qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/balloon.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32#include "hw/boards.h"
  33
  34/* Arbitrary limit on size of each discard command,
  35 * keeps them around ~200 bytes
  36 */
  37#define MAX_DISCARDS_PER_COMMAND 12
  38
  39struct PostcopyDiscardState {
  40    const char *ramblock_name;
  41    uint16_t cur_entry;
  42    /*
  43     * Start and length of a discard range (bytes)
  44     */
  45    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  46    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  47    unsigned int nsentwords;
  48    unsigned int nsentcmds;
  49};
  50
  51static NotifierWithReturnList postcopy_notifier_list;
  52
  53void postcopy_infrastructure_init(void)
  54{
  55    notifier_with_return_list_init(&postcopy_notifier_list);
  56}
  57
  58void postcopy_add_notifier(NotifierWithReturn *nn)
  59{
  60    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  61}
  62
  63void postcopy_remove_notifier(NotifierWithReturn *n)
  64{
  65    notifier_with_return_remove(n);
  66}
  67
  68int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  69{
  70    struct PostcopyNotifyData pnd;
  71    pnd.reason = reason;
  72    pnd.errp = errp;
  73
  74    return notifier_with_return_list_notify(&postcopy_notifier_list,
  75                                            &pnd);
  76}
  77
  78/* Postcopy needs to detect accesses to pages that haven't yet been copied
  79 * across, and efficiently map new pages in, the techniques for doing this
  80 * are target OS specific.
  81 */
  82#if defined(__linux__)
  83
  84#include <poll.h>
  85#include <sys/ioctl.h>
  86#include <sys/syscall.h>
  87#include <asm/types.h> /* for __u64 */
  88#endif
  89
  90#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  91#include <sys/eventfd.h>
  92#include <linux/userfaultfd.h>
  93
  94typedef struct PostcopyBlocktimeContext {
  95    /* time when page fault initiated per vCPU */
  96    uint32_t *page_fault_vcpu_time;
  97    /* page address per vCPU */
  98    uintptr_t *vcpu_addr;
  99    uint32_t total_blocktime;
 100    /* blocktime per vCPU */
 101    uint32_t *vcpu_blocktime;
 102    /* point in time when last page fault was initiated */
 103    uint32_t last_begin;
 104    /* number of vCPU are suspended */
 105    int smp_cpus_down;
 106    uint64_t start_time;
 107
 108    /*
 109     * Handler for exit event, necessary for
 110     * releasing whole blocktime_ctx
 111     */
 112    Notifier exit_notifier;
 113} PostcopyBlocktimeContext;
 114
 115static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 116{
 117    g_free(ctx->page_fault_vcpu_time);
 118    g_free(ctx->vcpu_addr);
 119    g_free(ctx->vcpu_blocktime);
 120    g_free(ctx);
 121}
 122
 123static void migration_exit_cb(Notifier *n, void *data)
 124{
 125    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 126                                                 exit_notifier);
 127    destroy_blocktime_context(ctx);
 128}
 129
 130static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 131{
 132    MachineState *ms = MACHINE(qdev_get_machine());
 133    unsigned int smp_cpus = ms->smp.cpus;
 134    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 135    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 136    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 137    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 138
 139    ctx->exit_notifier.notify = migration_exit_cb;
 140    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 141    qemu_add_exit_notifier(&ctx->exit_notifier);
 142    return ctx;
 143}
 144
 145static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 146{
 147    MachineState *ms = MACHINE(qdev_get_machine());
 148    uint32List *list = NULL, *entry = NULL;
 149    int i;
 150
 151    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 152        entry = g_new0(uint32List, 1);
 153        entry->value = ctx->vcpu_blocktime[i];
 154        entry->next = list;
 155        list = entry;
 156    }
 157
 158    return list;
 159}
 160
 161/*
 162 * This function just populates MigrationInfo from postcopy's
 163 * blocktime context. It will not populate MigrationInfo,
 164 * unless postcopy-blocktime capability was set.
 165 *
 166 * @info: pointer to MigrationInfo to populate
 167 */
 168void fill_destination_postcopy_migration_info(MigrationInfo *info)
 169{
 170    MigrationIncomingState *mis = migration_incoming_get_current();
 171    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 172
 173    if (!bc) {
 174        return;
 175    }
 176
 177    info->has_postcopy_blocktime = true;
 178    info->postcopy_blocktime = bc->total_blocktime;
 179    info->has_postcopy_vcpu_blocktime = true;
 180    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 181}
 182
 183static uint32_t get_postcopy_total_blocktime(void)
 184{
 185    MigrationIncomingState *mis = migration_incoming_get_current();
 186    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 187
 188    if (!bc) {
 189        return 0;
 190    }
 191
 192    return bc->total_blocktime;
 193}
 194
 195/**
 196 * receive_ufd_features: check userfault fd features, to request only supported
 197 * features in the future.
