qemu/migration/qemu-file.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include <zlib.h>
  26#include "qemu/error-report.h"
  27#include "qemu/iov.h"
  28#include "migration.h"
  29#include "qemu-file.h"
  30#include "trace.h"
  31
  32#define IO_BUF_SIZE 32768
  33#define MAX_IOV_SIZE MIN(IOV_MAX, 64)
  34
  35struct QEMUFile {
  36    const QEMUFileOps *ops;
  37    const QEMUFileHooks *hooks;
  38    void *opaque;
  39
  40    int64_t bytes_xfer;
  41    int64_t xfer_limit;
  42
  43    int64_t pos; /* start of buffer when writing, end of buffer
  44                    when reading */
  45    int buf_index;
  46    int buf_size; /* 0 when writing */
  47    uint8_t buf[IO_BUF_SIZE];
  48
  49    DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
  50    struct iovec iov[MAX_IOV_SIZE];
  51    unsigned int iovcnt;
  52
  53    int last_error;
  54};
  55
  56/*
  57 * Stop a file from being read/written - not all backing files can do this
  58 * typically only sockets can.
  59 */
  60int qemu_file_shutdown(QEMUFile *f)
  61{
  62    if (!f->ops->shut_down) {
  63        return -ENOSYS;
  64    }
  65    return f->ops->shut_down(f->opaque, true, true);
  66}
  67
  68/*
  69 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
  70 *         NULL if not available
  71 */
  72QEMUFile *qemu_file_get_return_path(QEMUFile *f)
  73{
  74    if (!f->ops->get_return_path) {
  75        return NULL;
  76    }
  77    return f->ops->get_return_path(f->opaque);
  78}
  79
  80bool qemu_file_mode_is_not_valid(const char *mode)
  81{
  82    if (mode == NULL ||
  83        (mode[0] != 'r' && mode[0] != 'w') ||
  84        mode[1] != 'b' || mode[2] != 0) {
  85        fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
  86        return true;
  87    }
  88
  89    return false;
  90}
  91
  92QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
  93{
  94    QEMUFile *f;
  95
  96    f = g_new0(QEMUFile, 1);
  97
  98    f->opaque = opaque;
  99    f->ops = ops;
 100    return f;
 101}
 102
 103
 104void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
 105{
 106    f->hooks = hooks;
 107}
 108
 109/*
 110 * Get last error for stream f
 111 *
 112 * Return negative error value if there has been an error on previous
 113 * operations, return 0 if no error happened.
 114 *
 115 */
 116int qemu_file_get_error(QEMUFile *f)
 117{
 118    return f->last_error;
 119}
 120
 121void qemu_file_set_error(QEMUFile *f, int ret)
 122{
 123    if (f->last_error == 0) {
 124        f->last_error = ret;
 125    }
 126}
 127
 128bool qemu_file_is_writable(QEMUFile *f)
 129{
 130    return f->ops->writev_buffer;
 131}
 132
 133static void qemu_iovec_release_ram(QEMUFile *f)
 134{
 135    struct iovec iov;
 136    unsigned long idx;
 137
 138    /* Find and release all the contiguous memory ranges marked as may_free. */
 139    idx = find_next_bit(f->may_free, f->iovcnt, 0);
 140    if (idx >= f->iovcnt) {
 141        return;
 142    }
 143    iov = f->iov[idx];
 144
 145    /* The madvise() in the loop is called for iov within a continuous range and
 146     * then reinitialize the iov. And in the end, madvise() is called for the
 147     * last iov.
 148     */
 149    while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
 150        /* check for adjacent buffer and coalesce them */
 151        if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
 152            iov.iov_len += f->iov[idx].iov_len;
 153            continue;
 154        }
 155        if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 156            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 157                         iov.iov_base, iov.iov_len, strerror(errno));
 158        }
 159        iov = f->iov[idx];
 160    }
 161    if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 162            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 163                         iov.iov_base, iov.iov_len, strerror(errno));
 164    }
 165    memset(f->may_free, 0, sizeof(f->may_free));
 166}
 167
 168/**
 169 * Flushes QEMUFile buffer
 170 *
 171 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
 172 * put_buffer ops. This will flush all pending data. If data was
 173 * only partially flushed, it will set an error state.
