qemu/migration/ram.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 * Copyright (c) 2011-2015 Red Hat Inc
   6 *
   7 * Authors:
   8 *  Juan Quintela <quintela@redhat.com>
   9 *
  10 * Permission is hereby granted, free of charge, to any person obtaining a copy
  11 * of this software and associated documentation files (the "Software"), to deal
  12 * in the Software without restriction, including without limitation the rights
  13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  14 * copies of the Software, and to permit persons to whom the Software is
  15 * furnished to do so, subject to the following conditions:
  16 *
  17 * The above copyright notice and this permission notice shall be included in
  18 * all copies or substantial portions of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  26 * THE SOFTWARE.
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "cpu.h"
  31#include <zlib.h>
  32#include "qemu/cutils.h"
  33#include "qemu/bitops.h"
  34#include "qemu/bitmap.h"
  35#include "qemu/main-loop.h"
  36#include "qemu/pmem.h"
  37#include "xbzrle.h"
  38#include "ram.h"
  39#include "migration.h"
  40#include "socket.h"
  41#include "migration/register.h"
  42#include "migration/misc.h"
  43#include "qemu-file.h"
  44#include "postcopy-ram.h"
  45#include "page_cache.h"
  46#include "qemu/error-report.h"
  47#include "qapi/error.h"
  48#include "qapi/qapi-events-migration.h"
  49#include "qapi/qmp/qerror.h"
  50#include "trace.h"
  51#include "exec/ram_addr.h"
  52#include "exec/target_page.h"
  53#include "qemu/rcu_queue.h"
  54#include "migration/colo.h"
  55#include "block.h"
  56#include "sysemu/sysemu.h"
  57#include "qemu/uuid.h"
  58#include "savevm.h"
  59#include "qemu/iov.h"
  60
  61/***********************************************************/
  62/* ram save/restore */
  63
  64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
  65 * worked for pages that where filled with the same char.  We switched
  66 * it to only search for the zero value.  And to avoid confusion with
  67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
  68 */
  69
  70#define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
  71#define RAM_SAVE_FLAG_ZERO     0x02
  72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
  73#define RAM_SAVE_FLAG_PAGE     0x08
  74#define RAM_SAVE_FLAG_EOS      0x10
  75#define RAM_SAVE_FLAG_CONTINUE 0x20
  76#define RAM_SAVE_FLAG_XBZRLE   0x40
  77/* 0x80 is reserved in migration.h start with 0x100 next */
  78#define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
  79
  80static inline bool is_zero_range(uint8_t *p, uint64_t size)
  81{
  82    return buffer_is_zero(p, size);
  83}
  84
  85XBZRLECacheStats xbzrle_counters;
  86
  87/* struct contains XBZRLE cache and a static page
  88   used by the compression */
  89static struct {
  90    /* buffer used for XBZRLE encoding */
  91    uint8_t *encoded_buf;
  92    /* buffer for storing page content */
  93    uint8_t *current_buf;
  94    /* Cache for XBZRLE, Protected by lock. */
  95    PageCache *cache;
  96    QemuMutex lock;
  97    /* it will store a page full of zeros */
  98    uint8_t *zero_target_page;
  99    /* buffer used for XBZRLE decoding */
 100    uint8_t *decoded_buf;
 101} XBZRLE;
 102
 103static void XBZRLE_cache_lock(void)
 104{
 105    if (migrate_use_xbzrle())
 106        qemu_mutex_lock(&XBZRLE.lock);
 107}
 108
 109static void XBZRLE_cache_unlock(void)
 110{
 111    if (migrate_use_xbzrle())
 112        qemu_mutex_unlock(&XBZRLE.lock);
 113}
 114
 115/**
 116 * xbzrle_cache_resize: resize the xbzrle cache
 117 *
 118 * This function is called from qmp_migrate_set_cache_size in main
 119 * thread, possibly while a migration is in progress.  A running
 120 * migration may be using the cache and might finish during this call,
 121 * hence changes to the cache are protected by XBZRLE.lock().
 122 *
 123 * Returns 0 for success or -1 for error
 124 *
 125 * @new_size: new cache size
 126 * @errp: set *errp if the check failed, with reason
 127 */
 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
 129{
 130    PageCache *new_cache;
 131    int64_t ret = 0;
 132
 133    /* Check for truncation */
 134    if (new_size != (size_t)new_size) {
 135        error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
 136                   "exceeding address space");
 137        return -1;
 138    }
 139
 140    if (new_size == migrate_xbzrle_cache_size()) {
 141        /* nothing to do */
 142        return 0;
 143    }
 144
 145    XBZRLE_cache_lock();
 146
 147    if (XBZRLE.cache != NULL) {
 148        new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
 149        if (!new_cache) {
 150            ret = -1;
 151            goto out;
 152        }
 153
 154        cache_fini(XBZRLE.cache);
 155        XBZRLE.cache = new_cache;
 156    }
 157out:
 158    XBZRLE_cache_unlock();
 159    return ret;
 160}
 161
 162static bool ramblock_is_ignored(RAMBlock *block)
 163{
 164    return !qemu_ram_is_migratable(block) ||
 165           (migrate_ignore_shared() && qemu_ram_is_shared(block));
 166}
 167
 168/* Should be holding either ram_list.mutex, or the RCU lock. */
 169#define RAMBLOCK_FOREACH_NOT_IGNORED(block)            \
 170    INTERNAL_RAMBLOCK_FOREACH(block)                   \
 171        if (ramblock_is_ignored(block)) {} else
 172
 173#define RAMBLOCK_FOREACH_MIGRATABLE(block)             \
 174    INTERNAL_RAMBLOCK_FOREACH(block)                   \
 175        if (!qemu_ram_is_migratable(block)) {} else
 176
 177#undef RAMBLOCK_FOREACH
 178
 179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
 180{
 181    RAMBlock *block;
 182    int ret = 0;
 183
 184    rcu_read_lock();
 185    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 186        ret = func(block, opaque);
 187        if (ret) {
 188            break;
 189        }
 190    }
 191    rcu_read_unlock();
 192    return ret;
 193}
 194
 195static void ramblock_recv_map_init(void)
 196{
 197    RAMBlock *rb;
 198
 199    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 200        assert(!rb->receivedmap);
 201        rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
 202    }
 203}
 204
 205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
 206{
 207    return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
 208                    rb->receivedmap);
 209}
 210
 211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
 212{
 213    return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 214}
 215
 216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
 217{
 218    set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
 219}
 220
 221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
 222                                    size_t nr)
 223{
 224    bitmap_set_atomic(rb->receivedmap,
 225                      ramblock_recv_bitmap_offset(host_addr, rb),
 226                      nr);
 227}
 228
 229#define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
 230
 231/*
 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
 233 *
 234 * Returns >0 if success with sent bytes, or <0 if error.
 235 */
 236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
 237                                  const char *block_name)
 238{
 239    RAMBlock *block = qemu_ram_block_by_name(block_name);
 240    unsigned long *le_bitmap, nbits;
 241    uint64_t size;
 242
 243    if (!block) {
 244        error_report("%s: invalid block name: %s", __func__, block_name);
 245        return -1;
 246    }
 247
 248    nbits = block->used_length >> TARGET_PAGE_BITS;
 249
 250    /*
 251     * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
 252     * machines we may need 4 more bytes for padding (see below
 253     * comment). So extend it a bit before hand.
 254     */
 255    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 256
 257    /*
 258     * Always use little endian when sending the bitmap. This is
 259     * required that when source and destination VMs are not using the
 260     * same endianess. (Note: big endian won't work.)
 261     */
 262    bitmap_to_le(le_bitmap, block->receivedmap, nbits);
 263
 264    /* Size of the bitmap, in bytes */
 265    size = DIV_ROUND_UP(nbits, 8);
 266
 267    /*
 268     * size is always aligned to 8 bytes for 64bit machines, but it
 269     * may not be true for 32bit machines. We need this padding to
 270     * make sure the migration can survive even between 32bit and
 271     * 64bit machines.
 272     */
 273    size = ROUND_UP(size, 8);
 274
 275    qemu_put_be64(file, size);
 276    qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
 277    /*
 278     * Mark as an end, in case the middle part is screwed up due to
 279     * some "misterious" reason.
 280     */
 281    qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
 282    qemu_fflush(file);
 283
 284    g_free(le_bitmap);
 285
 286    if (qemu_file_get_error(file)) {
 287        return qemu_file_get_error(file);
 288    }
 289
 290    return size + sizeof(size);
 291}
 292
 293/*
 294 * An outstanding page request, on the source, having been received
 295 * and queued
 296 */
 297struct RAMSrcPageRequest {
 298    RAMBlock *rb;
 299    hwaddr    offset;
 300    hwaddr    len;
 301
 302    QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
 303};
 304
 305/* State of RAM for migration */
 306struct RAMState {
 307    /* QEMUFile used for this migration */
 308    QEMUFile *f;
 309    /* Last block that we have visited searching for dirty pages */
 310    RAMBlock *last_seen_block;
 311    /* Last block from where we have sent data */
 312    RAMBlock *last_sent_block;
 313    /* Last dirty target page we have sent */
 314    ram_addr_t last_page;
 315    /* last ram version we have seen */
 316    uint32_t last_version;
 317    /* We are in the first round */
 318    bool ram_bulk_stage;
 319    /* The free page optimization is enabled */
 320    bool fpo_enabled;
 321    /* How many times we have dirty too many pages */
 322    int dirty_rate_high_cnt;
 323    /* these variables are used for bitmap sync */
 324    /* last time we did a full bitmap_sync */
 325    int64_t time_last_bitmap_sync;
 326    /* bytes transferred at start_time */
 327    uint64_t bytes_xfer_prev;
 328    /* number of dirty pages since start_time */
 329    uint64_t num_dirty_pages_period;
 330    /* xbzrle misses since the beginning of the period */
 331    uint64_t xbzrle_cache_miss_prev;
 332
 333    /* compression statistics since the beginning of the period */
 334    /* amount of count that no free thread to compress data */
 335    uint64_t compress_thread_busy_prev;
 336    /* amount bytes after compression */
 337    uint64_t compressed_size_prev;
 338    /* amount of compressed pages */
 339    uint64_t compress_pages_prev;
 340
 341    /* total handled target pages at the beginning of period */
 342    uint64_t target_page_count_prev;
 343    /* total handled target pages since start */
 344    uint64_t target_page_count;
 345    /* number of dirty bits in the bitmap */
 346    uint64_t migration_dirty_pages;
 347    /* Protects modification of the bitmap and migration dirty pages */
 348    QemuMutex bitmap_mutex;
 349    /* The RAMBlock used in the last src_page_requests */
 350    RAMBlock *last_req_rb;
 351    /* Queue of outstanding page requests from the destination */
 352    QemuMutex src_page_req_mutex;
 353    QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
 354};
 355typedef struct RAMState RAMState;
 356
 357static RAMState *ram_state;
 358
 359static NotifierWithReturnList precopy_notifier_list;
 360
 361void precopy_infrastructure_init(void)
 362{
 363    notifier_with_return_list_init(&precopy_notifier_list);
 364}
 365
 366void precopy_add_notifier(NotifierWithReturn *n)
 367{
 368    notifier_with_return_list_add(&precopy_notifier_list, n);
 369}
 370
 371void precopy_remove_notifier(NotifierWithReturn *n)
 372{
 373    notifier_with_return_remove(n);
 374}
 375
 376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
 377{
 378    PrecopyNotifyData pnd;
 379    pnd.reason = reason;
 380    pnd.errp = errp;
 381
 382    return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
 383}
 384
 385void precopy_enable_free_page_optimization(void)
 386{
 387    if (!ram_state) {
 388        return;
 389    }
 390
 391    ram_state->fpo_enabled = true;
 392}
 393
 394uint64_t ram_bytes_remaining(void)
 395{
 396    return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
 397                       0;
 398}
 399
 400MigrationStats ram_counters;
 401
 402/* used by the search for pages to send */
 403struct PageSearchStatus {
 404    /* Current block being searched */
 405    RAMBlock    *block;
 406    /* Current page to search from */
 407    unsigned long page;
 408    /* Set once we wrap around */
 409    bool         complete_round;
 410};
 411typedef struct PageSearchStatus PageSearchStatus;
 412
 413CompressionStats compression_counters;
 414
 415struct CompressParam {
 416    bool done;
 417    bool quit;
 418    bool zero_page;
 419    QEMUFile *file;
 420    QemuMutex mutex;
 421    QemuCond cond;
 422    RAMBlock *block;
 423    ram_addr_t offset;
 424
 425    /* internally used fields */
 426    z_stream stream;
 427    uint8_t *originbuf;
 428};
 429typedef struct CompressParam CompressParam;
 430
 431struct DecompressParam {
 432    bool done;
 433    bool quit;
 434    QemuMutex mutex;
 435    QemuCond cond;
 436    void *des;
 437    uint8_t *compbuf;
 438    int len;
 439    z_stream stream;
 440};
 441typedef struct DecompressParam DecompressParam;
 442
 443static CompressParam *comp_param;
 444static QemuThread *compress_threads;
 445/* comp_done_cond is used to wake up the migration thread when
 446 * one of the compression threads has finished the compression.
 447 * comp_done_lock is used to co-work with comp_done_cond.
 448 */
 449static QemuMutex comp_done_lock;
 450static QemuCond comp_done_cond;
 451/* The empty QEMUFileOps will be used by file in CompressParam */
 452static const QEMUFileOps empty_ops = { };
 453
 454static QEMUFile *decomp_file;
 455static DecompressParam *decomp_param;
 456static QemuThread *decompress_threads;
 457static QemuMutex decomp_done_lock;
 458static QemuCond decomp_done_cond;
 459
 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 461                                 ram_addr_t offset, uint8_t *source_buf);
 462
 463static void *do_data_compress(void *opaque)
 464{
 465    CompressParam *param = opaque;
 466    RAMBlock *block;
 467    ram_addr_t offset;
 468    bool zero_page;
 469
 470    qemu_mutex_lock(&param->mutex);
 471    while (!param->quit) {
 472        if (param->block) {
 473            block = param->block;
 474            offset = param->offset;
 475            param->block = NULL;
 476            qemu_mutex_unlock(&param->mutex);
 477
 478            zero_page = do_compress_ram_page(param->file, &param->stream,
 479                                             block, offset, param->originbuf);
 480
 481            qemu_mutex_lock(&comp_done_lock);
 482            param->done = true;
 483            param->zero_page = zero_page;
 484            qemu_cond_signal(&comp_done_cond);
 485            qemu_mutex_unlock(&comp_done_lock);
 486
 487            qemu_mutex_lock(&param->mutex);
 488        } else {
 489            qemu_cond_wait(&param->cond, &param->mutex);
 490        }
 491    }
 492    qemu_mutex_unlock(&param->mutex);
 493
 494    return NULL;
 495}
 496
 497static void compress_threads_save_cleanup(void)
 498{
 499    int i, thread_count;
 500
 501    if (!migrate_use_compression() || !comp_param) {
 502        return;
 503    }
 504
 505    thread_count = migrate_compress_threads();
 506    for (i = 0; i < thread_count; i++) {
 507        /*
 508         * we use it as a indicator which shows if the thread is
 509         * properly init'd or not
 510         */
 511        if (!comp_param[i].file) {
 512            break;
 513        }
 514
 515        qemu_mutex_lock(&comp_param[i].mutex);
 516        comp_param[i].quit = true;
 517        qemu_cond_signal(&comp_param[i].cond);
 518        qemu_mutex_unlock(&comp_param[i].mutex);
 519
 520        qemu_thread_join(compress_threads + i);
 521        qemu_mutex_destroy(&comp_param[i].mutex);
 522        qemu_cond_destroy(&comp_param[i].cond);
 523        deflateEnd(&comp_param[i].stream);
 524        g_free(comp_param[i].originbuf);
 525        qemu_fclose(comp_param[i].file);
 526        comp_param[i].file = NULL;
 527    }
 528    qemu_mutex_destroy(&comp_done_lock);
 529    qemu_cond_destroy(&comp_done_cond);
 530    g_free(compress_threads);
 531    g_free(comp_param);
 532    compress_threads = NULL;
 533    comp_param = NULL;
 534}
 535
 536static int compress_threads_save_setup(void)
 537{
 538    int i, thread_count;
 539
 540    if (!migrate_use_compression()) {
 541        return 0;
 542    }
 543    thread_count = migrate_compress_threads();
 544    compress_threads = g_new0(QemuThread, thread_count);
 545    comp_param = g_new0(CompressParam, thread_count);
 546    qemu_cond_init(&comp_done_cond);
 547    qemu_mutex_init(&comp_done_lock);
 548    for (i = 0; i < thread_count; i++) {
 549        comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
 550        if (!comp_param[i].originbuf) {
 551            goto exit;
 552        }
 553
 554        if (deflateInit(&comp_param[i].stream,
 555                        migrate_compress_level()) != Z_OK) {
 556            g_free(comp_param[i].originbuf);
 557            goto exit;
 558        }
 559
 560        /* comp_param[i].file is just used as a dummy buffer to save data,
 561         * set its ops to empty.