 198 *
 199 * Returns: true on success
 200 *
 201 * __NR_userfaultfd - should be checked before
 202 *  @features: out parameter will contain uffdio_api.features provided by kernel
 203 *              in case of success
 204 */
 205static bool receive_ufd_features(uint64_t *features)
 206{
 207    struct uffdio_api api_struct = {0};
 208    int ufd;
 209    bool ret = true;
 210
 211    /* if we are here __NR_userfaultfd should exists */
 212    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 213    if (ufd == -1) {
 214        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 215                     strerror(errno));
 216        return false;
 217    }
 218
 219    /* ask features */
 220    api_struct.api = UFFD_API;
 221    api_struct.features = 0;
 222    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 223        error_report("%s: UFFDIO_API failed: %s", __func__,
 224                     strerror(errno));
 225        ret = false;
 226        goto release_ufd;
 227    }
 228
 229    *features = api_struct.features;
 230
 231release_ufd:
 232    close(ufd);
 233    return ret;
 234}
 235
 236/**
 237 * request_ufd_features: this function should be called only once on a newly
 238 * opened ufd, subsequent calls will lead to error.
 239 *
 240 * Returns: true on succes
 241 *
 242 * @ufd: fd obtained from userfaultfd syscall
 243 * @features: bit mask see UFFD_API_FEATURES
 244 */
 245static bool request_ufd_features(int ufd, uint64_t features)
 246{
 247    struct uffdio_api api_struct = {0};
 248    uint64_t ioctl_mask;
 249
 250    api_struct.api = UFFD_API;
 251    api_struct.features = features;
 252    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 253        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 254                     strerror(errno));
 255        return false;
 256    }
 257
 258    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 259                 (__u64)1 << _UFFDIO_UNREGISTER;
 260    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 261        error_report("Missing userfault features: %" PRIx64,
 262                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 263        return false;
 264    }
 265
 266    return true;
 267}
 268
 269static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 270{
 271    uint64_t asked_features = 0;
 272    static uint64_t supported_features;
 273
 274    /*
 275     * it's not possible to
 276     * request UFFD_API twice per one fd
 277     * userfault fd features is persistent
 278     */
 279    if (!supported_features) {
 280        if (!receive_ufd_features(&supported_features)) {
 281            error_report("%s failed", __func__);
 282            return false;
 283        }
 284    }
 285
 286#ifdef UFFD_FEATURE_THREAD_ID
 287    if (migrate_postcopy_blocktime() && mis &&
 288        UFFD_FEATURE_THREAD_ID & supported_features) {
 289        /* kernel supports that feature */
 290        /* don't create blocktime_context if it exists */
 291        if (!mis->blocktime_ctx) {
 292            mis->blocktime_ctx = blocktime_context_new();
 293        }
 294
 295        asked_features |= UFFD_FEATURE_THREAD_ID;
 296    }
 297#endif
 298
 299    /*
 300     * request features, even if asked_features is 0, due to
 301     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 302     * userfault file descriptor
 303     */
 304    if (!request_ufd_features(ufd, asked_features)) {
 305        error_report("%s failed: features %" PRIu64, __func__,
 306                     asked_features);
 307        return false;
 308    }
 309
 310    if (getpagesize() != ram_pagesize_summary()) {
 311        bool have_hp = false;
 312        /* We've got a huge page */
 313#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 314        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 315#endif
 316        if (!have_hp) {
 317            error_report("Userfault on this host does not support huge pages");
 318            return false;
 319        }
 320    }
 321    return true;
 322}
 323
 324/* Callback from postcopy_ram_supported_by_host block iterator.
 325 */
 326static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 327{
 328    const char *block_name = qemu_ram_get_idstr(rb);
 329    ram_addr_t length = qemu_ram_get_used_length(rb);
 330    size_t pagesize = qemu_ram_pagesize(rb);
 331
 332    if (length % pagesize) {
 333        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 334                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 335                     "page size of 0x%zx", block_name, length, pagesize);
 336        return 1;
 337    }
 338    return 0;
 339}
 340
 341/*
 342 * Note: This has the side effect of munlock'ing all of RAM, that's
 343 * normally fine since if the postcopy succeeds it gets turned back on at the
 344 * end.
 345 */
 346bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 347{
 348    long pagesize = getpagesize();
 349    int ufd = -1;
 350    bool ret = false; /* Error unless we change it */
 351    void *testarea = NULL;
 352    struct uffdio_register reg_struct;
 353    struct uffdio_range range_struct;
 354    uint64_t feature_mask;
 355    Error *local_err = NULL;
 356
 357    if (qemu_target_page_size() > pagesize) {
 358        error_report("Target page size bigger than host page size");
 359        goto out;
 360    }
 361
 362    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 363    if (ufd == -1) {
 364        error_report("%s: userfaultfd not available: %s", __func__,
 365                     strerror(errno));
 366        goto out;
 367    }
 368
 369    /* Give devices a chance to object */
 370    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 371        error_report_err(local_err);
 372        goto out;
 373    }
 374
 375    /* Version and features check */
 376    if (!ufd_check_and_apply(ufd, mis)) {
 377        goto out;
 378    }
 379
 380    /* We don't support postcopy with shared RAM yet */
 381    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 382        goto out;
 383    }
 384
 385    /*
 386     * userfault and mlock don't go together; we'll put it back later if
 387     * it was enabled.
 388     */
 389    if (munlockall()) {
 390        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 391        return -1;
 392    }
 393
 394    /*
 395     *  We need to check that the ops we need are supported on anon memory
 396     *  To do that we need to register a chunk and see the flags that
 397     *  are returned.