 174 */
 175void qemu_fflush(QEMUFile *f)
 176{
 177    ssize_t ret = 0;
 178    ssize_t expect = 0;
 179
 180    if (!qemu_file_is_writable(f)) {
 181        return;
 182    }
 183
 184    if (f->iovcnt > 0) {
 185        expect = iov_size(f->iov, f->iovcnt);
 186        ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
 187
 188        qemu_iovec_release_ram(f);
 189    }
 190
 191    if (ret >= 0) {
 192        f->pos += ret;
 193    }
 194    /* We expect the QEMUFile write impl to send the full
 195     * data set we requested, so sanity check that.
 196     */
 197    if (ret != expect) {
 198        qemu_file_set_error(f, ret < 0 ? ret : -EIO);
 199    }
 200    f->buf_index = 0;
 201    f->iovcnt = 0;
 202}
 203
 204void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
 205{
 206    int ret = 0;
 207
 208    if (f->hooks && f->hooks->before_ram_iterate) {
 209        ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
 210        if (ret < 0) {
 211            qemu_file_set_error(f, ret);
 212        }
 213    }
 214}
 215
 216void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
 217{
 218    int ret = 0;
 219
 220    if (f->hooks && f->hooks->after_ram_iterate) {
 221        ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
 222        if (ret < 0) {
 223            qemu_file_set_error(f, ret);
 224        }
 225    }
 226}
 227
 228void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
 229{
 230    int ret = -EINVAL;
 231
 232    if (f->hooks && f->hooks->hook_ram_load) {
 233        ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
 234        if (ret < 0) {
 235            qemu_file_set_error(f, ret);
 236        }
 237    } else {
 238        /*
 239         * Hook is a hook specifically requested by the source sending a flag
 240         * that expects there to be a hook on the destination.
 241         */
 242        if (flags == RAM_CONTROL_HOOK) {
 243            qemu_file_set_error(f, ret);
 244        }
 245    }
 246}
 247
 248size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
 249                             ram_addr_t offset, size_t size,
 250                             uint64_t *bytes_sent)
 251{
 252    if (f->hooks && f->hooks->save_page) {
 253        int ret = f->hooks->save_page(f, f->opaque, block_offset,
 254                                      offset, size, bytes_sent);
 255        if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 256            f->bytes_xfer += size;
 257        }
 258
 259        if (ret != RAM_SAVE_CONTROL_DELAYED &&
 260            ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 261            if (bytes_sent && *bytes_sent > 0) {
 262                qemu_update_position(f, *bytes_sent);
 263            } else if (ret < 0) {
 264                qemu_file_set_error(f, ret);
 265            }
 266        }
 267
 268        return ret;
 269    }
 270
 271    return RAM_SAVE_CONTROL_NOT_SUPP;
 272}
 273
 274/*
 275 * Attempt to fill the buffer from the underlying file
 276 * Returns the number of bytes read, or negative value for an error.
 277 *
 278 * Note that it can return a partially full buffer even in a not error/not EOF
 279 * case if the underlying file descriptor gives a short read, and that can
 280 * happen even on a blocking fd.
 281 */
 282static ssize_t qemu_fill_buffer(QEMUFile *f)
 283{
 284    int len;
 285    int pending;
 286
 287    assert(!qemu_file_is_writable(f));
 288
 289    pending = f->buf_size - f->buf_index;
 290    if (pending > 0) {
 291        memmove(f->buf, f->buf + f->buf_index, pending);
 292    }
 293    f->buf_index = 0;
 294    f->buf_size = pending;
 295
 296    len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
 297                        IO_BUF_SIZE - pending);
 298    if (len > 0) {
 299        f->buf_size += len;
 300        f->pos += len;
 301    } else if (len == 0) {
 302        qemu_file_set_error(f, -EIO);
 303    } else if (len != -EAGAIN) {
 304        qemu_file_set_error(f, len);
 305    }
 306
 307    return len;
 308}
 309
 310void qemu_update_position(QEMUFile *f, size_t size)
 311{
 312    f->pos += size;
 313}
 314
 315/** Closes the file
 316 *
 317 * Returns negative error value if any error happened on previous operations or
 318 * while closing the file. Returns 0 or positive number on success.
 319 *
 320 * The meaning of return value on success depends on the specific backend
 321 * being used.
 322 */
 323int qemu_fclose(QEMUFile *f)
 324{
 325    int ret;
 326    qemu_fflush(f);
 327    ret = qemu_file_get_error(f);
 328
 329    if (f->ops->close) {
 330        int ret2 = f->ops->close(f->opaque);
 331        if (ret >= 0) {
 332            ret = ret2;
 333        }
 334    }
 335    /* If any error was spotted before closing, we should report it
 336     * instead of the close() return value.
