack, if it has one */
 155    struct target_sigaltstack sigaltstack_used;
 156} __attribute__((aligned(16))) TaskState;
 157
 158extern char *exec_path;
 159void init_task_state(TaskState *ts);
 160void task_settid(TaskState *);
 161void stop_all_tasks(void);
 162extern const char *qemu_uname_release;
 163extern unsigned long mmap_min_addr;
 164
 165/* ??? See if we can avoid exposing so much of the loader internals.  */
 166
 167/* Read a good amount of data initially, to hopefully get all the
 168   program headers loaded.  */
 169#define BPRM_BUF_SIZE  1024
 170
 171/*
 172 * This structure is used to hold the arguments that are
 173 * used when loading binaries.
 174 */
 175struct linux_binprm {
 176        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 177        abi_ulong p;
 178        int fd;
 179        int e_uid, e_gid;
 180        int argc, envc;
 181        char **argv;
 182        char **envp;
 183        char * filename;        /* Name of binary */
 184        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 185};
 186
 187void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 188abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 189                              abi_ulong stringp, int push_ptr);
 190int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 191             struct target_pt_regs * regs, struct image_info *infop,
 192             struct linux_binprm *);
 193
 194/* Returns true if the image uses the FDPIC ABI. If this is the case,
 195 * we have to provide some information (loadmap, pt_dynamic_info) such
 196 * that the program can be relocated adequately. This is also useful
 197 * when handling signals.
 198 */
 199int info_is_fdpic(struct image_info *info);
 200
 201uint32_t get_elf_eflags(int fd);
 202int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 203int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 204
 205abi_long memcpy_to_target(abi_ulong dest, const void *src,
 206                          unsigned long len);
 207void target_set_brk(abi_ulong new_brk);
 208abi_long do_brk(abi_ulong new_brk);
 209void syscall_init(void);
 210abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 211                    abi_long arg2, abi_long arg3, abi_long arg4,
 212                    abi_long arg5, abi_long arg6, abi_long arg7,
 213                    abi_long arg8);
 214void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 215extern __thread CPUState *thread_cpu;
 216void cpu_loop(CPUArchState *env);
 217const char *target_strerror(int err);
 218int get_osversion(void);
 219void init_qemu_uname_release(void);
 220void fork_start(void);
 221void fork_end(int child);
 222
 223/* Creates the initial guest address space in the host memory space using
 224 * the given host start address hint and size.  The guest_start parameter
 225 * specifies the start address of the guest space.  guest_base will be the
 226 * difference between the host start address computed by this function and
 227 * guest_start.  If fixed is specified, then the mapped address space must
 228 * start at host_start.  The real start address of the mapped memory space is
 229 * returned or -1 if there was an error.
 230 */
 231unsigned long init_guest_space(unsigned long host_start,
 232                               unsigned long host_size,
 233                               unsigned long guest_start,
 234                               bool fixed);
 235
 236#include "qemu/log.h"
 237
 238/* safe_syscall.S */
 239
 240/**
 241 * safe_syscall:
 242 * @int number: number of system call to make
 243 * ...: arguments to the system call
 244 *
 245 * Call a system call if guest signal not pending.
 246 * This has the same API as the libc syscall() function, except that it
 247 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 248 *
 249 * Returns: the system call result, or -1 with an error code in errno
 250 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 251 * with any of the host errno values.)
 252 */
 253
 254/* A guide to using safe_syscall() to handle interactions between guest
 255 * syscalls and guest signals:
 256 *
 257 * Guest syscalls come in two flavours:
 258 *
 259 * (1) Non-interruptible syscalls
 260 *
 261 * These are guest syscalls that never get interrupted by signals and
 262 * so never return EINTR. They can be implemented straightforwardly in
 263 * QEMU: just make sure that if the implementation code has to make any
 264 * blocking calls that those calls are retried if they return EINTR.
 265 * It's also OK to implement these with safe_syscall, though it will be
 266 * a little less efficient if a signal is delivered at the 'wrong' moment.
 267 *
 268 * Some non-interruptible syscalls need to be handled using block_signals()
 269 * to block signals for the duration of the syscall. This mainly applies
 270 * to code which needs to modify the data structures used by the
 271 * host_signal_handler() function and the functions it calls, including
 272 * all syscalls which change the thread's signal mask.