 398     */
 399    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 400                                    MAP_ANONYMOUS, -1, 0);
 401    if (testarea == MAP_FAILED) {
 402        error_report("%s: Failed to map test area: %s", __func__,
 403                     strerror(errno));
 404        goto out;
 405    }
 406    g_assert(((size_t)testarea & (pagesize-1)) == 0);
 407
 408    reg_struct.range.start = (uintptr_t)testarea;
 409    reg_struct.range.len = pagesize;
 410    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 411
 412    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 413        error_report("%s userfault register: %s", __func__, strerror(errno));
 414        goto out;
 415    }
 416
 417    range_struct.start = (uintptr_t)testarea;
 418    range_struct.len = pagesize;
 419    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 420        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 421        goto out;
 422    }
 423
 424    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 425                   (__u64)1 << _UFFDIO_COPY |
 426                   (__u64)1 << _UFFDIO_ZEROPAGE;
 427    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 428        error_report("Missing userfault map features: %" PRIx64,
 429                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 430        goto out;
 431    }
 432
 433    /* Success! */
 434    ret = true;
 435out:
 436    if (testarea) {
 437        munmap(testarea, pagesize);
 438    }
 439    if (ufd != -1) {
 440        close(ufd);
 441    }
 442    return ret;
 443}
 444
 445/*
 446 * Setup an area of RAM so that it *can* be used for postcopy later; this
 447 * must be done right at the start prior to pre-copy.
 448 * opaque should be the MIS.
 449 */
 450static int init_range(RAMBlock *rb, void *opaque)
 451{
 452    const char *block_name = qemu_ram_get_idstr(rb);
 453    void *host_addr = qemu_ram_get_host_addr(rb);
 454    ram_addr_t offset = qemu_ram_get_offset(rb);
 455    ram_addr_t length = qemu_ram_get_used_length(rb);
 456    trace_postcopy_init_range(block_name, host_addr, offset, length);
 457
 458    /*
 459     * We need the whole of RAM to be truly empty for postcopy, so things
 460     * like ROMs and any data tables built during init must be zero'd
 461     * - we're going to get the copy from the source anyway.
 462     * (Precopy will just overwrite this data, so doesn't need the discard)
 463     */
 464    if (ram_discard_range(block_name, 0, length)) {
 465        return -1;
 466    }
 467
 468    return 0;
 469}
 470
 471/*
 472 * At the end of migration, undo the effects of init_range
 473 * opaque should be the MIS.
 474 */
 475static int cleanup_range(RAMBlock *rb, void *opaque)
 476{
 477    const char *block_name = qemu_ram_get_idstr(rb);
 478    void *host_addr = qemu_ram_get_host_addr(rb);
 479    ram_addr_t offset = qemu_ram_get_offset(rb);
 480    ram_addr_t length = qemu_ram_get_used_length(rb);
 481    MigrationIncomingState *mis = opaque;
 482    struct uffdio_range range_struct;
 483    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 484
 485    /*
 486     * We turned off hugepage for the precopy stage with postcopy enabled
 487     * we can turn it back on now.
 488     */
 489    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 490
 491    /*
 492     * We can also turn off userfault now since we should have all the
 493     * pages.   It can be useful to leave it on to debug postcopy
 494     * if you're not sure it's always getting every page.
 495     */
 496    range_struct.start = (uintptr_t)host_addr;
 497    range_struct.len = length;
 498
 499    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 500        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 501
 502        return -1;
 503    }
 504
 505    return 0;
 506}
 507
 508/*
 509 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 510 * postcopy later; must be called prior to any precopy.
 511 * called from arch_init's similarly named ram_postcopy_incoming_init
 512 */
 513int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 514{
 515    if (foreach_not_ignored_block(init_range, NULL)) {
 516        return -1;
 517    }
 518
 519    return 0;
 520}
 521
 522/*
 523 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
 524 * last caller wins.
 525 */
 526static void postcopy_balloon_inhibit(bool state)
 527{
 528    static bool cur_state = false;
 529
 530    if (state != cur_state) {
 531        qemu_balloon_inhibit(state);
 532        cur_state = state;
 533    }
 534}
 535
 536/*
 537 * At the end of a migration where postcopy_ram_incoming_init was called.
 538 */
 539int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 540{
 541    trace_postcopy_ram_incoming_cleanup_entry();
 542
 543    if (mis->have_fault_thread) {
 544        Error *local_err = NULL;
 545
 546        /* Let the fault thread quit */
 547        atomic_set(&mis->fault_thread_quit, 1);
 548        postcopy_fault_thread_notify(mis);
 549        trace_postcopy_ram_incoming_cleanup_join();
 550        qemu_thread_join(&mis->fault_thread);
 551
 552        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 553            error_report_err(local_err);
 554            return -1;
 555        }
 556
 557        if (foreach_not_ignored_block(cleanup_range, mis)) {
 558            return -1;
 559        }
 560
 561        trace_postcopy_ram_incoming_cleanup_closeuf();
 562        close(mis->userfault_fd);
 563        close(mis->userfault_event_fd);
 564        mis->have_fault_thread = false;
 565    }
 566
 567    postcopy_balloon_inhibit(false);
 568
 569    if (enable_mlock) {
 570        if (os_mlock() < 0) {
 571            error_report("mlock: %s", strerror(errno));
 572            /*
 573             * It doesn't feel right to fail at this point, we have a valid
 574             * VM state.