 562         */
 563        comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
 564        comp_param[i].done = true;
 565        comp_param[i].quit = false;
 566        qemu_mutex_init(&comp_param[i].mutex);
 567        qemu_cond_init(&comp_param[i].cond);
 568        qemu_thread_create(compress_threads + i, "compress",
 569                           do_data_compress, comp_param + i,
 570                           QEMU_THREAD_JOINABLE);
 571    }
 572    return 0;
 573
 574exit:
 575    compress_threads_save_cleanup();
 576    return -1;
 577}
 578
 579/* Multiple fd's */
 580
 581#define MULTIFD_MAGIC 0x11223344U
 582#define MULTIFD_VERSION 1
 583
 584#define MULTIFD_FLAG_SYNC (1 << 0)
 585
 586/* This value needs to be a multiple of qemu_target_page_size() */
 587#define MULTIFD_PACKET_SIZE (512 * 1024)
 588
 589typedef struct {
 590    uint32_t magic;
 591    uint32_t version;
 592    unsigned char uuid[16]; /* QemuUUID */
 593    uint8_t id;
 594    uint8_t unused1[7];     /* Reserved for future use */
 595    uint64_t unused2[4];    /* Reserved for future use */
 596} __attribute__((packed)) MultiFDInit_t;
 597
 598typedef struct {
 599    uint32_t magic;
 600    uint32_t version;
 601    uint32_t flags;
 602    /* maximum number of allocated pages */
 603    uint32_t pages_alloc;
 604    uint32_t pages_used;
 605    /* size of the next packet that contains pages */
 606    uint32_t next_packet_size;
 607    uint64_t packet_num;
 608    uint64_t unused[4];    /* Reserved for future use */
 609    char ramblock[256];
 610    uint64_t offset[];
 611} __attribute__((packed)) MultiFDPacket_t;
 612
 613typedef struct {
 614    /* number of used pages */
 615    uint32_t used;
 616    /* number of allocated pages */
 617    uint32_t allocated;
 618    /* global number of generated multifd packets */
 619    uint64_t packet_num;
 620    /* offset of each page */
 621    ram_addr_t *offset;
 622    /* pointer to each page */
 623    struct iovec *iov;
 624    RAMBlock *block;
 625} MultiFDPages_t;
 626
 627typedef struct {
 628    /* this fields are not changed once the thread is created */
 629    /* channel number */
 630    uint8_t id;
 631    /* channel thread name */
 632    char *name;
 633    /* channel thread id */
 634    QemuThread thread;
 635    /* communication channel */
 636    QIOChannel *c;
 637    /* sem where to wait for more work */
 638    QemuSemaphore sem;
 639    /* this mutex protects the following parameters */
 640    QemuMutex mutex;
 641    /* is this channel thread running */
 642    bool running;
 643    /* should this thread finish */
 644    bool quit;
 645    /* thread has work to do */
 646    int pending_job;
 647    /* array of pages to sent */
 648    MultiFDPages_t *pages;
 649    /* packet allocated len */
 650    uint32_t packet_len;
 651    /* pointer to the packet */
 652    MultiFDPacket_t *packet;
 653    /* multifd flags for each packet */
 654    uint32_t flags;
 655    /* size of the next packet that contains pages */
 656    uint32_t next_packet_size;
 657    /* global number of generated multifd packets */
 658    uint64_t packet_num;
 659    /* thread local variables */
 660    /* packets sent through this channel */
 661    uint64_t num_packets;
 662    /* pages sent through this channel */
 663    uint64_t num_pages;
 664}  MultiFDSendParams;
 665
 666typedef struct {
 667    /* this fields are not changed once the thread is created */
 668    /* channel number */
 669    uint8_t id;
 670    /* channel thread name */
 671    char *name;
 672    /* channel thread id */
 673    QemuThread thread;
 674    /* communication channel */
 675    QIOChannel *c;
 676    /* this mutex protects the following parameters */
 677    QemuMutex mutex;
 678    /* is this channel thread running */
 679    bool running;
 680    /* should this thread finish */
 681    bool quit;
 682    /* array of pages to receive */
 683    MultiFDPages_t *pages;
 684    /* packet allocated len */
 685    uint32_t packet_len;
 686    /* pointer to the packet */
 687    MultiFDPacket_t *packet;
 688    /* multifd flags for each packet */
 689    uint32_t flags;
 690    /* global number of generated multifd packets */
 691    uint64_t packet_num;
 692    /* thread local variables */
 693    /* size of the next packet that contains pages */
 694    uint32_t next_packet_size;
 695    /* packets sent through this channel */
 696    uint64_t num_packets;
 697    /* pages sent through this channel */
 698    uint64_t num_pages;
 699    /* syncs main thread and channels */
 700    QemuSemaphore sem_sync;
 701} MultiFDRecvParams;
 702
 703static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
 704{
 705    MultiFDInit_t msg;
 706    int ret;
 707
 708    msg.magic = cpu_to_be32(MULTIFD_MAGIC);
 709    msg.version = cpu_to_be32(MULTIFD_VERSION);
 710    msg.id = p->id;
 711    memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
 712
 713    ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
 714    if (ret != 0) {
 715        return -1;
 716    }
 717    return 0;
 718}
 719
 720static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
 721{
 722    MultiFDInit_t msg;
 723    int ret;
 724
 725    ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
 726    if (ret != 0) {
 727        return -1;
 728    }
 729
 730    msg.magic = be32_to_cpu(msg.magic);
 731    msg.version = be32_to_cpu(msg.version);
 732
 733    if (msg.magic != MULTIFD_MAGIC) {
 734        error_setg(errp, "multifd: received packet magic %x "
 735                   "expected %x", msg.magic, MULTIFD_MAGIC);
 736        return -1;
 737    }
 738
 739    if (msg.version != MULTIFD_VERSION) {
 740        error_setg(errp, "multifd: received packet version %d "
 741                   "expected %d", msg.version, MULTIFD_VERSION);
 742        return -1;
 743    }
 744
 745    if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
 746        char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
 747        char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
 748
 749        error_setg(errp, "multifd: received uuid '%s' and expected "
 750                   "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
 751        g_free(uuid);
 752        g_free(msg_uuid);
 753        return -1;
 754    }
 755
 756    if (msg.id > migrate_multifd_channels()) {
 757        error_setg(errp, "multifd: received channel version %d "
 758                   "expected %d", msg.version, MULTIFD_VERSION);
 759        return -1;
 760    }
 761
 762    return msg.id;
 763}
 764
 765static MultiFDPages_t *multifd_pages_init(size_t size)
 766{
 767    MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
 768
 769    pages->allocated = size;
 770    pages->iov = g_new0(struct iovec, size);
 771    pages->offset = g_new0(ram_addr_t, size);
 772
 773    return pages;
 774}
 775
 776static void multifd_pages_clear(MultiFDPages_t *pages)
 777{
 778    pages->used = 0;
 779    pages->allocated = 0;
 780    pages->packet_num = 0;
 781    pages->block = NULL;
 782    g_free(pages->iov);
 783    pages->iov = NULL;
 784    g_free(pages->offset);
 785    pages->offset = NULL;
 786    g_free(pages);
 787}
 788
 789static void multifd_send_fill_packet(MultiFDSendParams *p)
 790{
 791    MultiFDPacket_t *packet = p->packet;
 792    uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
 793    int i;
 794
 795    packet->magic = cpu_to_be32(MULTIFD_MAGIC);
 796    packet->version = cpu_to_be32(MULTIFD_VERSION);
 797    packet->flags = cpu_to_be32(p->flags);
 798    packet->pages_alloc = cpu_to_be32(page_max);
 799    packet->pages_used = cpu_to_be32(p->pages->used);
 800    packet->next_packet_size = cpu_to_be32(p->next_packet_size);
 801    packet->packet_num = cpu_to_be64(p->packet_num);
 802
 803    if (p->pages->block) {
 804        strncpy(packet->ramblock, p->pages->block->idstr, 256);
 805    }
 806
 807    for (i = 0; i < p->pages->used; i++) {
 808        packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
 809    }
 810}
 811
 812static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
 813{
 814    MultiFDPacket_t *packet = p->packet;
 815    uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
 816    RAMBlock *block;
 817    int i;
 818
 819    packet->magic = be32_to_cpu(packet->magic);
 820    if (packet->magic != MULTIFD_MAGIC) {
 821        error_setg(errp, "multifd: received packet "
 822                   "magic %x and expected magic %x",
 823                   packet->magic, MULTIFD_MAGIC);
 824        return -1;
 825    }
 826
 827    packet->version = be32_to_cpu(packet->version);
 828    if (packet->version != MULTIFD_VERSION) {
 829        error_setg(errp, "multifd: received packet "
 830                   "version %d and expected version %d",
 831                   packet->version, MULTIFD_VERSION);
 832        return -1;
 833    }
 834
 835    p->flags = be32_to_cpu(packet->flags);
 836
 837    packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
 838    /*
 839     * If we recevied a packet that is 100 times bigger than expected
 840     * just stop migration.  It is a magic number.
 841     */
 842    if (packet->pages_alloc > pages_max * 100) {
 843        error_setg(errp, "multifd: received packet "
 844                   "with size %d and expected a maximum size of %d",
 845                   packet->pages_alloc, pages_max * 100) ;
 846        return -1;
 847    }
 848    /*
 849     * We received a packet that is bigger than expected but inside
 850     * reasonable limits (see previous comment).  Just reallocate.
 851     */
 852    if (packet->pages_alloc > p->pages->allocated) {
 853        multifd_pages_clear(p->pages);
 854        p->pages = multifd_pages_init(packet->pages_alloc);
 855    }
 856
 857    p->pages->used = be32_to_cpu(packet->pages_used);
 858    if (p->pages->used > packet->pages_alloc) {
 859        error_setg(errp, "multifd: received packet "
 860                   "with %d pages and expected maximum pages are %d",
 861                   p->pages->used, packet->pages_alloc) ;
 862        return -1;
 863    }
 864
 865    p->next_packet_size = be32_to_cpu(packet->next_packet_size);
 866    p->packet_num = be64_to_cpu(packet->packet_num);
 867
 868    if (p->pages->used) {
 869        /* make sure that ramblock is 0 terminated */
 870        packet->ramblock[255] = 0;
 871        block = qemu_ram_block_by_name(packet->ramblock);
 872        if (!block) {
 873            error_setg(errp, "multifd: unknown ram block %s",
 874                       packet->ramblock);
 875            return -1;
 876        }
 877    }
 878
 879    for (i = 0; i < p->pages->used; i++) {
 880        ram_addr_t offset = be64_to_cpu(packet->offset[i]);
 881
 882        if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
 883            error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
 884                       " (max " RAM_ADDR_FMT ")",
 885                       offset, block->max_length);
 886            return -1;
 887        }
 888        p->pages->iov[i].iov_base = block->host + offset;
 889        p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
 890    }
 891
 892    return 0;
 893}
 894
 895struct {
 896    MultiFDSendParams *params;
 897    /* array of pages to sent */
 898    MultiFDPages_t *pages;
 899    /* syncs main thread and channels */
 900    QemuSemaphore sem_sync;
 901    /* global number of generated multifd packets */
 902    uint64_t packet_num;
 903    /* send channels ready */
 904    QemuSemaphore channels_ready;
 905} *multifd_send_state;
 906
 907/*
 908 * How we use multifd_send_state->pages and channel->pages?
 909 *
 910 * We create a pages for each channel, and a main one.  Each time that
 911 * we need to send a batch of pages we interchange the ones between
 912 * multifd_send_state and the channel that is sending it.  There are
 913 * two reasons for that:
 914 *    - to not have to do so many mallocs during migration
 915 *    - to make easier to know what to free at the end of migration
 916 *
 917 * This way we always know who is the owner of each "pages" struct,
 918 * and we don't need any locking.  It belongs to the migration thread
 919 * or to the channel thread.  Switching is safe because the migration
 920 * thread is using the channel mutex when changing it, and the channel
 921 * have to had finish with its own, otherwise pending_job can't be
 922 * false.
 923 */
 924
 925static int multifd_send_pages(void)
 926{
 927    int i;
 928    static int next_channel;
 929    MultiFDSendParams *p = NULL; /* make happy gcc */
 930    MultiFDPages_t *pages = multifd_send_state->pages;
 931    uint64_t transferred;
 932
 933    qemu_sem_wait(&multifd_send_state->channels_ready);
 934    for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
 935        p = &multifd_send_state->params[i];
 936
 937        qemu_mutex_lock(&p->mutex);
 938        if (p->quit) {
 939            error_report("%s: channel %d has already quit!", __func__, i);
 940            qemu_mutex_unlock(&p->mutex);
 941            return -1;
 942        }
 943        if (!p->pending_job) {
 944            p->pending_job++;
 945            next_channel = (i + 1) % migrate_multifd_channels();
 946            break;
 947        }
 948        qemu_mutex_unlock(&p->mutex);
 949    }
 950    p->pages->used = 0;
 951
 952    p->packet_num = multifd_send_state->packet_num++;
 953    p->pages->block = NULL;
 954    multifd_send_state->pages = p->pages;
 955    p->pages = pages;
 956    transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
 957    ram_counters.multifd_bytes += transferred;
 958    ram_counters.transferred += transferred;;
 959    qemu_mutex_unlock(&p->mutex);
 960    qemu_sem_post(&p->sem);
 961
 962    return 1;
 963}
 964
 965static int multifd_queue_page(RAMBlock *block, ram_addr_t offset)
 966{
 967    MultiFDPages_t *pages = multifd_send_state->pages;
 968
 969    if (!pages->block) {
 970        pages->block = block;
 971    }
 972
 973    if (pages->block == block) {
 974        pages->offset[pages->used] = offset;
 975        pages->iov[pages->used].iov_base = block->host + offset;
 976        pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
 977        pages->used++;
 978
 979        if (pages->used < pages->allocated) {
 980            return 1;
 981        }
 982    }
 983
 984    if (multifd_send_pages() < 0) {
 985        return -1;
 986    }
 987
 988    if (pages->block != block) {
 989        return  multifd_queue_page(block, offset);
 990    }
 991
 992    return 1;
 993}
 994
 995static void multifd_send_terminate_threads(Error *err)
 996{
 997    int i;
 998
 999    if (err) {
1000        MigrationState *s = migrate_get_current();
1001        migrate_set_error(s, err);
1002        if (s->state == MIGRATION_STATUS_SETUP ||
1003            s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1004            s->state == MIGRATION_STATUS_DEVICE ||
1005            s->state == MIGRATION_STATUS_ACTIVE) {
1006            migrate_set_state(&s->state, s->state,
1007                              MIGRATION_STATUS_FAILED);
1008        }
1009    }
1010
1011    for (i = 0; i < migrate_multifd_channels(); i++) {
1012        MultiFDSendParams *p = &multifd_send_state->params[i];
1013
1014        qemu_mutex_lock(&p->mutex);
1015        p->quit = true;
1016        qemu_sem_post(&p->sem);
1017        qemu_mutex_unlock(&p->mutex);
1018    }
1019}
1020
1021void multifd_save_cleanup(void)
1022{
1023    int i;
1024
1025    if (!migrate_use_multifd()) {
1026        return;
1027    }
1028    multifd_send_terminate_threads(NULL);
1029    for (i = 0; i < migrate_multifd_channels(); i++) {
1030        MultiFDSendParams *p = &multifd_send_state->params[i];
1031
1032        if (p->running) {
1033            qemu_thread_join(&p->thread);
1034        }
1035        socket_send_channel_destroy(p->c);
1036        p->c = NULL;
1037        qemu_mutex_destroy(&p->mutex);
1038        qemu_sem_destroy(&p->sem);
1039        g_free(p->name);
1040        p->name = NULL;
1041        multifd_pages_clear(p->pages);
1042        p->pages = NULL;
1043        p->packet_len = 0;
1044        g_free(p->packet);
1045        p->packet = NULL;
1046    }
1047    qemu_sem_destroy(&multifd_send_state->channels_ready);
1048    qemu_sem_destroy(&multifd_send_state->sem_sync);
1049    g_free(multifd_send_state->params);
1050    multifd_send_state->params = NULL;
1051    multifd_pages_clear(multifd_send_state->pages);
1052    multifd_send_state->pages = NULL;
1053    g_free(multifd_send_state);
1054    multifd_send_state = NULL;
1055}
1056
1057static void multifd_send_sync_main(void)
1058{
1059    int i;
1060
1061    if (!migrate_use_multifd()) {
1062        return;
1063    }
1064    if (multifd_send_state->pages->used) {
1065        if (multifd_send_pages() < 0) {
1066            error_report("%s: multifd_send_pages fail", __func__);
1067            return;
1068        }
1069    }
1070    for (i = 0; i < migrate_multifd_channels(); i++) {
1071        MultiFDSendParams *p = &multifd_send_state->params[i];
1072
1073        trace_multifd_send_sync_main_signal(p->id);
1074
1075        qemu_mutex_lock(&p->mutex);
1076
1077        if (p->quit) {
1078            error_report("%s: channel %d has already quit", __func__, i);
1079            qemu_mutex_unlock(&p->mutex);
1080            return;
1081        }
1082
1083        p->packet_num = multifd_send_state->packet_num++;
1084        p->flags |= MULTIFD_FLAG_SYNC;
1085        p->pending_job++;
1086        qemu_mutex_unlock(&p->mutex);
1087        qemu_sem_post(&p->sem);
1088    }
1089    for (i = 0; i < migrate_multifd_channels(); i++) {
1090        MultiFDSendParams *p = &multifd_send_state->params[i];
1091
1092        trace_multifd_send_sync_main_wait(p->id);
1093        qemu_sem_wait(&multifd_send_state->sem_sync);
1094    }
1095    trace_multifd_send_sync_main(multifd_send_state->packet_num);
1096}
1097
1098static void *multifd_send_thread(void *opaque)
1099{
1100    MultiFDSendParams *p = opaque;
1101    Error *local_err = NULL;
1102    int ret = 0;
1103    uint32_t flags = 0;
1104
1105    trace_multifd_send_thread_start(p->id);
1106    rcu_register_thread();
1107
1108    if (multifd_send_initial_packet(p, &local_err) < 0) {
1109        goto out;
1110    }
1111    /* initial packet */
1112    p->num_packets = 1;
1113
1114    while (true) {
1115        qemu_sem_wait(&p->sem);
1116        qemu_mutex_lock(&p->mutex);
1117
1118        if (p->pending_job) {
1119            uint32_t used = p->pages->used;
1120            uint64_t packet_num = p->packet_num;
1121            flags = p->flags;
1122
1123            p->next_packet_size = used * qemu_target_page_size();
1124            multifd_send_fill_packet(p);
1125            p->flags = 0;
1126            p->num_packets++;
1127            p->num_pages += used;
1128            p->pages->used = 0;
1129            qemu_mutex_unlock(&p->mutex);
1130
1131            trace_multifd_send(p->id, packet_num, used, flags,
1132                               p->next_packet_size);
1133
1134            ret = qio_channel_write_all(p->c, (void *)p->packet,
1135                                        p->packet_len, &local_err);
1136            if (ret != 0) {
1137                break;
1138            }
1139
1140            if (used) {
1141                ret = qio_channel_writev_all(p->c, p->pages->iov,
1142                                             used, &local_err);
1143                if (ret != 0) {
1144                    break;
1145                }
1146            }
1147
1148            qemu_mutex_lock(&p->mutex);
1149            p->pending_job--;
1150            qemu_mutex_unlock(&p->mutex);
1151
1152            if (flags & MULTIFD_FLAG_SYNC) {
1153                qemu_sem_post(&multifd_send_state->sem_sync);
1154            }
1155            qemu_sem_post(&multifd_send_state->channels_ready);
1156        } else if (p->quit) {
1157            qemu_mutex_unlock(&p->mutex);
1158            break;
1159        } else {
1160            qemu_mutex_unlock(&p->mutex);
1161            /* sometimes there are spurious wakeups */
1162        }
1163    }
1164
1165out:
1166    if (local_err) {
1167        multifd_send_terminate_threads(local_err);
1168    }
1169
1170    /*
1171     * Error happen, I will exit, but I can't just leave, tell
1172     * who pay attention to me.