 337     */
 338    if (f->last_error) {
 339        ret = f->last_error;
 340    }
 341    g_free(f);
 342    trace_qemu_file_fclose();
 343    return ret;
 344}
 345
 346static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
 347                         bool may_free)
 348{
 349    /* check for adjacent buffer and coalesce them */
 350    if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
 351        f->iov[f->iovcnt - 1].iov_len &&
 352        may_free == test_bit(f->iovcnt - 1, f->may_free))
 353    {
 354        f->iov[f->iovcnt - 1].iov_len += size;
 355    } else {
 356        if (may_free) {
 357            set_bit(f->iovcnt, f->may_free);
 358        }
 359        f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
 360        f->iov[f->iovcnt++].iov_len = size;
 361    }
 362
 363    if (f->iovcnt >= MAX_IOV_SIZE) {
 364        qemu_fflush(f);
 365    }
 366}
 367
 368void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
 369                           bool may_free)
 370{
 371    if (f->last_error) {
 372        return;
 373    }
 374
 375    f->bytes_xfer += size;
 376    add_to_iovec(f, buf, size, may_free);
 377}
 378
 379void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
 380{
 381    size_t l;
 382
 383    if (f->last_error) {
 384        return;
 385    }
 386
 387    while (size > 0) {
 388        l = IO_BUF_SIZE - f->buf_index;
 389        if (l > size) {
 390            l = size;
 391        }
 392        memcpy(f->buf + f->buf_index, buf, l);
 393        f->bytes_xfer += l;
 394        add_to_iovec(f, f->buf + f->buf_index, l, false);
 395        f->buf_index += l;
 396        if (f->buf_index == IO_BUF_SIZE) {
 397            qemu_fflush(f);
 398        }
 399        if (qemu_file_get_error(f)) {
 400            break;
 401        }
 402        buf += l;
 403        size -= l;
 404    }
 405}
 406
 407void qemu_put_byte(QEMUFile *f, int v)
 408{
 409    if (f->last_error) {
 410        return;
 411    }
 412
 413    f->buf[f->buf_index] = v;
 414    f->bytes_xfer++;
 415    add_to_iovec(f, f->buf + f->buf_index, 1, false);
 416    f->buf_index++;
 417    if (f->buf_index == IO_BUF_SIZE) {
 418        qemu_fflush(f);
 419    }
 420}
 421
 422void qemu_file_skip(QEMUFile *f, int size)
 423{
 424    if (f->buf_index + size <= f->buf_size) {
 425        f->buf_index += size;
 426    }
 427}
 428
 429/*
 430 * Read 'size' bytes from file (at 'offset') without moving the
 431 * pointer and set 'buf' to point to that data.
 432 *
 433 * It will return size bytes unless there was an error, in which case it will
 434 * return as many as it managed to read (assuming blocking fd's which
 435 * all current QEMUFile are)
 436 */
 437size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
 438{
 439    ssize_t pending;
 440    size_t index;
 441
 442    assert(!qemu_file_is_writable(f));
 443    assert(offset < IO_BUF_SIZE);
 444    assert(size <= IO_BUF_SIZE - offset);
 445
 446    /* The 1st byte to read from */
 447    index = f->buf_index + offset;
 448    /* The number of available bytes starting at index */
 449    pending = f->buf_size - index;
 450
 451    /*
 452     * qemu_fill_buffer might return just a few bytes, even when there isn't
 453     * an error, so loop collecting them until we get enough.
 454     */
 455    while (pending < size) {
 456        int received = qemu_fill_buffer(f);
 457
 458        if (received <= 0) {
 459            break;
 460        }
 461
 462        index = f->buf_index + offset;
 463        pending = f->buf_size - index;
 464    }
 465
 466    if (pending <= 0) {
 467        return 0;
 468    }
 469    if (size > pending) {
 470        size = pending;
 471    }
 472
 473    *buf = f->buf + index;
 474    return size;
 475}
 476
 477/*
 478 * Read 'size' bytes of data from the file into buf.
 479 * 'size' can be larger than the internal buffer.