 575             */
 576        }
 577    }
 578
 579    postcopy_state_set(POSTCOPY_INCOMING_END);
 580
 581    if (mis->postcopy_tmp_page) {
 582        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 583        mis->postcopy_tmp_page = NULL;
 584    }
 585    if (mis->postcopy_tmp_zero_page) {
 586        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 587        mis->postcopy_tmp_zero_page = NULL;
 588    }
 589    trace_postcopy_ram_incoming_cleanup_blocktime(
 590            get_postcopy_total_blocktime());
 591
 592    trace_postcopy_ram_incoming_cleanup_exit();
 593    return 0;
 594}
 595
 596/*
 597 * Disable huge pages on an area
 598 */
 599static int nhp_range(RAMBlock *rb, void *opaque)
 600{
 601    const char *block_name = qemu_ram_get_idstr(rb);
 602    void *host_addr = qemu_ram_get_host_addr(rb);
 603    ram_addr_t offset = qemu_ram_get_offset(rb);
 604    ram_addr_t length = qemu_ram_get_used_length(rb);
 605    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 606
 607    /*
 608     * Before we do discards we need to ensure those discards really
 609     * do delete areas of the page, even if THP thinks a hugepage would
 610     * be a good idea, so force hugepages off.
 611     */
 612    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 613
 614    return 0;
 615}
 616
 617/*
 618 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 619 * however leaving it until after precopy means that most of the precopy
 620 * data is still THPd
 621 */
 622int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 623{
 624    if (foreach_not_ignored_block(nhp_range, mis)) {
 625        return -1;
 626    }
 627
 628    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 629
 630    return 0;
 631}
 632
 633/*
 634 * Mark the given area of RAM as requiring notification to unwritten areas
 635 * Used as a  callback on foreach_not_ignored_block.
 636 *   host_addr: Base of area to mark
 637 *   offset: Offset in the whole ram arena
 638 *   length: Length of the section
 639 *   opaque: MigrationIncomingState pointer
 640 * Returns 0 on success
 641 */
 642static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 643{
 644    MigrationIncomingState *mis = opaque;
 645    struct uffdio_register reg_struct;
 646
 647    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 648    reg_struct.range.len = qemu_ram_get_used_length(rb);
 649    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 650
 651    /* Now tell our userfault_fd that it's responsible for this area */
 652    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 653        error_report("%s userfault register: %s", __func__, strerror(errno));
 654        return -1;
 655    }
 656    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 657        error_report("%s userfault: Region doesn't support COPY", __func__);
 658        return -1;
 659    }
 660    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 661        qemu_ram_set_uf_zeroable(rb);
 662    }
 663
 664    return 0;
 665}
 666
 667int postcopy_wake_shared(struct PostCopyFD *pcfd,
 668                         uint64_t client_addr,
 669                         RAMBlock *rb)
 670{
 671    size_t pagesize = qemu_ram_pagesize(rb);
 672    struct uffdio_range range;
 673    int ret;
 674    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 675    range.start = client_addr & ~(pagesize - 1);
 676    range.len = pagesize;
 677    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 678    if (ret) {
 679        error_report("%s: Failed to wake: %zx in %s (%s)",
 680                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 681                     strerror(errno));
 682    }
 683    return ret;
 684}
 685
 686/*
 687 * Callback from shared fault handlers to ask for a page,
 688 * the page must be specified by a RAMBlock and an offset in that rb
 689 * Note: Only for use by shared fault handlers (in fault thread)
 690 */
 691int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 692                                 uint64_t client_addr, uint64_t rb_offset)
 693{
 694    size_t pagesize = qemu_ram_pagesize(rb);
 695    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 696    MigrationIncomingState *mis = migration_incoming_get_current();
 697
 698    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 699                                       rb_offset);
 700    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 701        trace_postcopy_request_shared_page_present(pcfd->idstr,
 702                                        qemu_ram_get_idstr(rb), rb_offset);
 703        return postcopy_wake_shared(pcfd, client_addr, rb);
 704    }
 705    if (rb != mis->last_rb) {
 706        mis->last_rb = rb;
 707        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
 708                                  aligned_rbo, pagesize);
 709    } else {
 710        /* Save some space */
 711        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
 712    }
 713    return 0;
 714}
 715
 716static int get_mem_fault_cpu_index(uint32_t pid)
 717{
 718    CPUState *cpu_iter;
 719
 720    CPU_FOREACH(cpu_iter) {
 721        if (cpu_iter->thread_id == pid) {
 722            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 723            return cpu_iter->cpu_index;
 724        }
 725    }
 726    trace_get_mem_fault_cpu_index(-1, pid);
 727    return -1;
 728}
 729
 730static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 731{
 732    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 733                                    dc->start_time;
 734    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 735}
 736
 737/*
 738 * This function is being called when pagefault occurs. It
 739 * tracks down vCPU blocking time.
 740 *
 741 * @addr: faulted host virtual address
 742 * @ptid: faulted process thread id
 743 * @rb: ramblock appropriate to addr
 744 */
 745static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 746                                          RAMBlock *rb)
 747{
 748    int cpu, already_received;
 749    MigrationIncomingState *mis = migration_incoming_get_current();
 750    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 751    uint32_t low_time_offset;
 752
 753    if (!dc || ptid == 0) {
 754        return;
 755    }
 756    cpu = get_mem_fault_cpu_index(ptid);
 757    if (cpu < 0) {
 758        return;
 759    }
 760
 761    low_time_offset = get_low_time_offset(dc);
 762    if (dc->vcpu_addr[cpu] == 0) {
 763        atomic_inc(&dc->smp_cpus_down);
 764    }
 765
 766    atomic_xchg(&dc->last_begin, low_time_offset);
 767    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 768    atomic_xchg(&dc->vcpu_addr[cpu], addr);
 769
 770    /* check it here, not at the begining of the function,
 771     * due to, check could accur early than bitmap_set in
 772     * qemu_ufd_copy_ioctl */
 773    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 774    if (already_received) {
 775        atomic_xchg(&dc->vcpu_addr[cpu], 0);
 776        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 777        atomic_dec(&dc->smp_cpus_down);
 778    }
 779    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 780                                        cpu, already_received);
 781}
 782
 783/*
 784 *  This function just provide calculated blocktime per cpu and trace it.