1173     */
1174    if (ret != 0) {
1175        if (flags & MULTIFD_FLAG_SYNC) {
1176            qemu_sem_post(&multifd_send_state->sem_sync);
1177        }
1178        qemu_sem_post(&multifd_send_state->channels_ready);
1179    }
1180
1181    qemu_mutex_lock(&p->mutex);
1182    p->running = false;
1183    qemu_mutex_unlock(&p->mutex);
1184
1185    rcu_unregister_thread();
1186    trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1187
1188    return NULL;
1189}
1190
1191static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1192{
1193    MultiFDSendParams *p = opaque;
1194    QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1195    Error *local_err = NULL;
1196
1197    if (qio_task_propagate_error(task, &local_err)) {
1198        migrate_set_error(migrate_get_current(), local_err);
1199        multifd_save_cleanup();
1200    } else {
1201        p->c = QIO_CHANNEL(sioc);
1202        qio_channel_set_delay(p->c, false);
1203        p->running = true;
1204        qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1205                           QEMU_THREAD_JOINABLE);
1206    }
1207}
1208
1209int multifd_save_setup(void)
1210{
1211    int thread_count;
1212    uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1213    uint8_t i;
1214
1215    if (!migrate_use_multifd()) {
1216        return 0;
1217    }
1218    thread_count = migrate_multifd_channels();
1219    multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1220    multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1221    multifd_send_state->pages = multifd_pages_init(page_count);
1222    qemu_sem_init(&multifd_send_state->sem_sync, 0);
1223    qemu_sem_init(&multifd_send_state->channels_ready, 0);
1224
1225    for (i = 0; i < thread_count; i++) {
1226        MultiFDSendParams *p = &multifd_send_state->params[i];
1227
1228        qemu_mutex_init(&p->mutex);
1229        qemu_sem_init(&p->sem, 0);
1230        p->quit = false;
1231        p->pending_job = 0;
1232        p->id = i;
1233        p->pages = multifd_pages_init(page_count);
1234        p->packet_len = sizeof(MultiFDPacket_t)
1235                      + sizeof(ram_addr_t) * page_count;
1236        p->packet = g_malloc0(p->packet_len);
1237        p->name = g_strdup_printf("multifdsend_%d", i);
1238        socket_send_channel_create(multifd_new_send_channel_async, p);
1239    }
1240    return 0;
1241}
1242
1243struct {
1244    MultiFDRecvParams *params;
1245    /* number of created threads */
1246    int count;
1247    /* syncs main thread and channels */
1248    QemuSemaphore sem_sync;
1249    /* global number of generated multifd packets */
1250    uint64_t packet_num;
1251} *multifd_recv_state;
1252
1253static void multifd_recv_terminate_threads(Error *err)
1254{
1255    int i;
1256
1257    if (err) {
1258        MigrationState *s = migrate_get_current();
1259        migrate_set_error(s, err);
1260        if (s->state == MIGRATION_STATUS_SETUP ||
1261            s->state == MIGRATION_STATUS_ACTIVE) {
1262            migrate_set_state(&s->state, s->state,
1263                              MIGRATION_STATUS_FAILED);
1264        }
1265    }
1266
1267    for (i = 0; i < migrate_multifd_channels(); i++) {
1268        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1269
1270        qemu_mutex_lock(&p->mutex);
1271        p->quit = true;
1272        /* We could arrive here for two reasons:
1273           - normal quit, i.e. everything went fine, just finished
1274           - error quit: We close the channels so the channel threads
1275             finish the qio_channel_read_all_eof() */
1276        qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1277        qemu_mutex_unlock(&p->mutex);
1278    }
1279}
1280
1281int multifd_load_cleanup(Error **errp)
1282{
1283    int i;
1284    int ret = 0;
1285
1286    if (!migrate_use_multifd()) {
1287        return 0;
1288    }
1289    multifd_recv_terminate_threads(NULL);
1290    for (i = 0; i < migrate_multifd_channels(); i++) {
1291        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1292
1293        if (p->running) {
1294            p->quit = true;
1295            /*
1296             * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1297             * however try to wakeup it without harm in cleanup phase.
1298             */
1299            qemu_sem_post(&p->sem_sync);
1300            qemu_thread_join(&p->thread);
1301        }
1302        object_unref(OBJECT(p->c));
1303        p->c = NULL;
1304        qemu_mutex_destroy(&p->mutex);
1305        qemu_sem_destroy(&p->sem_sync);
1306        g_free(p->name);
1307        p->name = NULL;
1308        multifd_pages_clear(p->pages);
1309        p->pages = NULL;
1310        p->packet_len = 0;
1311        g_free(p->packet);
1312        p->packet = NULL;
1313    }
1314    qemu_sem_destroy(&multifd_recv_state->sem_sync);
1315    g_free(multifd_recv_state->params);
1316    multifd_recv_state->params = NULL;
1317    g_free(multifd_recv_state);
1318    multifd_recv_state = NULL;
1319
1320    return ret;
1321}
1322
1323static void multifd_recv_sync_main(void)
1324{
1325    int i;
1326
1327    if (!migrate_use_multifd()) {
1328        return;
1329    }
1330    for (i = 0; i < migrate_multifd_channels(); i++) {
1331        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1332
1333        trace_multifd_recv_sync_main_wait(p->id);
1334        qemu_sem_wait(&multifd_recv_state->sem_sync);
1335    }
1336    for (i = 0; i < migrate_multifd_channels(); i++) {
1337        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1338
1339        qemu_mutex_lock(&p->mutex);
1340        if (multifd_recv_state->packet_num < p->packet_num) {
1341            multifd_recv_state->packet_num = p->packet_num;
1342        }
1343        qemu_mutex_unlock(&p->mutex);
1344        trace_multifd_recv_sync_main_signal(p->id);
1345        qemu_sem_post(&p->sem_sync);
1346    }
1347    trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1348}
1349
1350static void *multifd_recv_thread(void *opaque)
1351{
1352    MultiFDRecvParams *p = opaque;
1353    Error *local_err = NULL;
1354    int ret;
1355
1356    trace_multifd_recv_thread_start(p->id);
1357    rcu_register_thread();
1358
1359    while (true) {
1360        uint32_t used;
1361        uint32_t flags;
1362
1363        if (p->quit) {
1364            break;
1365        }
1366
1367        ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1368                                       p->packet_len, &local_err);
1369        if (ret == 0) {   /* EOF */
1370            break;
1371        }
1372        if (ret == -1) {   /* Error */
1373            break;
1374        }
1375
1376        qemu_mutex_lock(&p->mutex);
1377        ret = multifd_recv_unfill_packet(p, &local_err);
1378        if (ret) {
1379            qemu_mutex_unlock(&p->mutex);
1380            break;
1381        }
1382
1383        used = p->pages->used;
1384        flags = p->flags;
1385        trace_multifd_recv(p->id, p->packet_num, used, flags,
1386                           p->next_packet_size);
1387        p->num_packets++;
1388        p->num_pages += used;
1389        qemu_mutex_unlock(&p->mutex);
1390
1391        if (used) {
1392            ret = qio_channel_readv_all(p->c, p->pages->iov,
1393                                        used, &local_err);
1394            if (ret != 0) {
1395                break;
1396            }
1397        }
1398
1399        if (flags & MULTIFD_FLAG_SYNC) {
1400            qemu_sem_post(&multifd_recv_state->sem_sync);
1401            qemu_sem_wait(&p->sem_sync);
1402        }
1403    }
1404
1405    if (local_err) {
1406        multifd_recv_terminate_threads(local_err);
1407    }
1408    qemu_mutex_lock(&p->mutex);
1409    p->running = false;
1410    qemu_mutex_unlock(&p->mutex);
1411
1412    rcu_unregister_thread();
1413    trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1414
1415    return NULL;
1416}
1417
1418int multifd_load_setup(void)
1419{
1420    int thread_count;
1421    uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1422    uint8_t i;
1423
1424    if (!migrate_use_multifd()) {
1425        return 0;
1426    }
1427    thread_count = migrate_multifd_channels();
1428    multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1429    multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1430    atomic_set(&multifd_recv_state->count, 0);
1431    qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1432
1433    for (i = 0; i < thread_count; i++) {
1434        MultiFDRecvParams *p = &multifd_recv_state->params[i];
1435
1436        qemu_mutex_init(&p->mutex);
1437        qemu_sem_init(&p->sem_sync, 0);
1438        p->quit = false;
1439        p->id = i;
1440        p->pages = multifd_pages_init(page_count);
1441        p->packet_len = sizeof(MultiFDPacket_t)
1442                      + sizeof(ram_addr_t) * page_count;
1443        p->packet = g_malloc0(p->packet_len);
1444        p->name = g_strdup_printf("multifdrecv_%d", i);
1445    }
1446    return 0;
1447}
1448
1449bool multifd_recv_all_channels_created(void)
1450{
1451    int thread_count = migrate_multifd_channels();
1452
1453    if (!migrate_use_multifd()) {
1454        return true;
1455    }
1456
1457    return thread_count == atomic_read(&multifd_recv_state->count);
1458}
1459
1460/*
1461 * Try to receive all multifd channels to get ready for the migration.
1462 * - Return true and do not set @errp when correctly receving all channels;
1463 * - Return false and do not set @errp when correctly receiving the current one;
1464 * - Return false and set @errp when failing to receive the current channel.
1465 */
1466bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1467{
1468    MultiFDRecvParams *p;
1469    Error *local_err = NULL;
1470    int id;
1471
1472    id = multifd_recv_initial_packet(ioc, &local_err);
1473    if (id < 0) {
1474        multifd_recv_terminate_threads(local_err);
1475        error_propagate_prepend(errp, local_err,
1476                                "failed to receive packet"
1477                                " via multifd channel %d: ",
1478                                atomic_read(&multifd_recv_state->count));
1479        return false;
1480    }
1481
1482    p = &multifd_recv_state->params[id];
1483    if (p->c != NULL) {
1484        error_setg(&local_err, "multifd: received id '%d' already setup'",
1485                   id);
1486        multifd_recv_terminate_threads(local_err);
1487        error_propagate(errp, local_err);
1488        return false;
1489    }
1490    p->c = ioc;
1491    object_ref(OBJECT(ioc));
1492    /* initial packet */
1493    p->num_packets = 1;
1494
1495    p->running = true;
1496    qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1497                       QEMU_THREAD_JOINABLE);
1498    atomic_inc(&multifd_recv_state->count);
1499    return atomic_read(&multifd_recv_state->count) ==
1500           migrate_multifd_channels();
1501}
1502
1503/**
1504 * save_page_header: write page header to wire
1505 *
1506 * If this is the 1st block, it also writes the block identification
1507 *
1508 * Returns the number of bytes written
1509 *
1510 * @f: QEMUFile where to send the data
1511 * @block: block that contains the page we want to send
1512 * @offset: offset inside the block for the page
1513 *          in the lower bits, it contains flags
1514 */
1515static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
1516                               ram_addr_t offset)
1517{
1518    size_t size, len;
1519
1520    if (block == rs->last_sent_block) {
1521        offset |= RAM_SAVE_FLAG_CONTINUE;
1522    }
1523    qemu_put_be64(f, offset);
1524    size = 8;
1525
1526    if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1527        len = strlen(block->idstr);
1528        qemu_put_byte(f, len);
1529        qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1530        size += 1 + len;
1531        rs->last_sent_block = block;
1532    }
1533    return size;
1534}
1535
1536/**
1537 * mig_throttle_guest_down: throotle down the guest
1538 *
1539 * Reduce amount of guest cpu execution to hopefully slow down memory
1540 * writes. If guest dirty memory rate is reduced below the rate at
1541 * which we can transfer pages to the destination then we should be
1542 * able to complete migration. Some workloads dirty memory way too
1543 * fast and will not effectively converge, even with auto-converge.
1544 */
1545static void mig_throttle_guest_down(void)
1546{
1547    MigrationState *s = migrate_get_current();
1548    uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1549    uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1550    int pct_max = s->parameters.max_cpu_throttle;
1551
1552    /* We have not started throttling yet. Let's start it. */
1553    if (!cpu_throttle_active()) {
1554        cpu_throttle_set(pct_initial);
1555    } else {
1556        /* Throttling already on, just increase the rate */
1557        cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1558                         pct_max));
1559    }
1560}
1561
1562/**
1563 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1564 *
1565 * @rs: current RAM state
1566 * @current_addr: address for the zero page
1567 *
1568 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1569 * The important thing is that a stale (not-yet-0'd) page be replaced
1570 * by the new data.
1571 * As a bonus, if the page wasn't in the cache it gets added so that
1572 * when a small write is made into the 0'd page it gets XBZRLE sent.