 273 *
 274 * (2) Interruptible syscalls
 275 *
 276 * These are guest syscalls that can be interrupted by signals and
 277 * for which we need to either return EINTR or arrange for the guest
 278 * syscall to be restarted. This category includes both syscalls which
 279 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 280 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 281 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 282 * if the handler was registered with SA_RESTART (kernel returns
 283 * -ERESTARTSYS). System calls which are only interruptible in some
 284 * situations (like 'open') also need to be handled this way.
 285 *
 286 * Here it is important that the host syscall is made
 287 * via this safe_syscall() function, and *not* via the host libc.
 288 * If the host libc is used then the implementation will appear to work
 289 * most of the time, but there will be a race condition where a
 290 * signal could arrive just before we make the host syscall inside libc,
 291 * and then then guest syscall will not correctly be interrupted.
 292 * Instead the implementation of the guest syscall can use the safe_syscall
 293 * function but otherwise just return the result or errno in the usual
 294 * way; the main loop code will take care of restarting the syscall
 295 * if appropriate.
 296 *
 297 * (If the implementation needs to make multiple host syscalls this is
 298 * OK; any which might really block must be via safe_syscall(); for those
 299 * which are only technically blocking (ie which we know in practice won't
 300 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 301 * You must be able to cope with backing out correctly if some safe_syscall
 302 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 303 * EINTR though.)
 304 *
 305 * block_signals() cannot be used for interruptible syscalls.
 306 *
 307 *
 308 * How and why the safe_syscall implementation works:
 309 *
 310 * The basic setup is that we make the host syscall via a known
 311 * section of host native assembly. If a signal occurs, our signal
 312 * handler checks the interrupted host PC against the addresse of that
 313 * known section. If the PC is before or at the address of the syscall
 314 * instruction then we change the PC to point at a "return
 315 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 316 * (causing the safe_syscall() call to immediately return that value).
 317 * Then in the main.c loop if we see this magic return value we adjust
 318 * the guest PC to wind it back to before the system call, and invoke
 319 * the guest signal handler as usual.
 320 *
 321 * This winding-back will happen in two cases:
 322 * (1) signal came in just before we took the host syscall (a race);
 323 *   in this case we'll take the guest signal and have another go
 324 *   at the syscall afterwards, and this is indistinguishable for the
 325 *   guest from the timing having been different such that the guest
 326 *   signal really did win the race
 327 * (2) signal came in while the host syscall was blocking, and the
 328 *   host kernel decided the syscall should be restarted;
 329 *   in this case we want to restart the guest syscall also, and so
 330 *   rewinding is the right thing. (Note that "restart" semantics mean
 331 *   "first call the signal handler, then reattempt the syscall".)
 332 * The other situation to consider is when a signal came in while the
 333 * host syscall was blocking, and the host kernel decided that the syscall
 334 * should not be restarted; in this case QEMU's host signal handler will
 335 * be invoked with the PC pointing just after the syscall instruction,
 336 * with registers indicating an EINTR return; the special code in the
 337 * handler will not kick in, and we will return EINTR to the guest as
 338 * we should.
 339 *
 340 * Notice that we can leave the host kernel to make the decision for
 341 * us about whether to do a restart of the syscall or not; we do not
 342 * need to check SA_RESTART flags in QEMU or distinguish the various
 343 * kinds of restartability.
 344 */
 345#ifdef HAVE_SAFE_SYSCALL
 346/* The core part of this function is implemented in assembly */
 347extern long safe_syscall_base(int *pending, long number, ...);
 348
 349#define safe_syscall(...)                                               \
 350    ({                                                                  \
 351        long ret_;                                                      \
 352        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 353        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 354        if (is_error(ret_)) {                                           \
 355            errno = -ret_;                                              \
 356            ret_ = -1;                                                  \
 357        }                                                               \
 358        ret_;                                                           \
 359    })
 360
 361#else
 362
 363/* Fallback for architectures which don't yet provide a safe-syscall assembly
 364 * fragment; note that this is racy!
 365 * This should go away when all host architectures have been updated.