 785 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 786 *
 787 *
 788 * Assume we have 3 CPU
 789 *
 790 *      S1        E1           S1               E1
 791 * -----***********------------xxx***************------------------------> CPU1
 792 *
 793 *             S2                E2
 794 * ------------****************xxx---------------------------------------> CPU2
 795 *
 796 *                         S3            E3
 797 * ------------------------****xxx********-------------------------------> CPU3
 798 *
 799 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 800 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 801 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 802 *            it's a part of total blocktime.
 803 * S1 - here is last_begin
 804 * Legend of the picture is following:
 805 *              * - means blocktime per vCPU
 806 *              x - means overlapped blocktime (total blocktime)
 807 *
 808 * @addr: host virtual address
 809 */
 810static void mark_postcopy_blocktime_end(uintptr_t addr)
 811{
 812    MigrationIncomingState *mis = migration_incoming_get_current();
 813    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 814    MachineState *ms = MACHINE(qdev_get_machine());
 815    unsigned int smp_cpus = ms->smp.cpus;
 816    int i, affected_cpu = 0;
 817    bool vcpu_total_blocktime = false;
 818    uint32_t read_vcpu_time, low_time_offset;
 819
 820    if (!dc) {
 821        return;
 822    }
 823
 824    low_time_offset = get_low_time_offset(dc);
 825    /* lookup cpu, to clear it,
 826     * that algorithm looks straighforward, but it's not
 827     * optimal, more optimal algorithm is keeping tree or hash
 828     * where key is address value is a list of  */
 829    for (i = 0; i < smp_cpus; i++) {
 830        uint32_t vcpu_blocktime = 0;
 831
 832        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 833        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 834            read_vcpu_time == 0) {
 835            continue;
 836        }
 837        atomic_xchg(&dc->vcpu_addr[i], 0);
 838        vcpu_blocktime = low_time_offset - read_vcpu_time;
 839        affected_cpu += 1;
 840        /* we need to know is that mark_postcopy_end was due to
 841         * faulted page, another possible case it's prefetched
 842         * page and in that case we shouldn't be here */
 843        if (!vcpu_total_blocktime &&
 844            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 845            vcpu_total_blocktime = true;
 846        }
 847        /* continue cycle, due to one page could affect several vCPUs */
 848        dc->vcpu_blocktime[i] += vcpu_blocktime;
 849    }
 850
 851    atomic_sub(&dc->smp_cpus_down, affected_cpu);
 852    if (vcpu_total_blocktime) {
 853        dc->total_blocktime += low_time_offset - atomic_fetch_add(
 854                &dc->last_begin, 0);
 855    }
 856    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 857                                      affected_cpu);
 858}
 859
 860static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 861{
 862    trace_postcopy_pause_fault_thread();
 863
 864    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 865
 866    trace_postcopy_pause_fault_thread_continued();
 867
 868    return true;
 869}
 870
 871/*
 872 * Handle faults detected by the USERFAULT markings
 873 */
 874static void *postcopy_ram_fault_thread(void *opaque)
 875{
 876    MigrationIncomingState *mis = opaque;
 877    struct uffd_msg msg;
 878    int ret;
 879    size_t index;
 880    RAMBlock *rb = NULL;
 881
 882    trace_postcopy_ram_fault_thread_entry();
 883    rcu_register_thread();
 884    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 885    qemu_sem_post(&mis->fault_thread_sem);
 886
 887    struct pollfd *pfd;
 888    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 889
 890    pfd = g_new0(struct pollfd, pfd_len);
 891
 892    pfd[0].fd = mis->userfault_fd;
 893    pfd[0].events = POLLIN;
 894    pfd[1].fd = mis->userfault_event_fd;
 895    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 896    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 897    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 898        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 899                                                 struct PostCopyFD, index);
 900        pfd[2 + index].fd = pcfd->fd;
 901        pfd[2 + index].events = POLLIN;
 902        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 903                                                  pcfd->fd);
 904    }
 905
 906    while (true) {
 907        ram_addr_t rb_offset;
 908        int poll_result;
 909
 910        /*
 911         * We're mainly waiting for the kernel to give us a faulting HVA,
 912         * however we can be told to quit via userfault_quit_fd which is
 913         * an eventfd
 914         */
 915
 916        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 917        if (poll_result == -1) {
 918            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 919            break;
 920        }
 921
 922        if (!mis->to_src_file) {
 923            /*
 924             * Possibly someone tells us that the return path is
 925             * broken already using the event. We should hold until
 926             * the channel is rebuilt.