 480 *
 481 * It will return size bytes unless there was an error, in which case it will
 482 * return as many as it managed to read (assuming blocking fd's which
 483 * all current QEMUFile are)
 484 */
 485size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
 486{
 487    size_t pending = size;
 488    size_t done = 0;
 489
 490    while (pending > 0) {
 491        size_t res;
 492        uint8_t *src;
 493
 494        res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
 495        if (res == 0) {
 496            return done;
 497        }
 498        memcpy(buf, src, res);
 499        qemu_file_skip(f, res);
 500        buf += res;
 501        pending -= res;
 502        done += res;
 503    }
 504    return done;
 505}
 506
 507/*
 508 * Read 'size' bytes of data from the file.
 509 * 'size' can be larger than the internal buffer.
 510 *
 511 * The data:
 512 *   may be held on an internal buffer (in which case *buf is updated
 513 *     to point to it) that is valid until the next qemu_file operation.
 514 * OR
 515 *   will be copied to the *buf that was passed in.
 516 *
 517 * The code tries to avoid the copy if possible.
 518 *
 519 * It will return size bytes unless there was an error, in which case it will
 520 * return as many as it managed to read (assuming blocking fd's which
 521 * all current QEMUFile are)
 522 *
 523 * Note: Since **buf may get changed, the caller should take care to
 524 *       keep a pointer to the original buffer if it needs to deallocate it.
 525 */
 526size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
 527{
 528    if (size < IO_BUF_SIZE) {
 529        size_t res;
 530        uint8_t *src;
 531
 532        res = qemu_peek_buffer(f, &src, size, 0);
 533
 534        if (res == size) {
 535            qemu_file_skip(f, res);
 536            *buf = src;
 537            return res;
 538        }
 539    }
 540
 541    return qemu_get_buffer(f, *buf, size);
 542}
 543
 544/*
 545 * Peeks a single byte from the buffer; this isn't guaranteed to work if
 546 * offset leaves a gap after the previous read/peeked data.
 547 */
 548int qemu_peek_byte(QEMUFile *f, int offset)
 549{
 550    int index = f->buf_index + offset;
 551
 552    assert(!qemu_file_is_writable(f));
 553    assert(offset < IO_BUF_SIZE);
 554
 555    if (index >= f->buf_size) {
 556        qemu_fill_buffer(f);
 557        index = f->buf_index + offset;
 558        if (index >= f->buf_size) {
 559            return 0;
 560        }
 561    }
 562    return f->buf[index];
 563}
 564
 565int qemu_get_byte(QEMUFile *f)
 566{
 567    int result;
 568
 569    result = qemu_peek_byte(f, 0);
 570    qemu_file_skip(f, 1);
 571    return result;
 572}
 573
 574int64_t qemu_ftell_fast(QEMUFile *f)
 575{
 576    int64_t ret = f->pos;
 577    int i;
 578
 579    for (i = 0; i < f->iovcnt; i++) {
 580        ret += f->iov[i].iov_len;
 581    }
 582
 583    return ret;
 584}
 585
 586int64_t qemu_ftell(QEMUFile *f)
 587{
 588    qemu_fflush(f);
 589    return f->pos;
 590}
 591
 592int qemu_file_rate_limit(QEMUFile *f)
 593{
 594    if (qemu_file_get_error(f)) {
 595        return 1;
 596    }
 597    if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
 598        return 1;
 599    }
 600    return 0;
 601}
 602
 603int64_t qemu_file_get_rate_limit(QEMUFile *f)
 604{
 605    return f->xfer_limit;
 606}
 607
 608void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
 609{
 610    f->xfer_limit = limit;
 611}
 612
 613void qemu_file_reset_rate_limit(QEMUFile *f)
 614{
 615    f->bytes_xfer = 0;
 616}
 617
 618void qemu_put_be16(QEMUFile *f, unsigned int v)
 619{
 620    qemu_put_byte(f, v >> 8);
 621    qemu_put_byte(f, v);
 622}
 623
 624void qemu_put_be32(QEMUFile *f, unsigned int v)
 625{
 626    qemu_put_byte(f, v >> 24);
 627    qemu_put_byte(f, v >> 16);
 628    qemu_put_byte(f, v >> 8);
 629    qemu_put_byte(f, v);
 630}
 631
 632void qemu_put_be64(QEMUFile *f, uint64_t v)
 633{
 634    qemu_put_be32(f, v >> 32);
 635    qemu_put_be32(f, v);
 636}
 637
 638unsigned int qemu_get_be16(QEMUFile *f)
 639{
 640    unsigned int v;
 641    v = qemu_get_byte(f) << 8;
 642    v |= qemu_get_byte(f);
 643    return v;
 644}
 645
 646unsigned int qemu_get_be32(QEMUFile *f)
 647{