 366 */
 367#define safe_syscall syscall
 368
 369#endif
 370
 371/* syscall.c */
 372int host_to_target_waitstatus(int status);
 373
 374/* strace.c */
 375void print_syscall(int num,
 376                   abi_long arg1, abi_long arg2, abi_long arg3,
 377                   abi_long arg4, abi_long arg5, abi_long arg6);
 378void print_syscall_ret(int num, abi_long arg1);
 379/**
 380 * print_taken_signal:
 381 * @target_signum: target signal being taken
 382 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 383 *
 384 * Print strace output indicating that this signal is being taken by the guest,
 385 * in a format similar to:
 386 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 387 */
 388void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 389extern int do_strace;
 390
 391/* signal.c */
 392void process_pending_signals(CPUArchState *cpu_env);
 393void signal_init(void);
 394int queue_signal(CPUArchState *env, int sig, int si_type,
 395                 target_siginfo_t *info);
 396void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 397void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 398int target_to_host_signal(int sig);
 399int host_to_target_signal(int sig);
 400long do_sigreturn(CPUArchState *env);
 401long do_rt_sigreturn(CPUArchState *env);
 402abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 403int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 404abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 405                        abi_ulong unew_ctx, abi_long ctx_size);
 406/**
 407 * block_signals: block all signals while handling this guest syscall
 408 *
 409 * Block all signals, and arrange that the signal mask is returned to
 410 * its correct value for the guest before we resume execution of guest code.
 411 * If this function returns non-zero, then the caller should immediately
 412 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 413 * signal and restart execution of the syscall.
 414 * If block_signals() returns zero, then the caller can continue with
 415 * emulation of the system call knowing that no signals can be taken
 416 * (and therefore that no race conditions will result).
 417 * This should only be called once, because if it is called a second time
 418 * it will always return non-zero. (Think of it like a mutex that can't
 419 * be recursively locked.)
 420 * Signals will be unblocked again by process_pending_signals().
 421 *
 422 * Return value: non-zero if there was a pending signal, zero if not.
 423 */
 424int block_signals(void); /* Returns non zero if signal pending */
 425
 426#ifdef TARGET_I386
 427/* vm86.c */
 428void save_v86_state(CPUX86State *env);
 429void handle_vm86_trap(CPUX86State *env, int trapno);
 430void handle_vm86_fault(CPUX86State *env);
 431int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 432#elif defined(TARGET_SPARC64)
 433void sparc64_set_context(CPUSPARCState *env);
 434void sparc64_get_context(CPUSPARCState *env);
 435#endif
 436
 437/* mmap.c */
 438int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 439abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 440                     int flags, int fd, abi_ulong offset);
 441int target_munmap(abi_ulong start, abi_ulong len);
 442abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 443                       abi_ulong new_size, unsigned long flags,
 444                       abi_ulong new_addr);
 445extern unsigned long last_brk;
 446extern abi_ulong mmap_next_start;
 447abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
 448void mmap_fork_start(void);
 449void mmap_fork_end(int child);
 450
 451/* main.c */
 452extern unsigned long guest_stack_size;
 453
 454/* user access */
 455
 456#define VERIFY_READ 0
 457#define VERIFY_WRITE 1 /* implies read access */
 458
 459static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 460{
 461    return guest_addr_valid(addr) &&
 462           (size == 0 || guest_addr_valid(addr + size - 1)) &&
 463           page_check_range((target_ulong)addr, size,
 464                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 465}
 466
 467/* NOTE __get_user and __put_user use host pointers and don't check access.
 468   These are usually used to access struct data members once the struct has
 469   been locked - usually with lock_user_struct.  */
 470
 471/*
 472 * Tricky points:
 473 * - Use __builtin_choose_expr to avoid type promotion from ?:,
 474 * - Invalid sizes result in a compile time error stemming from
 475 *   the fact that abort has no parameters.
 476 * - It's easier to use the endian-specific unaligned load/store
 477 *   functions than host-endian unaligned load/store plus tswapN.
 478 * - The pragmas are necessary only to silence a clang false-positive
 479 *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 480 * - gcc has bugs in its _Pragma() support in some versions, eg
 481 *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 482 *   include the warning-suppression pragmas for clang
 483 */
 484#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 485#define PRAGMA_DISABLE_PACKED_WARNING                                   \
 486    _Pragma("GCC diagnostic push");                                     \
 487    _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 488
 489#define PRAGMA_REENABLE_PACKED_WARNING          \
 490    _Pragma("GCC diagnostic pop")
 491
 492#else
 493#define PRAGMA_DISABLE_PACKED_WARNING
 494#define PRAGMA_REENABLE_PACKED_WARNING
 495#endif
 496
 497#define __put_user_e(x, hptr, e)                                            \
 498    do {                                                                    \
 499        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 500        (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 501        __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 502        __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 503        __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 504            ((hptr), (x)), (void)0);                                        \
 505        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 506    } while (0)
 507
 508#define __get_user_e(x, hptr, e)                                            \
 509    do {                                                                    \
 510        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 511        ((x) = (typeof(*hptr))(                                             \
 512        __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 513        __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 514        __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 515        __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 516            (hptr)), (void)0);                                              \
 517        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 518    } while (0)
 519
 520
 521#ifdef TARGET_WORDS_BIGENDIAN
 522# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 523# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 524#else
 525# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 526# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 527#endif
 528
 529/* put_user()/get_user() take a guest address and check access */
 530/* These are usually used to access an atomic data type, such as an int,
 531 * that has been passed by address.  These internally perform locking
 532 * and unlocking on the data type.