 927             */
 928            if (postcopy_pause_fault_thread(mis)) {
 929                mis->last_rb = NULL;
 930                /* Continue to read the userfaultfd */
 931            } else {
 932                error_report("%s: paused but don't allow to continue",
 933                             __func__);
 934                break;
 935            }
 936        }
 937
 938        if (pfd[1].revents) {
 939            uint64_t tmp64 = 0;
 940
 941            /* Consume the signal */
 942            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 943                /* Nothing obviously nicer than posting this error. */
 944                error_report("%s: read() failed", __func__);
 945            }
 946
 947            if (atomic_read(&mis->fault_thread_quit)) {
 948                trace_postcopy_ram_fault_thread_quit();
 949                break;
 950            }
 951        }
 952
 953        if (pfd[0].revents) {
 954            poll_result--;
 955            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 956            if (ret != sizeof(msg)) {
 957                if (errno == EAGAIN) {
 958                    /*
 959                     * if a wake up happens on the other thread just after
 960                     * the poll, there is nothing to read.
 961                     */
 962                    continue;
 963                }
 964                if (ret < 0) {
 965                    error_report("%s: Failed to read full userfault "
 966                                 "message: %s",
 967                                 __func__, strerror(errno));
 968                    break;
 969                } else {
 970                    error_report("%s: Read %d bytes from userfaultfd "
 971                                 "expected %zd",
 972                                 __func__, ret, sizeof(msg));
 973                    break; /* Lost alignment, don't know what we'd read next */
 974                }
 975            }
 976            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 977                error_report("%s: Read unexpected event %ud from userfaultfd",
 978                             __func__, msg.event);
 979                continue; /* It's not a page fault, shouldn't happen */
 980            }
 981
 982            rb = qemu_ram_block_from_host(
 983                     (void *)(uintptr_t)msg.arg.pagefault.address,
 984                     true, &rb_offset);
 985            if (!rb) {
 986                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 987                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 988                break;
 989            }
 990
 991            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 992            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 993                                                qemu_ram_get_idstr(rb),
 994                                                rb_offset,
 995                                                msg.arg.pagefault.feat.ptid);
 996            mark_postcopy_blocktime_begin(
 997                    (uintptr_t)(msg.arg.pagefault.address),
 998                                msg.arg.pagefault.feat.ptid, rb);
 999
1000retry:
1001            /*
1002             * Send the request to the source - we want to request one
1003             * of our host page sizes (which is >= TPS)
1004             */
1005            if (rb != mis->last_rb) {
1006                mis->last_rb = rb;
1007                ret = migrate_send_rp_req_pages(mis,
1008                                                qemu_ram_get_idstr(rb),
1009                                                rb_offset,
1010                                                qemu_ram_pagesize(rb));
1011            } else {
1012                /* Save some space */
1013                ret = migrate_send_rp_req_pages(mis,
1014                                                NULL,
1015                                                rb_offset,
1016                                                qemu_ram_pagesize(rb));
1017            }
1018
1019            if (ret) {
1020                /* May be network failure, try to wait for recovery */
1021                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1022                    /* We got reconnected somehow, try to continue */
1023                    mis->last_rb = NULL;
1024                    goto retry;
1025                } else {
1026                    /* This is a unavoidable fault */
1027                    error_report("%s: migrate_send_rp_req_pages() get %d",
1028                                 __func__, ret);
1029                    break;
1030                }
1031            }
1032        }
1033
1034        /* Now handle any requests from external processes on shared memory */
1035        /* TODO: May need to handle devices deregistering during postcopy */
1036        for (index = 2; index < pfd_len && poll_result; index++) {
1037            if (pfd[index].revents) {
1038                struct PostCopyFD *pcfd =
1039                    &g_array_index(mis->postcopy_remote_fds,
1040                                   struct PostCopyFD, index - 2);
1041
1042                poll_result--;
1043                if (pfd[index].revents & POLLERR) {
1044                    error_report("%s: POLLERR on poll %zd fd=%d",
1045                                 __func__, index, pcfd->fd);
1046                    pfd[index].events = 0;
1047                    continue;
1048                }
1049
1050                ret = read(pcfd->fd, &msg, sizeof(msg));
1051                if (ret != sizeof(msg)) {
1052                    if (errno == EAGAIN) {
1053                        /*
1054                         * if a wake up happens on the other thread just after
1055                         * the poll, there is nothing to read.
1056                         */
1057                        continue;
1058                    }
1059                    if (ret < 0) {
1060                        error_report("%s: Failed to read full userfault "
1061                                     "message: %s (shared) revents=%d",
1062                                     __func__, strerror(errno),
1063                                     pfd[index].revents);
1064                        /*TODO: Could just disable this sharer */
1065                        break;
1066                    } else {
1067                        error_report("%s: Read %d bytes from userfaultfd "
1068                                     "expected %zd (shared)",
1069                                     __func__, ret, sizeof(msg));
1070                        /*TODO: Could just disable this sharer */
1071                        break; /*Lost alignment,don't know what we'd read next*/
1072                    }
1073                }
1074                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1075                    error_report("%s: Read unexpected event %ud "
1076                                 "from userfaultfd (shared)",
1077                                 __func__, msg.event);
1078                    continue; /* It's not a page fault, shouldn't happen */
1079                }
1080                /* Call the device handler registered with us */
1081                ret = pcfd->handler(pcfd, &msg);
1082                if (ret) {
1083                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1084                                 __func__, index, pcfd->idstr);
1085                    /* TODO: Fail? Disable this sharer? */
1086                }
1087            }
1088        }
1089    }
1090    rcu_unregister_thread();
1091    trace_postcopy_ram_fault_thread_exit();
1092    g_free(pfd);
1093    return NULL;
1094}
1095
1096int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1097{
1098    /* Open the fd for the kernel to give us userfaults */
1099    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1100    if (mis->userfault_fd == -1) {
1101        error_report("%s: Failed to open userfault fd: %s", __func__,
1102                     strerror(errno));
1103        return -1;
1104    }
1105
1106    /*
1107     * Although the host check already tested the API, we need to
1108     * do the check again as an ABI handshake on the new fd.