1573 */
1574static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1575{
1576    if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1577        return;
1578    }
1579
1580    /* We don't care if this fails to allocate a new cache page
1581     * as long as it updated an old one */
1582    cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1583                 ram_counters.dirty_sync_count);
1584}
1585
1586#define ENCODING_FLAG_XBZRLE 0x1
1587
1588/**
1589 * save_xbzrle_page: compress and send current page
1590 *
1591 * Returns: 1 means that we wrote the page
1592 *          0 means that page is identical to the one already sent
1593 *          -1 means that xbzrle would be longer than normal
1594 *
1595 * @rs: current RAM state
1596 * @current_data: pointer to the address of the page contents
1597 * @current_addr: addr of the page
1598 * @block: block that contains the page we want to send
1599 * @offset: offset inside the block for the page
1600 * @last_stage: if we are at the completion stage
1601 */
1602static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1603                            ram_addr_t current_addr, RAMBlock *block,
1604                            ram_addr_t offset, bool last_stage)
1605{
1606    int encoded_len = 0, bytes_xbzrle;
1607    uint8_t *prev_cached_page;
1608
1609    if (!cache_is_cached(XBZRLE.cache, current_addr,
1610                         ram_counters.dirty_sync_count)) {
1611        xbzrle_counters.cache_miss++;
1612        if (!last_stage) {
1613            if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1614                             ram_counters.dirty_sync_count) == -1) {
1615                return -1;
1616            } else {
1617                /* update *current_data when the page has been
1618                   inserted into cache */
1619                *current_data = get_cached_data(XBZRLE.cache, current_addr);
1620            }
1621        }
1622        return -1;
1623    }
1624
1625    prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1626
1627    /* save current buffer into memory */
1628    memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1629
1630    /* XBZRLE encoding (if there is no overflow) */
1631    encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1632                                       TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1633                                       TARGET_PAGE_SIZE);
1634
1635    /*
1636     * Update the cache contents, so that it corresponds to the data
1637     * sent, in all cases except where we skip the page.
1638     */
1639    if (!last_stage && encoded_len != 0) {
1640        memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1641        /*
1642         * In the case where we couldn't compress, ensure that the caller
1643         * sends the data from the cache, since the guest might have
1644         * changed the RAM since we copied it.
1645         */
1646        *current_data = prev_cached_page;
1647    }
1648
1649    if (encoded_len == 0) {
1650        trace_save_xbzrle_page_skipping();
1651        return 0;
1652    } else if (encoded_len == -1) {
1653        trace_save_xbzrle_page_overflow();
1654        xbzrle_counters.overflow++;
1655        return -1;
1656    }
1657
1658    /* Send XBZRLE based compressed page */
1659    bytes_xbzrle = save_page_header(rs, rs->f, block,
1660                                    offset | RAM_SAVE_FLAG_XBZRLE);
1661    qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1662    qemu_put_be16(rs->f, encoded_len);
1663    qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1664    bytes_xbzrle += encoded_len + 1 + 2;
1665    xbzrle_counters.pages++;
1666    xbzrle_counters.bytes += bytes_xbzrle;
1667    ram_counters.transferred += bytes_xbzrle;
1668
1669    return 1;
1670}
1671
1672/**
1673 * migration_bitmap_find_dirty: find the next dirty page from start
1674 *
1675 * Returns the page offset within memory region of the start of a dirty page
1676 *
1677 * @rs: current RAM state
1678 * @rb: RAMBlock where to search for dirty pages
1679 * @start: page where we start the search
1680 */
1681static inline
1682unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1683                                          unsigned long start)
1684{
1685    unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1686    unsigned long *bitmap = rb->bmap;
1687    unsigned long next;
1688
1689    if (ramblock_is_ignored(rb)) {
1690        return size;
1691    }
1692
1693    /*
1694     * When the free page optimization is enabled, we need to check the bitmap
1695     * to send the non-free pages rather than all the pages in the bulk stage.
1696     */
1697    if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1698        next = start + 1;
1699    } else {
1700        next = find_next_bit(bitmap, size, start);
1701    }
1702
1703    return next;
1704}
1705
1706static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1707                                                RAMBlock *rb,
1708                                                unsigned long page)
1709{
1710    bool ret;
1711
1712    qemu_mutex_lock(&rs->bitmap_mutex);
1713
1714    /*
1715     * Clear dirty bitmap if needed.  This _must_ be called before we
1716     * send any of the page in the chunk because we need to make sure
1717     * we can capture further page content changes when we sync dirty
1718     * log the next time.  So as long as we are going to send any of
1719     * the page in the chunk we clear the remote dirty bitmap for all.
1720     * Clearing it earlier won't be a problem, but too late will.
1721     */
1722    if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1723        uint8_t shift = rb->clear_bmap_shift;
1724        hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1725        hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1726
1727        /*
1728         * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1729         * can make things easier sometimes since then start address
1730         * of the small chunk will always be 64 pages aligned so the
1731         * bitmap will always be aligned to unsigned long.  We should
1732         * even be able to remove this restriction but I'm simply
1733         * keeping it.
1734         */
1735        assert(shift >= 6);
1736        trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1737        memory_region_clear_dirty_bitmap(rb->mr, start, size);
1738    }
1739
1740    ret = test_and_clear_bit(page, rb->bmap);
1741
1742    if (ret) {
1743        rs->migration_dirty_pages--;
1744    }
1745    qemu_mutex_unlock(&rs->bitmap_mutex);
1746
1747    return ret;
1748}
1749
1750/* Called with RCU critical section */
1751static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1752                                        ram_addr_t length)
1753{
1754    rs->migration_dirty_pages +=
1755        cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
1756                                              &rs->num_dirty_pages_period);
1757}
1758
1759/**
1760 * ram_pagesize_summary: calculate all the pagesizes of a VM
1761 *
1762 * Returns a summary bitmap of the page sizes of all RAMBlocks
1763 *
1764 * For VMs with just normal pages this is equivalent to the host page
1765 * size. If it's got some huge pages then it's the OR of all the
1766 * different page sizes.
1767 */
1768uint64_t ram_pagesize_summary(void)
1769{
1770    RAMBlock *block;
1771    uint64_t summary = 0;
1772
1773    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1774        summary |= block->page_size;
1775    }
1776
1777    return summary;
1778}
1779
1780uint64_t ram_get_total_transferred_pages(void)
1781{
1782    return  ram_counters.normal + ram_counters.duplicate +
1783                compression_counters.pages + xbzrle_counters.pages;
1784}
1785
1786static void migration_update_rates(RAMState *rs, int64_t end_time)
1787{
1788    uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1789    double compressed_size;
1790
1791    /* calculate period counters */
1792    ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1793                / (end_time - rs->time_last_bitmap_sync);
1794
1795    if (!page_count) {
1796        return;
1797    }
1798
1799    if (migrate_use_xbzrle()) {
1800        xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1801            rs->xbzrle_cache_miss_prev) / page_count;
1802        rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1803    }
1804
1805    if (migrate_use_compression()) {
1806        compression_counters.busy_rate = (double)(compression_counters.busy -
1807            rs->compress_thread_busy_prev) / page_count;
1808        rs->compress_thread_busy_prev = compression_counters.busy;
1809
1810        compressed_size = compression_counters.compressed_size -
1811                          rs->compressed_size_prev;
1812        if (compressed_size) {
1813            double uncompressed_size = (compression_counters.pages -
1814                                    rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1815
1816            /* Compression-Ratio = Uncompressed-size / Compressed-size */
1817            compression_counters.compression_rate =
1818                                        uncompressed_size / compressed_size;
1819
1820            rs->compress_pages_prev = compression_counters.pages;
1821            rs->compressed_size_prev = compression_counters.compressed_size;
1822        }
1823    }
1824}
1825
1826static void migration_bitmap_sync(RAMState *rs)
1827{
1828    RAMBlock *block;
1829    int64_t end_time;
1830    uint64_t bytes_xfer_now;
1831
1832    ram_counters.dirty_sync_count++;
1833
1834    if (!rs->time_last_bitmap_sync) {
1835        rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1836    }
1837
1838    trace_migration_bitmap_sync_start();
1839    memory_global_dirty_log_sync();
1840
1841    qemu_mutex_lock(&rs->bitmap_mutex);
1842    rcu_read_lock();
1843    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1844        migration_bitmap_sync_range(rs, block, block->used_length);
1845    }
1846    ram_counters.remaining = ram_bytes_remaining();
1847    rcu_read_unlock();
1848    qemu_mutex_unlock(&rs->bitmap_mutex);
1849
1850    trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1851
1852    end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1853
1854    /* more than 1 second = 1000 millisecons */
1855    if (end_time > rs->time_last_bitmap_sync + 1000) {
1856        bytes_xfer_now = ram_counters.transferred;
1857
1858        /* During block migration the auto-converge logic incorrectly detects
1859         * that ram migration makes no progress. Avoid this by disabling the
1860         * throttling logic during the bulk phase of block migration. */
1861        if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1862            /* The following detection logic can be refined later. For now:
1863               Check to see if the dirtied bytes is 50% more than the approx.
1864               amount of bytes that just got transferred since the last time we
1865               were in this routine. If that happens twice, start or increase
1866               throttling */
1867
1868            if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1869                   (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1870                (++rs->dirty_rate_high_cnt >= 2)) {
1871                    trace_migration_throttle();
1872                    rs->dirty_rate_high_cnt = 0;
1873                    mig_throttle_guest_down();
1874            }
1875        }
1876
1877        migration_update_rates(rs, end_time);
1878
1879        rs->target_page_count_prev = rs->target_page_count;
1880
1881        /* reset period counters */
1882        rs->time_last_bitmap_sync = end_time;
1883        rs->num_dirty_pages_period = 0;
1884        rs->bytes_xfer_prev = bytes_xfer_now;
1885    }
1886    if (migrate_use_events()) {
1887        qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1888    }
1889}
1890
1891static void migration_bitmap_sync_precopy(RAMState *rs)
1892{
1893    Error *local_err = NULL;
1894
1895    /*
1896     * The current notifier usage is just an optimization to migration, so we
1897     * don't stop the normal migration process in the error case.
1898     */
1899    if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1900        error_report_err(local_err);
1901    }
1902
1903    migration_bitmap_sync(rs);
1904
1905    if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1906        error_report_err(local_err);
1907    }
1908}
1909
1910/**
1911 * save_zero_page_to_file: send the zero page to the file
1912 *
1913 * Returns the size of data written to the file, 0 means the page is not
1914 * a zero page
1915 *
1916 * @rs: current RAM state
1917 * @file: the file where the data is saved
1918 * @block: block that contains the page we want to send
1919 * @offset: offset inside the block for the page
1920 */
1921static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1922                                  RAMBlock *block, ram_addr_t offset)
1923{
1924    uint8_t *p = block->host + offset;
1925    int len = 0;
1926
1927    if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1928        len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1929        qemu_put_byte(file, 0);
1930        len += 1;
1931    }
1932    return len;
1933}
1934
1935/**
1936 * save_zero_page: send the zero page to the stream
1937 *
1938 * Returns the number of pages written.
1939 *
1940 * @rs: current RAM state
1941 * @block: block that contains the page we want to send
1942 * @offset: offset inside the block for the page
1943 */
1944static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1945{
1946    int len = save_zero_page_to_file(rs, rs->f, block, offset);
1947
1948    if (len) {
1949        ram_counters.duplicate++;
1950        ram_counters.transferred += len;
1951        return 1;
1952    }
1953    return -1;
1954}
1955
1956static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1957{
1958    if (!migrate_release_ram() || !migration_in_postcopy()) {
1959        return;
1960    }
1961
1962    ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1963}
1964
1965/*
1966 * @pages: the number of pages written by the control path,
1967 *        < 0 - error
1968 *        > 0 - number of pages written
1969 *
1970 * Return true if the pages has been saved, otherwise false is returned.
1971 */
1972static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1973                              int *pages)
1974{
1975    uint64_t bytes_xmit = 0;
1976    int ret;
1977
1978    *pages = -1;
1979    ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1980                                &bytes_xmit);
1981    if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1982        return false;
1983    }
1984
1985    if (bytes_xmit) {
1986        ram_counters.transferred += bytes_xmit;
1987        *pages = 1;
1988    }
1989
1990    if (ret == RAM_SAVE_CONTROL_DELAYED) {
1991        return true;
1992    }
1993
1994    if (bytes_xmit > 0) {
1995        ram_counters.normal++;
1996    } else if (bytes_xmit == 0) {
1997        ram_counters.duplicate++;
1998    }
1999
2000    return true;
2001}
2002
2003/*
2004 * directly send the page to the stream
2005 *
2006 * Returns the number of pages written.
2007 *
2008 * @rs: current RAM state
2009 * @block: block that contains the page we want to send
2010 * @offset: offset inside the block for the page
2011 * @buf: the page to be sent
2012 * @async: send to page asyncly
2013 */
2014static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2015                            uint8_t *buf, bool async)
2016{
2017    ram_counters.transferred += save_page_header(rs, rs->f, block,
2018                                                 offset | RAM_SAVE_FLAG_PAGE);
2019    if (async) {
2020        qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2021                              migrate_release_ram() &
2022                              migration_in_postcopy());
2023    } else {
2024        qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2025    }
2026    ram_counters.transferred += TARGET_PAGE_SIZE;
2027    ram_counters.normal++;
2028    return 1;
2029}
2030
2031/**
2032 * ram_save_page: send the given page to the stream
2033 *
2034 * Returns the number of pages written.
2035 *          < 0 - error
2036 *          >=0 - Number of pages written - this might legally be 0
2037 *                if xbzrle noticed the page was the same.
2038 *
2039 * @rs: current RAM state
2040 * @block: block that contains the page we want to send
2041 * @offset: offset inside the block for the page
2042 * @last_stage: if we are at the completion stage
2043 */
2044static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2045{
2046    int pages = -1;
2047    uint8_t *p;
2048    bool send_async = true;
2049    RAMBlock *block = pss->block;
2050    ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2051    ram_addr_t current_addr = block->offset + offset;
2052
2053    p = block->host + offset;
2054    trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2055
2056    XBZRLE_cache_lock();
2057    if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2058        migrate_use_xbzrle()) {
2059        pages = save_xbzrle_page(rs, &p, current_addr, block,
2060                                 offset, last_stage);
2061        if (!last_stage) {
2062            /* Can't send this cached data async, since the cache page
2063             * might get updated before it gets to the wire
2064             */
2065            send_async = false;
2066        }
2067    }
2068
2069    /* XBZRLE overflow or normal page */
2070    if (pages == -1) {
2071        pages = save_normal_page(rs, block, offset, p, send_async);
2072    }
2073
2074    XBZRLE_cache_unlock();
2075
2076    return pages;
2077}
2078
2079static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2080                                 ram_addr_t offset)
2081{
2082    if (multifd_queue_page(block, offset) < 0) {
2083        return -1;
2084    }
2085    ram_counters.normal++;
2086
2087    return 1;
2088}
2089
2090static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2091                                 ram_addr_t offset, uint8_t *source_buf)
2092{
2093    RAMState *rs = ram_state;
2094    uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2095    bool zero_page = false;
2096    int ret;
2097
2098    if (save_zero_page_to_file(rs, f, block, offset)) {
2099        zero_page = true;
2100        goto exit;
2101    }
2102
2103    save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2104
2105    /*
2106     * copy it to a internal buffer to avoid it being modified by VM
2107     * so that we can catch up the error during compression and
2108     * decompression
2109     */
2110    memcpy(source_buf, p, TARGET_PAGE_SIZE);
2111    ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2112    if (ret < 0) {
2113        qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2114        error_report("compressed data failed!");
2115        return false;
2116    }
2117
2118exit:
2119    ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2120    return zero_page;
2121}
2122
2123static void
2124update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2125{
2126    ram_counters.transferred += bytes_xmit;
2127
2128    if (param->zero_page) {
2129        ram_counters.duplicate++;
2130        return;
2131    }
2132
2133    /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2134    compression_counters.compressed_size += bytes_xmit - 8;
2135    compression_counters.pages++;
2136}
2137
2138static bool save_page_use_compression(RAMState *rs);
2139
2140static void flush_compressed_data(RAMState *rs)
2141{
2142    int idx, len, thread_count;
2143
2144    if (!save_page_use_compression(rs)) {
2145        return;
2146    }
2147    thread_count = migrate_compress_threads();
2148
2149    qemu_mutex_lock(&comp_done_lock);
2150    for (idx = 0; idx < thread_count; idx++) {
2151        while (!comp_param[idx].done) {
2152            qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2153        }
2154    }
2155    qemu_mutex_unlock(&comp_done_lock);
2156
2157    for (idx = 0; idx < thread_count; idx++) {
2158        qemu_mutex_lock(&comp_param[idx].mutex);
2159        if (!comp_param[idx].quit) {
2160            len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2161            /*
2162             * it's safe to fetch zero_page without holding comp_done_lock
2163             * as there is no further request submitted to the thread,
2164             * i.e, the thread should be waiting for a request at this point.