 533 */
 534#define put_user(x, gaddr, target_type)                                 \
 535({                                                                      \
 536    abi_ulong __gaddr = (gaddr);                                        \
 537    target_type *__hptr;                                                \
 538    abi_long __ret = 0;                                                 \
 539    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 540        __put_user((x), __hptr);                                \
 541        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 542    } else                                                              \
 543        __ret = -TARGET_EFAULT;                                         \
 544    __ret;                                                              \
 545})
 546
 547#define get_user(x, gaddr, target_type)                                 \
 548({                                                                      \
 549    abi_ulong __gaddr = (gaddr);                                        \
 550    target_type *__hptr;                                                \
 551    abi_long __ret = 0;                                                 \
 552    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 553        __get_user((x), __hptr);                                \
 554        unlock_user(__hptr, __gaddr, 0);                                \
 555    } else {                                                            \
 556        /* avoid warning */                                             \
 557        (x) = 0;                                                        \
 558        __ret = -TARGET_EFAULT;                                         \
 559    }                                                                   \
 560    __ret;                                                              \
 561})
 562
 563#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 564#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 565#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 566#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 567#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 568#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 569#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 570#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 571#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 572#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 573
 574#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 575#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 576#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 577#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 578#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 579#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 580#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 581#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 582#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 583#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 584
 585/* copy_from_user() and copy_to_user() are usually used to copy data
 586 * buffers between the target and host.  These internally perform
 587 * locking/unlocking of the memory.
 588 */
 589abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 590abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 591
 592/* Functions for accessing guest memory.  The tget and tput functions
 593   read/write single values, byteswapping as necessary.  The lock_user function
 594   gets a pointer to a contiguous area of guest memory, but does not perform
 595   any byteswapping.  lock_user may return either a pointer to the guest
 596   memory, or a temporary buffer.  */
 597
 598/* Lock an area of guest memory into the host.  If copy is true then the
 599   host area will have the same contents as the guest.  */
 600static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 601{
 602    if (!access_ok(type, guest_addr, len))
 603        return NULL;
 604#ifdef DEBUG_REMAP
 605    {
 606        void *addr;
 607        addr = g_malloc(len);
 608        if (copy)
 609            memcpy(addr, g2h(guest_addr), len);
 610        else
 611            memset(addr, 0, len);
 612        return addr;
 613    }
 614#else
 615    return g2h(guest_addr);
 616#endif
 617}
 618
 619/* Unlock an area of guest memory.  The first LEN bytes must be
 620   flushed back to guest memory. host_ptr = NULL is explicitly
 621   allowed and does nothing. */
 622static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 623                               long len)
 624{
 625
 626#ifdef DEBUG_REMAP
 627    if (!host_ptr)
 628        return;
 629    if (host_ptr == g2h(guest_addr))
 630        return;
 631    if (len > 0)
 632        memcpy(g2h(guest_addr), host_ptr, len);
 633    g_free(host_ptr);
 634#endif
 635}
 636
 637/* Return the length of a string in target memory or -TARGET_EFAULT if
 638   access error. */
 639abi_long target_strlen(abi_ulong gaddr);
 640
 641/* Like lock_user but for null terminated strings.  */
 642static inline void *lock_user_string(abi_ulong guest_addr)
 643{
 644    abi_long len;
 645    len = target_strlen(guest_addr);
 646    if (len < 0)
 647        return NULL;
 648    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 649}
 650
 651/* Helper macros for locking/unlocking a target struct.  */
 652#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 653    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 654#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 655    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 656
 657#include <pthread.h>
 658
 659static inline int is_error(abi_long ret)
 660{
 661    return (abi_ulong)ret >= (abi_ulong)(-4096);
 662}
 663
 664/**
 665 * preexit_cleanup: housekeeping before the guest exits
 666 *
 667 * env: the CPU state
 668 * code: the exit code
 669 */
 670void preexit_cleanup(CPUArchState *env, int code);
 671
 672/* Include target-specific struct and function definitions;
 673 * they may need access to the target-independent structures
 674 * above, so include them last.
 675 */
 676#include "target_cpu.h"
 677#include "target_structs.h"
 678
 679#endif /* QEMU_H */
 680