1109     */
1110    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1111        return -1;
1112    }
1113
1114    /* Now an eventfd we use to tell the fault-thread to quit */
1115    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1116    if (mis->userfault_event_fd == -1) {
1117        error_report("%s: Opening userfault_event_fd: %s", __func__,
1118                     strerror(errno));
1119        close(mis->userfault_fd);
1120        return -1;
1121    }
1122
1123    qemu_sem_init(&mis->fault_thread_sem, 0);
1124    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1125                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1126    qemu_sem_wait(&mis->fault_thread_sem);
1127    qemu_sem_destroy(&mis->fault_thread_sem);
1128    mis->have_fault_thread = true;
1129
1130    /* Mark so that we get notified of accesses to unwritten areas */
1131    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1132        error_report("ram_block_enable_notify failed");
1133        return -1;
1134    }
1135
1136    /*
1137     * Ballooning can mark pages as absent while we're postcopying
1138     * that would cause false userfaults.
1139     */
1140    postcopy_balloon_inhibit(true);
1141
1142    trace_postcopy_ram_enable_notify();
1143
1144    return 0;
1145}
1146
1147static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1148                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1149{
1150    int ret;
1151    if (from_addr) {
1152        struct uffdio_copy copy_struct;
1153        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1154        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1155        copy_struct.len = pagesize;
1156        copy_struct.mode = 0;
1157        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1158    } else {
1159        struct uffdio_zeropage zero_struct;
1160        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1161        zero_struct.range.len = pagesize;
1162        zero_struct.mode = 0;
1163        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1164    }
1165    if (!ret) {
1166        ramblock_recv_bitmap_set_range(rb, host_addr,
1167                                       pagesize / qemu_target_page_size());
1168        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1169
1170    }
1171    return ret;
1172}
1173
1174int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1175{
1176    int i;
1177    MigrationIncomingState *mis = migration_incoming_get_current();
1178    GArray *pcrfds = mis->postcopy_remote_fds;
1179
1180    for (i = 0; i < pcrfds->len; i++) {
1181        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1182        int ret = cur->waker(cur, rb, offset);
1183        if (ret) {
1184            return ret;
1185        }
1186    }
1187    return 0;
1188}
1189
1190/*
1191 * Place a host page (from) at (host) atomically
1192 * returns 0 on success
1193 */
1194int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1195                        RAMBlock *rb)
1196{
1197    size_t pagesize = qemu_ram_pagesize(rb);
1198
1199    /* copy also acks to the kernel waking the stalled thread up
1200     * TODO: We can inhibit that ack and only do it if it was requested
1201     * which would be slightly cheaper, but we'd have to be careful
1202     * of the order of updating our page state.
1203     */
1204    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1205        int e = errno;
1206        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1207                     __func__, strerror(e), host, from, pagesize);
1208
1209        return -e;
1210    }
1211
1212    trace_postcopy_place_page(host);
1213    return postcopy_notify_shared_wake(rb,
1214                                       qemu_ram_block_host_offset(rb, host));
1215}
1216
1217/*
1218 * Place a zero page at (host) atomically
1219 * returns 0 on success
1220 */
1221int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1222                             RAMBlock *rb)
1223{
1224    size_t pagesize = qemu_ram_pagesize(rb);
1225    trace_postcopy_place_page_zero(host);
1226
1227    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1228     * but it's not available for everything (e.g. hugetlbpages)
1229     */
1230    if (qemu_ram_is_uf_zeroable(rb)) {
1231        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1232            int e = errno;
1233            error_report("%s: %s zero host: %p",
1234                         __func__, strerror(e), host);
1235
1236            return -e;
1237        }
1238        return postcopy_notify_shared_wake(rb,
1239                                           qemu_ram_block_host_offset(rb,
1240                                                                      host));
1241    } else {
1242        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1243        if (!mis->postcopy_tmp_zero_page) {
1244            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1245                                               PROT_READ | PROT_WRITE,
1246                                               MAP_PRIVATE | MAP_ANONYMOUS,
1247                                               -1, 0);
1248            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1249                int e = errno;
1250                mis->postcopy_tmp_zero_page = NULL;
1251                error_report("%s: %s mapping large zero page",
1252                             __func__, strerror(e));
1253                return -e;
1254            }
1255            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1256        }
1257        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1258                                   rb);
1259    }
1260}
1261
1262/*
1263 * Returns a target page of memory that can be mapped at a later point in time
1264 * using postcopy_place_page
1265 * The same address is used repeatedly, postcopy_place_page just takes the
1266 * backing page away.