2165             */
2166            update_compress_thread_counts(&comp_param[idx], len);
2167        }
2168        qemu_mutex_unlock(&comp_param[idx].mutex);
2169    }
2170}
2171
2172static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2173                                       ram_addr_t offset)
2174{
2175    param->block = block;
2176    param->offset = offset;
2177}
2178
2179static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2180                                           ram_addr_t offset)
2181{
2182    int idx, thread_count, bytes_xmit = -1, pages = -1;
2183    bool wait = migrate_compress_wait_thread();
2184
2185    thread_count = migrate_compress_threads();
2186    qemu_mutex_lock(&comp_done_lock);
2187retry:
2188    for (idx = 0; idx < thread_count; idx++) {
2189        if (comp_param[idx].done) {
2190            comp_param[idx].done = false;
2191            bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2192            qemu_mutex_lock(&comp_param[idx].mutex);
2193            set_compress_params(&comp_param[idx], block, offset);
2194            qemu_cond_signal(&comp_param[idx].cond);
2195            qemu_mutex_unlock(&comp_param[idx].mutex);
2196            pages = 1;
2197            update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2198            break;
2199        }
2200    }
2201
2202    /*
2203     * wait for the free thread if the user specifies 'compress-wait-thread',
2204     * otherwise we will post the page out in the main thread as normal page.
2205     */
2206    if (pages < 0 && wait) {
2207        qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2208        goto retry;
2209    }
2210    qemu_mutex_unlock(&comp_done_lock);
2211
2212    return pages;
2213}
2214
2215/**
2216 * find_dirty_block: find the next dirty page and update any state
2217 * associated with the search process.
2218 *
2219 * Returns true if a page is found
2220 *
2221 * @rs: current RAM state
2222 * @pss: data about the state of the current dirty page scan
2223 * @again: set to false if the search has scanned the whole of RAM
2224 */
2225static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2226{
2227    pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2228    if (pss->complete_round && pss->block == rs->last_seen_block &&
2229        pss->page >= rs->last_page) {
2230        /*
2231         * We've been once around the RAM and haven't found anything.
2232         * Give up.
2233         */
2234        *again = false;
2235        return false;
2236    }
2237    if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2238        /* Didn't find anything in this RAM Block */
2239        pss->page = 0;
2240        pss->block = QLIST_NEXT_RCU(pss->block, next);
2241        if (!pss->block) {
2242            /*
2243             * If memory migration starts over, we will meet a dirtied page
2244             * which may still exists in compression threads's ring, so we
2245             * should flush the compressed data to make sure the new page
2246             * is not overwritten by the old one in the destination.
2247             *
2248             * Also If xbzrle is on, stop using the data compression at this
2249             * point. In theory, xbzrle can do better than compression.
2250             */
2251            flush_compressed_data(rs);
2252
2253            /* Hit the end of the list */
2254            pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2255            /* Flag that we've looped */
2256            pss->complete_round = true;
2257            rs->ram_bulk_stage = false;
2258        }
2259        /* Didn't find anything this time, but try again on the new block */
2260        *again = true;
2261        return false;
2262    } else {
2263        /* Can go around again, but... */
2264        *again = true;
2265        /* We've found something so probably don't need to */
2266        return true;
2267    }
2268}
2269
2270/**
2271 * unqueue_page: gets a page of the queue
2272 *
2273 * Helper for 'get_queued_page' - gets a page off the queue
2274 *
2275 * Returns the block of the page (or NULL if none available)
2276 *
2277 * @rs: current RAM state
2278 * @offset: used to return the offset within the RAMBlock
2279 */
2280static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2281{
2282    RAMBlock *block = NULL;
2283
2284    if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2285        return NULL;
2286    }
2287
2288    qemu_mutex_lock(&rs->src_page_req_mutex);
2289    if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2290        struct RAMSrcPageRequest *entry =
2291                                QSIMPLEQ_FIRST(&rs->src_page_requests);
2292        block = entry->rb;
2293        *offset = entry->offset;
2294
2295        if (entry->len > TARGET_PAGE_SIZE) {
2296            entry->len -= TARGET_PAGE_SIZE;
2297            entry->offset += TARGET_PAGE_SIZE;
2298        } else {
2299            memory_region_unref(block->mr);
2300            QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2301            g_free(entry);
2302            migration_consume_urgent_request();
2303        }
2304    }
2305    qemu_mutex_unlock(&rs->src_page_req_mutex);
2306
2307    return block;
2308}
2309
2310/**
2311 * get_queued_page: unqueue a page from the postcopy requests
2312 *
2313 * Skips pages that are already sent (!dirty)
2314 *
2315 * Returns true if a queued page is found
2316 *
2317 * @rs: current RAM state
2318 * @pss: data about the state of the current dirty page scan
2319 */
2320static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2321{
2322    RAMBlock  *block;
2323    ram_addr_t offset;
2324    bool dirty;
2325
2326    do {
2327        block = unqueue_page(rs, &offset);
2328        /*
2329         * We're sending this page, and since it's postcopy nothing else
2330         * will dirty it, and we must make sure it doesn't get sent again
2331         * even if this queue request was received after the background
2332         * search already sent it.
2333         */
2334        if (block) {
2335            unsigned long page;
2336
2337            page = offset >> TARGET_PAGE_BITS;
2338            dirty = test_bit(page, block->bmap);
2339            if (!dirty) {
2340                trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2341                       page, test_bit(page, block->unsentmap));
2342            } else {
2343                trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2344            }
2345        }
2346
2347    } while (block && !dirty);
2348
2349    if (block) {
2350        /*
2351         * As soon as we start servicing pages out of order, then we have
2352         * to kill the bulk stage, since the bulk stage assumes
2353         * in (migration_bitmap_find_and_reset_dirty) that every page is
2354         * dirty, that's no longer true.
2355         */
2356        rs->ram_bulk_stage = false;
2357
2358        /*
2359         * We want the background search to continue from the queued page
2360         * since the guest is likely to want other pages near to the page
2361         * it just requested.
2362         */
2363        pss->block = block;
2364        pss->page = offset >> TARGET_PAGE_BITS;
2365
2366        /*
2367         * This unqueued page would break the "one round" check, even is
2368         * really rare.
2369         */
2370        pss->complete_round = false;
2371    }
2372
2373    return !!block;
2374}
2375
2376/**
2377 * migration_page_queue_free: drop any remaining pages in the ram
2378 * request queue
2379 *
2380 * It should be empty at the end anyway, but in error cases there may
2381 * be some left.  in case that there is any page left, we drop it.
2382 *
2383 */
2384static void migration_page_queue_free(RAMState *rs)
2385{
2386    struct RAMSrcPageRequest *mspr, *next_mspr;
2387    /* This queue generally should be empty - but in the case of a failed
2388     * migration might have some droppings in.
2389     */
2390    rcu_read_lock();
2391    QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2392        memory_region_unref(mspr->rb->mr);
2393        QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2394        g_free(mspr);
2395    }
2396    rcu_read_unlock();
2397}
2398
2399/**
2400 * ram_save_queue_pages: queue the page for transmission
2401 *
2402 * A request from postcopy destination for example.
2403 *
2404 * Returns zero on success or negative on error
2405 *
2406 * @rbname: Name of the RAMBLock of the request. NULL means the
2407 *          same that last one.
2408 * @start: starting address from the start of the RAMBlock
2409 * @len: length (in bytes) to send
2410 */
2411int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2412{
2413    RAMBlock *ramblock;
2414    RAMState *rs = ram_state;
2415
2416    ram_counters.postcopy_requests++;
2417    rcu_read_lock();
2418    if (!rbname) {
2419        /* Reuse last RAMBlock */
2420        ramblock = rs->last_req_rb;
2421
2422        if (!ramblock) {
2423            /*
2424             * Shouldn't happen, we can't reuse the last RAMBlock if
2425             * it's the 1st request.
2426             */
2427            error_report("ram_save_queue_pages no previous block");
2428            goto err;
2429        }
2430    } else {
2431        ramblock = qemu_ram_block_by_name(rbname);
2432
2433        if (!ramblock) {
2434            /* We shouldn't be asked for a non-existent RAMBlock */
2435            error_report("ram_save_queue_pages no block '%s'", rbname);
2436            goto err;
2437        }
2438        rs->last_req_rb = ramblock;
2439    }
2440    trace_ram_save_queue_pages(ramblock->idstr, start, len);
2441    if (start+len > ramblock->used_length) {
2442        error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2443                     RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2444                     __func__, start, len, ramblock->used_length);
2445        goto err;
2446    }
2447
2448    struct RAMSrcPageRequest *new_entry =
2449        g_malloc0(sizeof(struct RAMSrcPageRequest));
2450    new_entry->rb = ramblock;
2451    new_entry->offset = start;
2452    new_entry->len = len;
2453
2454    memory_region_ref(ramblock->mr);
2455    qemu_mutex_lock(&rs->src_page_req_mutex);
2456    QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2457    migration_make_urgent_request();
2458    qemu_mutex_unlock(&rs->src_page_req_mutex);
2459    rcu_read_unlock();
2460
2461    return 0;
2462
2463err:
2464    rcu_read_unlock();
2465    return -1;
2466}
2467
2468static bool save_page_use_compression(RAMState *rs)
2469{
2470    if (!migrate_use_compression()) {
2471        return false;
2472    }
2473
2474    /*
2475     * If xbzrle is on, stop using the data compression after first
2476     * round of migration even if compression is enabled. In theory,
2477     * xbzrle can do better than compression.
2478     */
2479    if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2480        return true;
2481    }
2482
2483    return false;
2484}
2485
2486/*
2487 * try to compress the page before posting it out, return true if the page
2488 * has been properly handled by compression, otherwise needs other
2489 * paths to handle it
2490 */
2491static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2492{
2493    if (!save_page_use_compression(rs)) {
2494        return false;
2495    }
2496
2497    /*
2498     * When starting the process of a new block, the first page of
2499     * the block should be sent out before other pages in the same
2500     * block, and all the pages in last block should have been sent
2501     * out, keeping this order is important, because the 'cont' flag
2502     * is used to avoid resending the block name.
2503     *
2504     * We post the fist page as normal page as compression will take
2505     * much CPU resource.
2506     */
2507    if (block != rs->last_sent_block) {
2508        flush_compressed_data(rs);
2509        return false;
2510    }
2511
2512    if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2513        return true;
2514    }
2515
2516    compression_counters.busy++;
2517    return false;
2518}
2519
2520/**
2521 * ram_save_target_page: save one target page
2522 *
2523 * Returns the number of pages written
2524 *
2525 * @rs: current RAM state
2526 * @pss: data about the page we want to send
2527 * @last_stage: if we are at the completion stage
2528 */
2529static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2530                                bool last_stage)
2531{
2532    RAMBlock *block = pss->block;
2533    ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2534    int res;
2535
2536    if (control_save_page(rs, block, offset, &res)) {
2537        return res;
2538    }
2539
2540    if (save_compress_page(rs, block, offset)) {
2541        return 1;
2542    }
2543
2544    res = save_zero_page(rs, block, offset);
2545    if (res > 0) {
2546        /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2547         * page would be stale
2548         */
2549        if (!save_page_use_compression(rs)) {
2550            XBZRLE_cache_lock();
2551            xbzrle_cache_zero_page(rs, block->offset + offset);
2552            XBZRLE_cache_unlock();
2553        }
2554        ram_release_pages(block->idstr, offset, res);
2555        return res;
2556    }
2557
2558    /*
2559     * do not use multifd for compression as the first page in the new
2560     * block should be posted out before sending the compressed page
2561     */
2562    if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2563        return ram_save_multifd_page(rs, block, offset);
2564    }
2565
2566    return ram_save_page(rs, pss, last_stage);
2567}
2568
2569/**
2570 * ram_save_host_page: save a whole host page
2571 *
2572 * Starting at *offset send pages up to the end of the current host
2573 * page. It's valid for the initial offset to point into the middle of
2574 * a host page in which case the remainder of the hostpage is sent.
2575 * Only dirty target pages are sent. Note that the host page size may
2576 * be a huge page for this block.
2577 * The saving stops at the boundary of the used_length of the block
2578 * if the RAMBlock isn't a multiple of the host page size.
2579 *
2580 * Returns the number of pages written or negative on error
2581 *
2582 * @rs: current RAM state
2583 * @ms: current migration state
2584 * @pss: data about the page we want to send
2585 * @last_stage: if we are at the completion stage
2586 */
2587static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2588                              bool last_stage)
2589{
2590    int tmppages, pages = 0;
2591    size_t pagesize_bits =
2592        qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2593
2594    if (ramblock_is_ignored(pss->block)) {
2595        error_report("block %s should not be migrated !", pss->block->idstr);
2596        return 0;
2597    }
2598
2599    do {
2600        /* Check the pages is dirty and if it is send it */
2601        if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2602            pss->page++;
2603            continue;
2604        }
2605
2606        tmppages = ram_save_target_page(rs, pss, last_stage);
2607        if (tmppages < 0) {
2608            return tmppages;
2609        }
2610
2611        pages += tmppages;
2612        if (pss->block->unsentmap) {
2613            clear_bit(pss->page, pss->block->unsentmap);
2614        }
2615
2616        pss->page++;
2617    } while ((pss->page & (pagesize_bits - 1)) &&
2618             offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2619
2620    /* The offset we leave with is the last one we looked at */
2621    pss->page--;
2622    return pages;
2623}
2624
2625/**
2626 * ram_find_and_save_block: finds a dirty page and sends it to f
2627 *
2628 * Called within an RCU critical section.
2629 *
2630 * Returns the number of pages written where zero means no dirty pages,
2631 * or negative on error
2632 *
2633 * @rs: current RAM state
2634 * @last_stage: if we are at the completion stage
2635 *
2636 * On systems where host-page-size > target-page-size it will send all the
2637 * pages in a host page that are dirty.
2638 */
2639
2640static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2641{
2642    PageSearchStatus pss;
2643    int pages = 0;
2644    bool again, found;
2645
2646    /* No dirty page as there is zero RAM */
2647    if (!ram_bytes_total()) {
2648        return pages;
2649    }
2650
2651    pss.block = rs->last_seen_block;
2652    pss.page = rs->last_page;
2653    pss.complete_round = false;
2654
2655    if (!pss.block) {
2656        pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2657    }
2658
2659    do {
2660        again = true;
2661        found = get_queued_page(rs, &pss);
2662
2663        if (!found) {
2664            /* priority queue empty, so just search for something dirty */
2665            found = find_dirty_block(rs, &pss, &again);
2666        }
2667
2668        if (found) {
2669            pages = ram_save_host_page(rs, &pss, last_stage);
2670        }
2671    } while (!pages && again);
2672
2673    rs->last_seen_block = pss.block;
2674    rs->last_page = pss.page;
2675
2676    return pages;
2677}
2678
2679void acct_update_position(QEMUFile *f, size_t size, bool zero)
2680{
2681    uint64_t pages = size / TARGET_PAGE_SIZE;
2682
2683    if (zero) {
2684        ram_counters.duplicate += pages;
2685    } else {
2686        ram_counters.normal += pages;
2687        ram_counters.transferred += size;
2688        qemu_update_position(f, size);
2689    }
2690}
2691
2692static uint64_t ram_bytes_total_common(bool count_ignored)
2693{
2694    RAMBlock *block;
2695    uint64_t total = 0;
2696
2697    rcu_read_lock();
2698    if (count_ignored) {
2699        RAMBLOCK_FOREACH_MIGRATABLE(block) {
2700            total += block->used_length;
2701        }
2702    } else {
2703        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2704            total += block->used_length;
2705        }
2706    }
2707    rcu_read_unlock();
2708    return total;
2709}
2710
2711uint64_t ram_bytes_total(void)
2712{
2713    return ram_bytes_total_common(false);
2714}
2715
2716static void xbzrle_load_setup(void)
2717{
2718    XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2719}
2720
2721static void xbzrle_load_cleanup(void)
2722{
2723    g_free(XBZRLE.decoded_buf);
2724    XBZRLE.decoded_buf = NULL;
2725}
2726
2727static void ram_state_cleanup(RAMState **rsp)
2728{
2729    if (*rsp) {
2730        migration_page_queue_free(*rsp);
2731        qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2732        qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2733        g_free(*rsp);
2734        *rsp = NULL;
2735    }
2736}
2737
2738static void xbzrle_cleanup(void)
2739{
2740    XBZRLE_cache_lock();
2741    if (XBZRLE.cache) {
2742        cache_fini(XBZRLE.cache);
2743        g_free(XBZRLE.encoded_buf);
2744        g_free(XBZRLE.current_buf);
2745        g_free(XBZRLE.zero_target_page);
2746        XBZRLE.cache = NULL;
2747        XBZRLE.encoded_buf = NULL;
2748        XBZRLE.current_buf = NULL;
2749        XBZRLE.zero_target_page = NULL;
2750    }
2751    XBZRLE_cache_unlock();
2752}
2753
2754static void ram_save_cleanup(void *opaque)
2755{
2756    RAMState **rsp = opaque;
2757    RAMBlock *block;
2758
2759    /* caller have hold iothread lock or is in a bh, so there is
2760     * no writing race against the migration bitmap
2761     */
2762    memory_global_dirty_log_stop();
2763
2764    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2765        g_free(block->clear_bmap);
2766        block->clear_bmap = NULL;
2767        g_free(block->bmap);
2768        block->bmap = NULL;
2769        g_free(block->unsentmap);
2770        block->unsentmap = NULL;
2771    }
2772
2773    xbzrle_cleanup();
2774    compress_threads_save_cleanup();
2775    ram_state_cleanup(rsp);
2776}
2777
2778static void ram_state_reset(RAMState *rs)
2779{
2780    rs->last_seen_block = NULL;
2781    rs->last_sent_block = NULL;
2782    rs->last_page = 0;
2783    rs->last_version = ram_list.version;
2784    rs->ram_bulk_stage = true;
2785    rs->fpo_enabled = false;
2786}
2787
2788#define MAX_WAIT 50 /* ms, half buffered_file limit */
2789
2790/*
2791 * 'expected' is the value you expect the bitmap mostly to be full
2792 * of; it won't bother printing lines that are all this value.