 648    unsigned int v;
 649    v = (unsigned int)qemu_get_byte(f) << 24;
 650    v |= qemu_get_byte(f) << 16;
 651    v |= qemu_get_byte(f) << 8;
 652    v |= qemu_get_byte(f);
 653    return v;
 654}
 655
 656uint64_t qemu_get_be64(QEMUFile *f)
 657{
 658    uint64_t v;
 659    v = (uint64_t)qemu_get_be32(f) << 32;
 660    v |= qemu_get_be32(f);
 661    return v;
 662}
 663
 664/* return the size after compression, or negative value on error */
 665static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 666                              const uint8_t *source, size_t source_len)
 667{
 668    int err;
 669
 670    err = deflateReset(stream);
 671    if (err != Z_OK) {
 672        return -1;
 673    }
 674
 675    stream->avail_in = source_len;
 676    stream->next_in = (uint8_t *)source;
 677    stream->avail_out = dest_len;
 678    stream->next_out = dest;
 679
 680    err = deflate(stream, Z_FINISH);
 681    if (err != Z_STREAM_END) {
 682        return -1;
 683    }
 684
 685    return stream->next_out - dest;
 686}
 687
 688/* Compress size bytes of data start at p and store the compressed
 689 * data to the buffer of f.
 690 *
 691 * When f is not writable, return -1 if f has no space to save the
 692 * compressed data.
 693 * When f is wirtable and it has no space to save the compressed data,
 694 * do fflush first, if f still has no space to save the compressed
 695 * data, return -1.
 696 */
 697ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
 698                                  const uint8_t *p, size_t size)
 699{
 700    ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
 701
 702    if (blen < compressBound(size)) {
 703        if (!qemu_file_is_writable(f)) {
 704            return -1;
 705        }
 706        qemu_fflush(f);
 707        blen = IO_BUF_SIZE - sizeof(int32_t);
 708        if (blen < compressBound(size)) {
 709            return -1;
 710        }
 711    }
 712
 713    blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
 714                              blen, p, size);
 715    if (blen < 0) {
 716        return -1;
 717    }
 718
 719    qemu_put_be32(f, blen);
 720    if (f->ops->writev_buffer) {
 721        add_to_iovec(f, f->buf + f->buf_index, blen, false);
 722    }
 723    f->buf_index += blen;
 724    if (f->buf_index == IO_BUF_SIZE) {
 725        qemu_fflush(f);
 726    }
 727    return blen + sizeof(int32_t);
 728}
 729
 730/* Put the data in the buffer of f_src to the buffer of f_des, and
 731 * then reset the buf_index of f_src to 0.
 732 */
 733
 734int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
 735{
 736    int len = 0;
 737
 738    if (f_src->buf_index > 0) {
 739        len = f_src->buf_index;
 740        qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
 741        f_src->buf_index = 0;
 742        f_src->iovcnt = 0;
 743    }
 744    return len;
 745}
 746
 747/*
 748 * Get a string whose length is determined by a single preceding byte
 749 * A preallocated 256 byte buffer must be passed in.
 750 * Returns: len on success and a 0 terminated string in the buffer
 751 *          else 0
 752 *          (Note a 0 length string will return 0 either way)
 753 */
 754size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
 755{
 756    size_t len = qemu_get_byte(f);
 757    size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
 758
 759    buf[res] = 0;
 760
 761    return res == len ? res : 0;
 762}
 763
 764/*
 765 * Put a string with one preceding byte containing its length. The length of
 766 * the string should be less than 256.
 767 */
 768void qemu_put_counted_string(QEMUFile *f, const char *str)
 769{
 770    size_t len = strlen(str);
 771
 772    assert(len < 256);
 773    qemu_put_byte(f, len);
 774    qemu_put_buffer(f, (const uint8_t *)str, len);
 775}
 776
 777/*
 778 * Set the blocking state of the QEMUFile.
 779 * Note: On some transports the OS only keeps a single blocking state for
 780 *       both directions, and thus changing the blocking on the main
 781 *       QEMUFile can also affect the return path.
 782 */
 783void qemu_file_set_blocking(QEMUFile *f, bool block)
 784{
 785    if (f->ops->set_blocking) {
 786        f->ops->set_blocking(f->opaque, block);
 787    }
 788}
 789