1267 * Returns: Pointer to allocated page
1268 *
1269 */
1270void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1271{
1272    if (!mis->postcopy_tmp_page) {
1273        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1274                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
1275                             MAP_ANONYMOUS, -1, 0);
1276        if (mis->postcopy_tmp_page == MAP_FAILED) {
1277            mis->postcopy_tmp_page = NULL;
1278            error_report("%s: %s", __func__, strerror(errno));
1279            return NULL;
1280        }
1281    }
1282
1283    return mis->postcopy_tmp_page;
1284}
1285
1286#else
1287/* No target OS support, stubs just fail */
1288void fill_destination_postcopy_migration_info(MigrationInfo *info)
1289{
1290}
1291
1292bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1293{
1294    error_report("%s: No OS support", __func__);
1295    return false;
1296}
1297
1298int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1299{
1300    error_report("postcopy_ram_incoming_init: No OS support");
1301    return -1;
1302}
1303
1304int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1305{
1306    assert(0);
1307    return -1;
1308}
1309
1310int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1311{
1312    assert(0);
1313    return -1;
1314}
1315
1316int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1317                                 uint64_t client_addr, uint64_t rb_offset)
1318{
1319    assert(0);
1320    return -1;
1321}
1322
1323int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1324{
1325    assert(0);
1326    return -1;
1327}
1328
1329int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1330                        RAMBlock *rb)
1331{
1332    assert(0);
1333    return -1;
1334}
1335
1336int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1337                        RAMBlock *rb)
1338{
1339    assert(0);
1340    return -1;
1341}
1342
1343void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1344{
1345    assert(0);
1346    return NULL;
1347}
1348
1349int postcopy_wake_shared(struct PostCopyFD *pcfd,
1350                         uint64_t client_addr,
1351                         RAMBlock *rb)
1352{
1353    assert(0);
1354    return -1;
1355}
1356#endif
1357
1358/* ------------------------------------------------------------------------- */
1359
1360void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1361{
1362    uint64_t tmp64 = 1;
1363
1364    /*
1365     * Wakeup the fault_thread.  It's an eventfd that should currently
1366     * be at 0, we're going to increment it to 1
1367     */
1368    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1369        /* Not much we can do here, but may as well report it */
1370        error_report("%s: incrementing failed: %s", __func__,
1371                     strerror(errno));
1372    }
1373}
1374
1375/**
1376 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1377 *   asking to discard individual ranges.
1378 *
1379 * @ms: The current migration state.
1380 * @offset: the bitmap offset of the named RAMBlock in the migration
1381 *   bitmap.
1382 * @name: RAMBlock that discards will operate on.
1383 *
1384 * returns: a new PDS.
1385 */
1386PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1387                                                 const char *name)
1388{
1389    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1390
1391    if (res) {
1392        res->ramblock_name = name;
1393    }
1394
1395    return res;
1396}
1397
1398/**
1399 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1400 *   discard. May send a discard message, may just leave it queued to
1401 *   be sent later.
1402 *
1403 * @ms: Current migration state.
1404 * @pds: Structure initialised by postcopy_discard_send_init().
1405 * @start,@length: a range of pages in the migration bitmap in the
1406 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1407 */
1408void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1409                                unsigned long start, unsigned long length)
1410{
1411    size_t tp_size = qemu_target_page_size();
1412    /* Convert to byte offsets within the RAM block */
1413    pds->start_list[pds->cur_entry] = start  * tp_size;
1414    pds->length_list[pds->cur_entry] = length * tp_size;
1415    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1416    pds->cur_entry++;
1417    pds->nsentwords++;
1418
1419    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1420        /* Full set, ship it! */
1421        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1422                                              pds->ramblock_name,
1423                                              pds->cur_entry,
1424                                              pds->start_list,
1425                                              pds->length_list);
1426        pds->nsentcmds++;
1427        pds->cur_entry = 0;
1428    }
1429}
1430
1431/**
1432 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1433 * bitmap code. Sends any outstanding discard messages, frees the PDS
1434 *
1435 * @ms: Current migration state.
1436 * @pds: Structure initialised by postcopy_discard_send_init().
1437 */
1438void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1439{
1440    /* Anything unsent? */
1441    if (pds->cur_entry) {
1442        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1443                                              pds->ramblock_name,
1444                                              pds->cur_entry,
1445                                              pds->start_list,
1446                                              pds->length_list);
1447        pds->nsentcmds++;
1448    }
1449
1450    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1451                                       pds->nsentcmds);
1452
1453    g_free(pds);
1454}
1455
1456/*
1457 * Current state of incoming postcopy; note this is not part of
1458 * MigrationIncomingState since it's state is used during cleanup
1459 * at the end as MIS is being freed.
1460 */
1461static PostcopyState incoming_postcopy_state;
1462
1463PostcopyState  postcopy_state_get(void)
1464{
1465    return atomic_mb_read(&incoming_postcopy_state);
1466}
1467
1468/* Set the state and return the old state */
1469PostcopyState postcopy_state_set(PostcopyState new_state)
1470{
1471    return atomic_xchg(&incoming_postcopy_state, new_state);
1472}
1473
1474/* Register a handler for external shared memory postcopy
1475 * called on the destination.
1476 */
1477void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1478{
1479    MigrationIncomingState *mis = migration_incoming_get_current();
1480
1481    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1482                                                  *pcfd);
1483}
1484
1485/* Unregister a handler for external shared memory postcopy
1486 */
1487void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1488{
1489    guint i;
1490    MigrationIncomingState *mis = migration_incoming_get_current();
1491    GArray *pcrfds = mis->postcopy_remote_fds;
1492
1493    for (i = 0; i < pcrfds->len; i++) {
1494        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1495        if (cur->fd == pcfd->fd) {
1496            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1497            return;
1498        }
1499    }
1500}
1501