2793 * If 'todump' is null the migration bitmap is dumped.
2794 */
2795void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2796                           unsigned long pages)
2797{
2798    int64_t cur;
2799    int64_t linelen = 128;
2800    char linebuf[129];
2801
2802    for (cur = 0; cur < pages; cur += linelen) {
2803        int64_t curb;
2804        bool found = false;
2805        /*
2806         * Last line; catch the case where the line length
2807         * is longer than remaining ram
2808         */
2809        if (cur + linelen > pages) {
2810            linelen = pages - cur;
2811        }
2812        for (curb = 0; curb < linelen; curb++) {
2813            bool thisbit = test_bit(cur + curb, todump);
2814            linebuf[curb] = thisbit ? '1' : '.';
2815            found = found || (thisbit != expected);
2816        }
2817        if (found) {
2818            linebuf[curb] = '\0';
2819            fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
2820        }
2821    }
2822}
2823
2824/* **** functions for postcopy ***** */
2825
2826void ram_postcopy_migrated_memory_release(MigrationState *ms)
2827{
2828    struct RAMBlock *block;
2829
2830    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2831        unsigned long *bitmap = block->bmap;
2832        unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2833        unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2834
2835        while (run_start < range) {
2836            unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2837            ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2838                              (run_end - run_start) << TARGET_PAGE_BITS);
2839            run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2840        }
2841    }
2842}
2843
2844/**
2845 * postcopy_send_discard_bm_ram: discard a RAMBlock
2846 *
2847 * Returns zero on success
2848 *
2849 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2850 * Note: At this point the 'unsentmap' is the processed bitmap combined
2851 *       with the dirtymap; so a '1' means it's either dirty or unsent.
2852 *
2853 * @ms: current migration state
2854 * @pds: state for postcopy
2855 * @block: RAMBlock to discard
2856 */
2857static int postcopy_send_discard_bm_ram(MigrationState *ms,
2858                                        PostcopyDiscardState *pds,
2859                                        RAMBlock *block)
2860{
2861    unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2862    unsigned long current;
2863    unsigned long *unsentmap = block->unsentmap;
2864
2865    for (current = 0; current < end; ) {
2866        unsigned long one = find_next_bit(unsentmap, end, current);
2867
2868        if (one <= end) {
2869            unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2870            unsigned long discard_length;
2871
2872            if (zero >= end) {
2873                discard_length = end - one;
2874            } else {
2875                discard_length = zero - one;
2876            }
2877            if (discard_length) {
2878                postcopy_discard_send_range(ms, pds, one, discard_length);
2879            }
2880            current = one + discard_length;
2881        } else {
2882            current = one;
2883        }
2884    }
2885
2886    return 0;
2887}
2888
2889/**
2890 * postcopy_each_ram_send_discard: discard all RAMBlocks
2891 *
2892 * Returns 0 for success or negative for error
2893 *
2894 * Utility for the outgoing postcopy code.
2895 *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2896 *   passing it bitmap indexes and name.
2897 * (qemu_ram_foreach_block ends up passing unscaled lengths
2898 *  which would mean postcopy code would have to deal with target page)
2899 *
2900 * @ms: current migration state
2901 */
2902static int postcopy_each_ram_send_discard(MigrationState *ms)
2903{
2904    struct RAMBlock *block;
2905    int ret;
2906
2907    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2908        PostcopyDiscardState *pds =
2909            postcopy_discard_send_init(ms, block->idstr);
2910
2911        /*
2912         * Postcopy sends chunks of bitmap over the wire, but it
2913         * just needs indexes at this point, avoids it having
2914         * target page specific code.
2915         */
2916        ret = postcopy_send_discard_bm_ram(ms, pds, block);
2917        postcopy_discard_send_finish(ms, pds);
2918        if (ret) {
2919            return ret;
2920        }
2921    }
2922
2923    return 0;
2924}
2925
2926/**
2927 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2928 *
2929 * Helper for postcopy_chunk_hostpages; it's called twice to
2930 * canonicalize the two bitmaps, that are similar, but one is
2931 * inverted.
2932 *
2933 * Postcopy requires that all target pages in a hostpage are dirty or
2934 * clean, not a mix.  This function canonicalizes the bitmaps.
2935 *
2936 * @ms: current migration state
2937 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2938 *               otherwise we need to canonicalize partially dirty host pages
2939 * @block: block that contains the page we want to canonicalize
2940 * @pds: state for postcopy
2941 */
2942static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2943                                          RAMBlock *block,
2944                                          PostcopyDiscardState *pds)
2945{
2946    RAMState *rs = ram_state;
2947    unsigned long *bitmap = block->bmap;
2948    unsigned long *unsentmap = block->unsentmap;
2949    unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2950    unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2951    unsigned long run_start;
2952
2953    if (block->page_size == TARGET_PAGE_SIZE) {
2954        /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2955        return;
2956    }
2957
2958    if (unsent_pass) {
2959        /* Find a sent page */
2960        run_start = find_next_zero_bit(unsentmap, pages, 0);
2961    } else {
2962        /* Find a dirty page */
2963        run_start = find_next_bit(bitmap, pages, 0);
2964    }
2965
2966    while (run_start < pages) {
2967        bool do_fixup = false;
2968        unsigned long fixup_start_addr;
2969        unsigned long host_offset;
2970
2971        /*
2972         * If the start of this run of pages is in the middle of a host
2973         * page, then we need to fixup this host page.
2974         */
2975        host_offset = run_start % host_ratio;
2976        if (host_offset) {
2977            do_fixup = true;
2978            run_start -= host_offset;
2979            fixup_start_addr = run_start;
2980            /* For the next pass */
2981            run_start = run_start + host_ratio;
2982        } else {
2983            /* Find the end of this run */
2984            unsigned long run_end;
2985            if (unsent_pass) {
2986                run_end = find_next_bit(unsentmap, pages, run_start + 1);
2987            } else {
2988                run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2989            }
2990            /*
2991             * If the end isn't at the start of a host page, then the
2992             * run doesn't finish at the end of a host page
2993             * and we need to discard.
2994             */
2995            host_offset = run_end % host_ratio;
2996            if (host_offset) {
2997                do_fixup = true;
2998                fixup_start_addr = run_end - host_offset;
2999                /*
3000                 * This host page has gone, the next loop iteration starts
3001                 * from after the fixup
3002                 */
3003                run_start = fixup_start_addr + host_ratio;
3004            } else {
3005                /*
3006                 * No discards on this iteration, next loop starts from
3007                 * next sent/dirty page
3008                 */
3009                run_start = run_end + 1;
3010            }
3011        }
3012
3013        if (do_fixup) {
3014            unsigned long page;
3015
3016            /* Tell the destination to discard this page */
3017            if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
3018                /* For the unsent_pass we:
3019                 *     discard partially sent pages
3020                 * For the !unsent_pass (dirty) we:
3021                 *     discard partially dirty pages that were sent
3022                 *     (any partially sent pages were already discarded
3023                 *     by the previous unsent_pass)
3024                 */
3025                postcopy_discard_send_range(ms, pds, fixup_start_addr,
3026                                            host_ratio);
3027            }
3028
3029            /* Clean up the bitmap */
3030            for (page = fixup_start_addr;
3031                 page < fixup_start_addr + host_ratio; page++) {
3032                /* All pages in this host page are now not sent */
3033                set_bit(page, unsentmap);
3034
3035                /*
3036                 * Remark them as dirty, updating the count for any pages
3037                 * that weren't previously dirty.
3038                 */
3039                rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3040            }
3041        }
3042
3043        if (unsent_pass) {
3044            /* Find the next sent page for the next iteration */
3045            run_start = find_next_zero_bit(unsentmap, pages, run_start);
3046        } else {
3047            /* Find the next dirty page for the next iteration */
3048            run_start = find_next_bit(bitmap, pages, run_start);
3049        }
3050    }
3051}
3052
3053/**
3054 * postcopy_chunk_hostpages: discard any partially sent host page
3055 *
3056 * Utility for the outgoing postcopy code.
3057 *
3058 * Discard any partially sent host-page size chunks, mark any partially
3059 * dirty host-page size chunks as all dirty.  In this case the host-page
3060 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3061 *
3062 * Returns zero on success
3063 *
3064 * @ms: current migration state
3065 * @block: block we want to work with
3066 */
3067static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3068{
3069    PostcopyDiscardState *pds =
3070        postcopy_discard_send_init(ms, block->idstr);
3071
3072    /* First pass: Discard all partially sent host pages */
3073    postcopy_chunk_hostpages_pass(ms, true, block, pds);
3074    /*
3075     * Second pass: Ensure that all partially dirty host pages are made
3076     * fully dirty.
3077     */
3078    postcopy_chunk_hostpages_pass(ms, false, block, pds);
3079
3080    postcopy_discard_send_finish(ms, pds);
3081    return 0;
3082}
3083
3084/**
3085 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3086 *
3087 * Returns zero on success
3088 *
3089 * Transmit the set of pages to be discarded after precopy to the target
3090 * these are pages that:
3091 *     a) Have been previously transmitted but are now dirty again
3092 *     b) Pages that have never been transmitted, this ensures that
3093 *        any pages on the destination that have been mapped by background
3094 *        tasks get discarded (transparent huge pages is the specific concern)
3095 * Hopefully this is pretty sparse
3096 *
3097 * @ms: current migration state
3098 */
3099int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3100{
3101    RAMState *rs = ram_state;
3102    RAMBlock *block;
3103    int ret;
3104
3105    rcu_read_lock();
3106
3107    /* This should be our last sync, the src is now paused */
3108    migration_bitmap_sync(rs);
3109
3110    /* Easiest way to make sure we don't resume in the middle of a host-page */
3111    rs->last_seen_block = NULL;
3112    rs->last_sent_block = NULL;
3113    rs->last_page = 0;
3114
3115    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3116        unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3117        unsigned long *bitmap = block->bmap;
3118        unsigned long *unsentmap = block->unsentmap;
3119
3120        if (!unsentmap) {
3121            /* We don't have a safe way to resize the sentmap, so
3122             * if the bitmap was resized it will be NULL at this
3123             * point.
3124             */
3125            error_report("migration ram resized during precopy phase");
3126            rcu_read_unlock();
3127            return -EINVAL;
3128        }
3129        /* Deal with TPS != HPS and huge pages */
3130        ret = postcopy_chunk_hostpages(ms, block);
3131        if (ret) {
3132            rcu_read_unlock();
3133            return ret;
3134        }
3135
3136        /*
3137         * Update the unsentmap to be unsentmap = unsentmap | dirty
3138         */
3139        bitmap_or(unsentmap, unsentmap, bitmap, pages);
3140#ifdef DEBUG_POSTCOPY
3141        ram_debug_dump_bitmap(unsentmap, true, pages);
3142#endif
3143    }
3144    trace_ram_postcopy_send_discard_bitmap();
3145
3146    ret = postcopy_each_ram_send_discard(ms);
3147    rcu_read_unlock();
3148
3149    return ret;
3150}
3151
3152/**
3153 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3154 *
3155 * Returns zero on success
3156 *
3157 * @rbname: name of the RAMBlock of the request. NULL means the
3158 *          same that last one.
3159 * @start: RAMBlock starting page
3160 * @length: RAMBlock size
3161 */
3162int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3163{
3164    int ret = -1;
3165
3166    trace_ram_discard_range(rbname, start, length);
3167
3168    rcu_read_lock();
3169    RAMBlock *rb = qemu_ram_block_by_name(rbname);
3170
3171    if (!rb) {
3172        error_report("ram_discard_range: Failed to find block '%s'", rbname);
3173        goto err;
3174    }
3175
3176    /*
3177     * On source VM, we don't need to update the received bitmap since
3178     * we don't even have one.
3179     */
3180    if (rb->receivedmap) {
3181        bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3182                     length >> qemu_target_page_bits());
3183    }
3184
3185    ret = ram_block_discard_range(rb, start, length);
3186
3187err:
3188    rcu_read_unlock();
3189
3190    return ret;
3191}
3192
3193/*
3194 * For every allocation, we will try not to crash the VM if the
3195 * allocation failed.
3196 */
3197static int xbzrle_init(void)
3198{
3199    Error *local_err = NULL;
3200
3201    if (!migrate_use_xbzrle()) {
3202        return 0;
3203    }
3204
3205    XBZRLE_cache_lock();
3206
3207    XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3208    if (!XBZRLE.zero_target_page) {
3209        error_report("%s: Error allocating zero page", __func__);
3210        goto err_out;
3211    }
3212
3213    XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3214                              TARGET_PAGE_SIZE, &local_err);
3215    if (!XBZRLE.cache) {
3216        error_report_err(local_err);
3217        goto free_zero_page;
3218    }
3219
3220    XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3221    if (!XBZRLE.encoded_buf) {
3222        error_report("%s: Error allocating encoded_buf", __func__);
3223        goto free_cache;
3224    }
3225
3226    XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3227    if (!XBZRLE.current_buf) {
3228        error_report("%s: Error allocating current_buf", __func__);
3229        goto free_encoded_buf;
3230    }
3231
3232    /* We are all good */
3233    XBZRLE_cache_unlock();
3234    return 0;
3235
3236free_encoded_buf:
3237    g_free(XBZRLE.encoded_buf);
3238    XBZRLE.encoded_buf = NULL;
3239free_cache:
3240    cache_fini(XBZRLE.cache);
3241    XBZRLE.cache = NULL;
3242free_zero_page:
3243    g_free(XBZRLE.zero_target_page);
3244    XBZRLE.zero_target_page = NULL;
3245err_out:
3246    XBZRLE_cache_unlock();
3247    return -ENOMEM;
3248}
3249
3250static int ram_state_init(RAMState **rsp)
3251{
3252    *rsp = g_try_new0(RAMState, 1);
3253
3254    if (!*rsp) {
3255        error_report("%s: Init ramstate fail", __func__);
3256        return -1;
3257    }
3258
3259    qemu_mutex_init(&(*rsp)->bitmap_mutex);
3260    qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3261    QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3262
3263    /*
3264     * Count the total number of pages used by ram blocks not including any
3265     * gaps due to alignment or unplugs.
3266     * This must match with the initial values of dirty bitmap.
3267     */
3268    (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3269    ram_state_reset(*rsp);
3270
3271    return 0;
3272}
3273
3274static void ram_list_init_bitmaps(void)
3275{
3276    MigrationState *ms = migrate_get_current();
3277    RAMBlock *block;
3278    unsigned long pages;
3279    uint8_t shift;
3280
3281    /* Skip setting bitmap if there is no RAM */
3282    if (ram_bytes_total()) {
3283        shift = ms->clear_bitmap_shift;
3284        if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3285            error_report("clear_bitmap_shift (%u) too big, using "
3286                         "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3287            shift = CLEAR_BITMAP_SHIFT_MAX;
3288        } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3289            error_report("clear_bitmap_shift (%u) too small, using "
3290                         "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3291            shift = CLEAR_BITMAP_SHIFT_MIN;
3292        }
3293
3294        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3295            pages = block->max_length >> TARGET_PAGE_BITS;
3296            /*
3297             * The initial dirty bitmap for migration must be set with all
3298             * ones to make sure we'll migrate every guest RAM page to
3299             * destination.
3300             * Here we set RAMBlock.bmap all to 1 because when rebegin a
3301             * new migration after a failed migration, ram_list.
3302             * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3303             * guest memory.
3304             */
3305            block->bmap = bitmap_new(pages);
3306            bitmap_set(block->bmap, 0, pages);
3307            block->clear_bmap_shift = shift;
3308            block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3309            if (migrate_postcopy_ram()) {
3310                block->unsentmap = bitmap_new(pages);
3311                bitmap_set(block->unsentmap, 0, pages);
3312            }
3313        }
3314    }
3315}
3316
3317static void ram_init_bitmaps(RAMState *rs)
3318{
3319    /* For memory_global_dirty_log_start below.  */
3320    qemu_mutex_lock_iothread();
3321    qemu_mutex_lock_ramlist();
3322    rcu_read_lock();
3323
3324    ram_list_init_bitmaps();
3325    memory_global_dirty_log_start();
3326    migration_bitmap_sync_precopy(rs);
3327
3328    rcu_read_unlock();
3329    qemu_mutex_unlock_ramlist();
3330    qemu_mutex_unlock_iothread();
3331}
3332
3333static int ram_init_all(RAMState **rsp)
3334{
3335    if (ram_state_init(rsp)) {
3336        return -1;
3337    }
3338
3339    if (xbzrle_init()) {
3340        ram_state_cleanup(rsp);
3341        return -1;
3342    }
3343
3344    ram_init_bitmaps(*rsp);
3345
3346    return 0;
3347}
3348
3349static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3350{
3351    RAMBlock *block;
3352    uint64_t pages = 0;
3353
3354    /*
3355     * Postcopy is not using xbzrle/compression, so no need for that.
3356     * Also, since source are already halted, we don't need to care
3357     * about dirty page logging as well.
3358     */
3359
3360    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3361        pages += bitmap_count_one(block->bmap,
3362                                  block->used_length >> TARGET_PAGE_BITS);
3363    }
3364
3365    /* This may not be aligned with current bitmaps. Recalculate. */
3366    rs->migration_dirty_pages = pages;
3367
3368    rs->last_seen_block = NULL;
3369    rs->last_sent_block = NULL;
3370    rs->last_page = 0;
3371    rs->last_version = ram_list.version;
3372    /*
3373     * Disable the bulk stage, otherwise we'll resend the whole RAM no
3374     * matter what we have sent.
3375     */
3376    rs->ram_bulk_stage = false;
3377
3378    /* Update RAMState cache of output QEMUFile */
3379    rs->f = out;
3380
3381    trace_ram_state_resume_prepare(pages);
3382}
3383
3384/*
3385 * This function clears bits of the free pages reported by the caller from the
3386 * migration dirty bitmap. @addr is the host address corresponding to the
3387 * start of the continuous guest free pages, and @len is the total bytes of
3388 * those pages.
3389 */
3390void qemu_guest_free_page_hint(void *addr, size_t len)
3391{
3392    RAMBlock *block;
3393    ram_addr_t offset;
3394    size_t used_len, start, npages;
3395    MigrationState *s = migrate_get_current();
3396
3397    /* This function is currently expected to be used during live migration */
3398    if (!migration_is_setup_or_active(s->state)) {
3399        return;
3400    }
3401
3402    for (; len > 0; len -= used_len, addr += used_len) {
3403        block = qemu_ram_block_from_host(addr, false, &offset);
3404        if (unlikely(!block || offset >= block->used_length)) {
3405            /*
3406             * The implementation might not support RAMBlock resize during
3407             * live migration, but it could happen in theory with future
3408             * updates. So we add a check here to capture that case.
3409             */
3410            error_report_once("%s unexpected error", __func__);
3411            return;
3412        }
3413
3414        if (len <= block->used_length - offset) {
3415            used_len = len;
3416        } else {
3417            used_len = block->used_length - offset;
3418        }
3419
3420        start = offset >> TARGET_PAGE_BITS;
3421        npages = used_len >> TARGET_PAGE_BITS;
3422
3423        qemu_mutex_lock(&ram_state->bitmap_mutex);
3424        ram_state->migration_dirty_pages -=
3425                      bitmap_count_one_with_offset(block->bmap, start, npages);
3426        bitmap_clear(block->bmap, start, npages);
3427        qemu_mutex_unlock(&ram_state->bitmap_mutex);
3428    }
3429}
3430
3431/*
3432 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3433 * long-running RCU critical section.  When rcu-reclaims in the code
3434 * start to become numerous it will be necessary to reduce the
3435 * granularity of these critical sections.
3436 */
3437
3438/**
3439 * ram_save_setup: Setup RAM for migration
3440 *
3441 * Returns zero to indicate success and negative for error
3442 *
3443 * @f: QEMUFile where to send the data
3444 * @opaque: RAMState pointer
3445 */
3446static int ram_save_setup(QEMUFile *f, void *opaque)
3447{
3448    RAMState **rsp = opaque;
3449    RAMBlock *block;
3450
3451    if (compress_threads_save_setup()) {
3452        return -1;
3453    }
3454
3455    /* migration has already setup the bitmap, reuse it. */
3456    if (!migration_in_colo_state()) {
3457        if (ram_init_all(rsp) != 0) {
3458            compress_threads_save_cleanup();
3459            return -1;
3460        }
3461    }
3462    (*rsp)->f = f;
3463
3464    rcu_read_lock();
3465
3466    qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3467
3468    RAMBLOCK_FOREACH_MIGRATABLE(block) {
3469        qemu_put_byte(f, strlen(block->idstr));
3470        qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3471        qemu_put_be64(f, block->used_length);
3472        if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3473            qemu_put_be64(f, block->page_size);
3474        }
3475        if (migrate_ignore_shared()) {
3476            qemu_put_be64(f, block->mr->addr);
3477        }
3478    }
3479
3480    rcu_read_unlock();
3481
3482    ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3483    ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3484
3485    multifd_send_sync_main();
3486    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3487    qemu_fflush(f);
3488
3489    return 0;
3490}
3491
3492/**
3493 * ram_save_iterate: iterative stage for migration
3494 *
3495 * Returns zero to indicate success and negative for error
3496 *
3497 * @f: QEMUFile where to send the data
3498 * @opaque: RAMState pointer
3499 */
3500static int ram_save_iterate(QEMUFile *f, void *opaque)
3501{
3502    RAMState **temp = opaque;
3503    RAMState *rs = *temp;
3504    int ret;
3505    int i;
3506    int64_t t0;
3507    int done = 0;
3508
3509    if (blk_mig_bulk_active()) {
3510        /* Avoid transferring ram during bulk phase of block migration as
3511         * the bulk phase will usually take a long time and transferring
3512         * ram updates during that time is pointless. */
3513        goto out;
3514    }
3515
3516    rcu_read_lock();
3517    if (ram_list.version != rs->last_version) {
3518        ram_state_reset(rs);
3519    }
3520
3521    /* Read version before ram_list.blocks */
3522    smp_rmb();
3523
3524    ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3525
3526    t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3527    i = 0;
3528    while ((ret = qemu_file_rate_limit(f)) == 0 ||
3529            !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3530        int pages;
3531
3532        if (qemu_file_get_error(f)) {
3533            break;
3534        }
3535
3536        pages = ram_find_and_save_block(rs, false);
3537        /* no more pages to sent */
3538        if (pages == 0) {
3539            done = 1;
3540            break;
3541        }
3542
3543        if (pages < 0) {
3544            qemu_file_set_error(f, pages);
3545            break;
3546        }
3547
3548        rs->target_page_count += pages;
3549
3550        /* we want to check in the 1st loop, just in case it was the 1st time
3551           and we had to sync the dirty bitmap.
3552           qemu_clock_get_ns() is a bit expensive, so we only check each some
3553           iterations
3554        */
3555        if ((i & 63) == 0) {
3556            uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3557            if (t1 > MAX_WAIT) {
3558                trace_ram_save_iterate_big_wait(t1, i);
3559                break;
3560            }
3561        }
3562        i++;
3563    }
3564    rcu_read_unlock();
3565
3566    /*
3567     * Must occur before EOS (or any QEMUFile operation)
3568     * because of RDMA protocol.
3569     */
3570    ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3571
3572out:
3573    multifd_send_sync_main();
3574    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3575    qemu_fflush(f);
3576    ram_counters.transferred += 8;
3577
3578    ret = qemu_file_get_error(f);
3579    if (ret < 0) {
3580        return ret;
3581    }
3582
3583    return done;
3584}
3585
3586/**
3587 * ram_save_complete: function called to send the remaining amount of ram
3588 *
3589 * Returns zero to indicate success or negative on error
3590 *
3591 * Called with iothread lock
3592 *
3593 * @f: QEMUFile where to send the data
3594 * @opaque: RAMState pointer
3595 */
3596static int ram_save_complete(QEMUFile *f, void *opaque)
3597{
3598    RAMState **temp = opaque;
3599    RAMState *rs = *temp;
3600    int ret = 0;
3601
3602    rcu_read_lock();
3603
3604    if (!migration_in_postcopy()) {
3605        migration_bitmap_sync_precopy(rs);
3606    }
3607
3608    ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3609
3610    /* try transferring iterative blocks of memory */
3611
3612    /* flush all remaining blocks regardless of rate limiting */
3613    while (true) {
3614        int pages;
3615
3616        pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3617        /* no more blocks to sent */
3618        if (pages == 0) {
3619            break;
3620        }
3621        if (pages < 0) {
3622            ret = pages;
3623            break;
3624        }
3625    }
3626
3627    flush_compressed_data(rs);
3628    ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3629
3630    rcu_read_unlock();
3631
3632    multifd_send_sync_main();
3633    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3634    qemu_fflush(f);
3635
3636    return ret;
3637}
3638
3639static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3640                             uint64_t *res_precopy_only,
3641                             uint64_t *res_compatible,
3642                             uint64_t *res_postcopy_only)
3643{
3644    RAMState **temp = opaque;
3645    RAMState *rs = *temp;
3646    uint64_t remaining_size;
3647
3648    remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3649
3650    if (!migration_in_postcopy() &&
3651        remaining_size < max_size) {
3652        qemu_mutex_lock_iothread();
3653        rcu_read_lock();
3654        migration_bitmap_sync_precopy(rs);
3655        rcu_read_unlock();
3656        qemu_mutex_unlock_iothread();
3657        remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3658    }
3659
3660    if (migrate_postcopy_ram()) {
3661        /* We can do postcopy, and all the data is postcopiable */
3662        *res_compatible += remaining_size;
3663    } else {
3664        *res_precopy_only += remaining_size;
3665    }
3666}
3667
3668static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3669{
3670    unsigned int xh_len;
3671    int xh_flags;
3672    uint8_t *loaded_data;
3673
3674    /* extract RLE header */
3675    xh_flags = qemu_get_byte(f);
3676    xh_len = qemu_get_be16(f);
3677
3678    if (xh_flags != ENCODING_FLAG_XBZRLE) {
3679        error_report("Failed to load XBZRLE page - wrong compression!");
3680        return -1;
3681    }
3682
3683    if (xh_len > TARGET_PAGE_SIZE) {
3684        error_report("Failed to load XBZRLE page - len overflow!");
3685        return -1;
3686    }
3687    loaded_data = XBZRLE.decoded_buf;
3688    /* load data and decode */
3689    /* it can change loaded_data to point to an internal buffer */
3690    qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3691
3692    /* decode RLE */
3693    if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3694                             TARGET_PAGE_SIZE) == -1) {
3695        error_report("Failed to load XBZRLE page - decode error!");
3696        return -1;
3697    }
3698
3699    return 0;
3700}
3701
3702/**
3703 * ram_block_from_stream: read a RAMBlock id from the migration stream
3704 *
3705 * Must be called from within a rcu critical section.
3706 *
3707 * Returns a pointer from within the RCU-protected ram_list.
3708 *
3709 * @f: QEMUFile where to read the data from
3710 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3711 */
3712static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3713{
3714    static RAMBlock *block = NULL;
3715    char id[256];
3716    uint8_t len;
3717
3718    if (flags & RAM_SAVE_FLAG_CONTINUE) {
3719        if (!block) {
3720            error_report("Ack, bad migration stream!");
3721            return NULL;
3722        }
3723        return block;
3724    }
3725
3726    len = qemu_get_byte(f);
3727    qemu_get_buffer(f, (uint8_t *)id, len);
3728    id[len] = 0;
3729
3730    block = qemu_ram_block_by_name(id);
3731    if (!block) {
3732        error_report("Can't find block %s", id);
3733        return NULL;
3734    }
3735
3736    if (ramblock_is_ignored(block)) {
3737        error_report("block %s should not be migrated !", id);
3738        return NULL;
3739    }
3740
3741    return block;
3742}
3743
3744static inline void *host_from_ram_block_offset(RAMBlock *block,
3745                                               ram_addr_t offset)
3746{
3747    if (!offset_in_ramblock(block, offset)) {
3748        return NULL;
3749    }
3750
3751    return block->host + offset;
3752}
3753
3754static inline void *colo_cache_from_block_offset(RAMBlock *block,
3755                                                 ram_addr_t offset)
3756{
3757    if (!offset_in_ramblock(block, offset)) {
3758        return NULL;
3759    }
3760    if (!block->colo_cache) {
3761        error_report("%s: colo_cache is NULL in block :%s",
3762                     __func__, block->idstr);
3763        return NULL;
3764    }
3765
3766    /*
3767    * During colo checkpoint, we need bitmap of these migrated pages.
3768    * It help us to decide which pages in ram cache should be flushed
3769    * into VM's RAM later.
3770    */
3771    if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3772        ram_state->migration_dirty_pages++;
3773    }
3774    return block->colo_cache + offset;
3775}
3776
3777/**
3778 * ram_handle_compressed: handle the zero page case
3779 *
3780 * If a page (or a whole RDMA chunk) has been
3781 * determined to be zero, then zap it.
3782 *
3783 * @host: host address for the zero page
3784 * @ch: what the page is filled from.  We only support zero
3785 * @size: size of the zero page
3786 */
3787void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3788{
3789    if (ch != 0 || !is_zero_range(host, size)) {
3790        memset(host, ch, size);
3791    }
3792}
3793
3794/* return the size after decompression, or negative value on error */
3795static int
3796qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3797                     const uint8_t *source, size_t source_len)
3798{
3799    int err;
3800
3801    err = inflateReset(stream);
3802    if (err != Z_OK) {
3803        return -1;
3804    }
3805
3806    stream->avail_in = source_len;
3807    stream->next_in = (uint8_t *)source;
3808    stream->avail_out = dest_len;
3809    stream->next_out = dest;
3810
3811    err = inflate(stream, Z_NO_FLUSH);
3812    if (err != Z_STREAM_END) {
3813        return -1;
3814    }
3815
3816    return stream->total_out;
3817}
3818
3819static void *do_data_decompress(void *opaque)
3820{
3821    DecompressParam *param = opaque;
3822    unsigned long pagesize;
3823    uint8_t *des;
3824    int len, ret;
3825
3826    qemu_mutex_lock(&param->mutex);
3827    while (!param->quit) {
3828        if (param->des) {
3829            des = param->des;
3830            len = param->len;
3831            param->des = 0;
3832            qemu_mutex_unlock(&param->mutex);
3833
3834            pagesize = TARGET_PAGE_SIZE;
3835
3836            ret = qemu_uncompress_data(&param->stream, des, pagesize,
3837                                       param->compbuf, len);
3838            if (ret < 0 && migrate_get_current()->decompress_error_check) {
3839                error_report("decompress data failed");
3840                qemu_file_set_error(decomp_file, ret);
3841            }
3842
3843            qemu_mutex_lock(&decomp_done_lock);
3844            param->done = true;
3845            qemu_cond_signal(&decomp_done_cond);
3846            qemu_mutex_unlock(&decomp_done_lock);
3847
3848            qemu_mutex_lock(&param->mutex);
3849        } else {
3850            qemu_cond_wait(&param->cond, &param->mutex);
3851        }
3852    }
3853    qemu_mutex_unlock(&param->mutex);
3854
3855    return NULL;
3856}
3857
3858static int wait_for_decompress_done(void)
3859{
3860    int idx, thread_count;
3861
3862    if (!migrate_use_compression()) {
3863        return 0;
3864    }
3865
3866    thread_count = migrate_decompress_threads();
3867    qemu_mutex_lock(&decomp_done_lock);
3868    for (idx = 0; idx < thread_count; idx++) {
3869        while (!decomp_param[idx].done) {
3870            qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3871        }
3872    }
3873    qemu_mutex_unlock(&decomp_done_lock);
3874    return qemu_file_get_error(decomp_file);
3875}
3876
3877static void compress_threads_load_cleanup(void)
3878{
3879    int i, thread_count;
3880
3881    if (!migrate_use_compression()) {
3882        return;
3883    }
3884    thread_count = migrate_decompress_threads();
3885    for (i = 0; i < thread_count; i++) {
3886        /*
3887         * we use it as a indicator which shows if the thread is
3888         * properly init'd or not
3889         */
3890        if (!decomp_param[i].compbuf) {
3891            break;
3892        }
3893
3894        qemu_mutex_lock(&decomp_param[i].mutex);
3895        decomp_param[i].quit = true;
3896        qemu_cond_signal(&decomp_param[i].cond);
3897        qemu_mutex_unlock(&decomp_param[i].mutex);
3898    }
3899    for (i = 0; i < thread_count; i++) {
3900        if (!decomp_param[i].compbuf) {
3901            break;
3902        }
3903
3904        qemu_thread_join(decompress_threads + i);
3905        qemu_mutex_destroy(&decomp_param[i].mutex);
3906        qemu_cond_destroy(&decomp_param[i].cond);
3907        inflateEnd(&decomp_param[i].stream);
3908        g_free(decomp_param[i].compbuf);
3909        decomp_param[i].compbuf = NULL;
3910    }
3911    g_free(decompress_threads);
3912    g_free(decomp_param);
3913    decompress_threads = NULL;
3914    decomp_param = NULL;
3915    decomp_file = NULL;
3916}
3917
3918static int compress_threads_load_setup(QEMUFile *f)
3919{
3920    int i, thread_count;
3921
3922    if (!migrate_use_compression()) {
3923        return 0;
3924    }
3925
3926    thread_count = migrate_decompress_threads();
3927    decompress_threads = g_new0(QemuThread, thread_count);
3928    decomp_param = g_new0(DecompressParam, thread_count);
3929    qemu_mutex_init(&decomp_done_lock);
3930    qemu_cond_init(&decomp_done_cond);
3931    decomp_file = f;
3932    for (i = 0; i < thread_count; i++) {
3933        if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3934            goto exit;
3935        }
3936
3937        decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3938        qemu_mutex_init(&decomp_param[i].mutex);
3939        qemu_cond_init(&decomp_param[i].cond);
3940        decomp_param[i].done = true;
3941        decomp_param[i].quit = false;
3942        qemu_thread_create(decompress_threads + i, "decompress",
3943                           do_data_decompress, decomp_param + i,
3944                           QEMU_THREAD_JOINABLE);
3945    }
3946    return 0;
3947exit:
3948    compress_threads_load_cleanup();
3949    return -1;
3950}
3951
3952static void decompress_data_with_multi_threads(QEMUFile *f,
3953                                               void *host, int len)
3954{
3955    int idx, thread_count;
3956
3957    thread_count = migrate_decompress_threads();
3958    qemu_mutex_lock(&decomp_done_lock);
3959    while (true) {
3960        for (idx = 0; idx < thread_count; idx++) {
3961            if (decomp_param[idx].done) {
3962                decomp_param[idx].done = false;
3963                qemu_mutex_lock(&decomp_param[idx].mutex);
3964                qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3965                decomp_param[idx].des = host;
3966                decomp_param[idx].len = len;
3967                qemu_cond_signal(&decomp_param[idx].cond);
3968                qemu_mutex_unlock(&decomp_param[idx].mutex);
3969                break;
3970            }
3971        }
3972        if (idx < thread_count) {
3973            break;
3974        } else {
3975            qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3976        }
3977    }
3978    qemu_mutex_unlock(&decomp_done_lock);
3979}
3980
3981/*
3982 * colo cache: this is for secondary VM, we cache the whole
3983 * memory of the secondary VM, it is need to hold the global lock
3984 * to call this helper.
3985 */
3986int colo_init_ram_cache(void)
3987{
3988    RAMBlock *block;
3989
3990    rcu_read_lock();
3991    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3992        block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3993                                                NULL,
3994                                                false);
3995        if (!block->colo_cache) {
3996            error_report("%s: Can't alloc memory for COLO cache of block %s,"
3997                         "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3998                         block->used_length);
3999            goto out_locked;
4000        }
4001        memcpy(block->colo_cache, block->host, block->used_length);
4002    }
4003    rcu_read_unlock();
4004    /*
4005    * Record the dirty pages that sent by PVM, we use this dirty bitmap together
4006    * with to decide which page in cache should be flushed into SVM's RAM. Here
4007    * we use the same name 'ram_bitmap' as for migration.
4008    */
4009    if (ram_bytes_total()) {
4010        RAMBlock *block;
4011
4012        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4013            unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
4014
4015            block->bmap = bitmap_new(pages);
4016            bitmap_set(block->bmap, 0, pages);
4017        }
4018    }
4019    ram_state = g_new0(RAMState, 1);
4020    ram_state->migration_dirty_pages = 0;
4021    qemu_mutex_init(&ram_state->bitmap_mutex);
4022    memory_global_dirty_log_start();
4023
4024    return 0;
4025
4026out_locked:
4027
4028    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4029        if (block->colo_cache) {
4030            qemu_anon_ram_free(block->colo_cache, block->used_length);
4031            block->colo_cache = NULL;
4032        }
4033    }
4034
4035    rcu_read_unlock();
4036    return -errno;
4037}
4038
4039/* It is need to hold the global lock to call this helper */
4040void colo_release_ram_cache(void)
4041{
4042    RAMBlock *block;
4043
4044    memory_global_dirty_log_stop();
4045    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4046        g_free(block->bmap);
4047        block->bmap = NULL;
4048    }
4049
4050    rcu_read_lock();
4051
4052    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4053        if (block->colo_cache) {
4054            qemu_anon_ram_free(block->colo_cache, block->used_length);
4055            block->colo_cache = NULL;
4056        }
4057    }
4058
4059    rcu_read_unlock();
4060    qemu_mutex_destroy(&ram_state->bitmap_mutex);
4061    g_free(ram_state);
4062    ram_state = NULL;
4063}
4064
4065/**
4066 * ram_load_setup: Setup RAM for migration incoming side
4067 *
4068 * Returns zero to indicate success and negative for error
4069 *
4070 * @f: QEMUFile where to receive the data
4071 * @opaque: RAMState pointer
4072 */
4073static int ram_load_setup(QEMUFile *f, void *opaque)
4074{
4075    if (compress_threads_load_setup(f)) {
4076        return -1;
4077    }
4078
4079    xbzrle_load_setup();
4080    ramblock_recv_map_init();
4081
4082    return 0;
4083}
4084
4085static int ram_load_cleanup(void *opaque)
4086{
4087    RAMBlock *rb;
4088
4089    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4090        if (ramblock_is_pmem(rb)) {
4091            pmem_persist(rb->host, rb->used_length);
4092        }
4093    }
4094
4095    xbzrle_load_cleanup();
4096    compress_threads_load_cleanup();
4097
4098    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4099        g_free(rb->receivedmap);
4100        rb->receivedmap = NULL;
4101    }
4102
4103    return 0;
4104}
4105
4106/**
4107 * ram_postcopy_incoming_init: allocate postcopy data structures
4108 *
4109 * Returns 0 for success and negative if there was one error
4110 *
4111 * @mis: current migration incoming state
4112 *
4113 * Allocate data structures etc needed by incoming migration with
4114 * postcopy-ram. postcopy-ram's similarly names
4115 * postcopy_ram_incoming_init does the work.
4116 */
4117int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4118{
4119    return postcopy_ram_incoming_init(mis);
4120}
4121
4122/**
4123 * ram_load_postcopy: load a page in postcopy case
4124 *
4125 * Returns 0 for success or -errno in case of error
4126 *
4127 * Called in postcopy mode by ram_load().
4128 * rcu_read_lock is taken prior to this being called.
4129 *
4130 * @f: QEMUFile where to send the data
4131 */
4132static int ram_load_postcopy(QEMUFile *f)
4133{
4134    int flags = 0, ret = 0;
4135    bool place_needed = false;
4136    bool matches_target_page_size = false;
4137    MigrationIncomingState *mis = migration_incoming_get_current();
4138    /* Temporary page that is later 'placed' */
4139    void *postcopy_host_page = postcopy_get_tmp_page(mis);
4140    void *last_host = NULL;
4141    bool all_zero = false;
4142
4143    while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4144        ram_addr_t addr;
4145        void *host = NULL;
4146        void *page_buffer = NULL;
4147        void *place_source = NULL;
4148        RAMBlock *block = NULL;
4149        uint8_t ch;
4150
4151        addr = qemu_get_be64(f);
4152
4153        /*
4154         * If qemu file error, we should stop here, and then "addr"
4155         * may be invalid
4156         */
4157        ret = qemu_file_get_error(f);
4158        if (ret) {
4159            break;
4160        }
4161
4162        flags = addr & ~TARGET_PAGE_MASK;
4163        addr &= TARGET_PAGE_MASK;
4164
4165        trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4166        place_needed = false;
4167        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4168            block = ram_block_from_stream(f, flags);
4169
4170            host = host_from_ram_block_offset(block, addr);
4171            if (!host) {
4172                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4173                ret = -EINVAL;
4174                break;
4175            }
4176            matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4177            /*
4178             * Postcopy requires that we place whole host pages atomically;
4179             * these may be huge pages for RAMBlocks that are backed by
4180             * hugetlbfs.
4181             * To make it atomic, the data is read into a temporary page
4182             * that's moved into place later.
4183             * The migration protocol uses,  possibly smaller, target-pages
4184             * however the source ensures it always sends all the components
4185             * of a host page in order.
4186             */
4187            page_buffer = postcopy_host_page +
4188                          ((uintptr_t)host & (block->page_size - 1));
4189            /* If all TP are zero then we can optimise the place */
4190            if (!((uintptr_t)host & (block->page_size - 1))) {
4191                all_zero = true;
4192            } else {
4193                /* not the 1st TP within the HP */
4194                if (host != (last_host + TARGET_PAGE_SIZE)) {
4195                    error_report("Non-sequential target page %p/%p",
4196                                  host, last_host);
4197                    ret = -EINVAL;
4198                    break;
4199                }
4200            }
4201
4202
4203            /*
4204             * If it's the last part of a host page then we place the host
4205             * page
4206             */
4207            place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4208                                     (block->page_size - 1)) == 0;
4209            place_source = postcopy_host_page;
4210        }
4211        last_host = host;
4212
4213        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4214        case RAM_SAVE_FLAG_ZERO:
4215            ch = qemu_get_byte(f);
4216            memset(page_buffer, ch, TARGET_PAGE_SIZE);
4217            if (ch) {
4218                all_zero = false;
4219            }
4220            break;
4221
4222        case RAM_SAVE_FLAG_PAGE:
4223            all_zero = false;
4224            if (!matches_target_page_size) {
4225                /* For huge pages, we always use temporary buffer */
4226                qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4227            } else {
4228                /*
4229                 * For small pages that matches target page size, we
4230                 * avoid the qemu_file copy.  Instead we directly use
4231                 * the buffer of QEMUFile to place the page.  Note: we
4232                 * cannot do any QEMUFile operation before using that
4233                 * buffer to make sure the buffer is valid when
4234                 * placing the page.
4235                 */
4236                qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4237                                         TARGET_PAGE_SIZE);
4238            }
4239            break;
4240        case RAM_SAVE_FLAG_EOS:
4241            /* normal exit */
4242            multifd_recv_sync_main();
4243            break;
4244        default:
4245            error_report("Unknown combination of migration flags: %#x"
4246                         " (postcopy mode)", flags);
4247            ret = -EINVAL;
4248            break;
4249        }
4250
4251        /* Detect for any possible file errors */
4252        if (!ret && qemu_file_get_error(f)) {
4253            ret = qemu_file_get_error(f);
4254        }
4255
4256        if (!ret && place_needed) {
4257            /* This gets called at the last target page in the host page */
4258            void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4259
4260            if (all_zero) {
4261                ret = postcopy_place_page_zero(mis, place_dest,
4262                                               block);
4263            } else {
4264                ret = postcopy_place_page(mis, place_dest,
4265                                          place_source, block);
4266            }
4267        }
4268    }
4269
4270    return ret;
4271}
4272
4273static bool postcopy_is_advised(void)
4274{
4275    PostcopyState ps = postcopy_state_get();
4276    return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4277}
4278
4279static bool postcopy_is_running(void)
4280{
4281    PostcopyState ps = postcopy_state_get();
4282    return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4283}
4284
4285/*
4286 * Flush content of RAM cache into SVM's memory.
4287 * Only flush the pages that be dirtied by PVM or SVM or both.
4288 */
4289static void colo_flush_ram_cache(void)
4290{
4291    RAMBlock *block = NULL;
4292    void *dst_host;
4293    void *src_host;
4294    unsigned long offset = 0;
4295
4296    memory_global_dirty_log_sync();
4297    rcu_read_lock();
4298    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4299        migration_bitmap_sync_range(ram_state, block, block->used_length);
4300    }
4301    rcu_read_unlock();
4302
4303    trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4304    rcu_read_lock();
4305    block = QLIST_FIRST_RCU(&ram_list.blocks);
4306
4307    while (block) {
4308        offset = migration_bitmap_find_dirty(ram_state, block, offset);
4309
4310        if (offset << TARGET_PAGE_BITS >= block->used_length) {
4311            offset = 0;
4312            block = QLIST_NEXT_RCU(block, next);
4313        } else {
4314            migration_bitmap_clear_dirty(ram_state, block, offset);
4315            dst_host = block->host + (offset << TARGET_PAGE_BITS);
4316            src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4317            memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4318        }
4319    }
4320
4321    rcu_read_unlock();
4322    trace_colo_flush_ram_cache_end();
4323}
4324
4325static int ram_load(QEMUFile *f, void *opaque, int version_id)
4326{
4327    int flags = 0, ret = 0, invalid_flags = 0;
4328    static uint64_t seq_iter;
4329    int len = 0;
4330    /*
4331     * If system is running in postcopy mode, page inserts to host memory must
4332     * be atomic
4333     */
4334    bool postcopy_running = postcopy_is_running();
4335    /* ADVISE is earlier, it shows the source has the postcopy capability on */
4336    bool postcopy_advised = postcopy_is_advised();
4337
4338    seq_iter++;
4339
4340    if (version_id != 4) {
4341        ret = -EINVAL;
4342    }
4343
4344    if (!migrate_use_compression()) {
4345        invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4346    }
4347    /* This RCU critical section can be very long running.
4348     * When RCU reclaims in the code start to become numerous,
4349     * it will be necessary to reduce the granularity of this
4350     * critical section.
4351     */
4352    rcu_read_lock();
4353
4354    if (postcopy_running) {
4355        ret = ram_load_postcopy(f);
4356    }
4357
4358    while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4359        ram_addr_t addr, total_ram_bytes;
4360        void *host = NULL;
4361        uint8_t ch;
4362
4363        addr = qemu_get_be64(f);
4364        flags = addr & ~TARGET_PAGE_MASK;
4365        addr &= TARGET_PAGE_MASK;
4366
4367        if (flags & invalid_flags) {
4368            if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4369                error_report("Received an unexpected compressed page");
4370            }
4371
4372            ret = -EINVAL;
4373            break;
4374        }
4375
4376        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4377                     RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4378            RAMBlock *block = ram_block_from_stream(f, flags);
4379
4380            /*
4381             * After going into COLO, we should load the Page into colo_cache.
4382             */
4383            if (migration_incoming_in_colo_state()) {
4384                host = colo_cache_from_block_offset(block, addr);
4385            } else {
4386                host = host_from_ram_block_offset(block, addr);
4387            }
4388            if (!host) {
4389                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4390                ret = -EINVAL;
4391                break;
4392            }
4393
4394            if (!migration_incoming_in_colo_state()) {
4395                ramblock_recv_bitmap_set(block, host);
4396            }
4397
4398            trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4399        }
4400
4401        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4402        case RAM_SAVE_FLAG_MEM_SIZE:
4403            /* Synchronize RAM block list */
4404            total_ram_bytes = addr;
4405            while (!ret && total_ram_bytes) {
4406                RAMBlock *block;
4407                char id[256];
4408                ram_addr_t length;
4409
4410                len = qemu_get_byte(f);
4411                qemu_get_buffer(f, (uint8_t *)id, len);
4412                id[len] = 0;
4413                length = qemu_get_be64(f);
4414
4415                block = qemu_ram_block_by_name(id);
4416                if (block && !qemu_ram_is_migratable(block)) {
4417                    error_report("block %s should not be migrated !", id);
4418                    ret = -EINVAL;
4419                } else if (block) {
4420                    if (length != block->used_length) {
4421                        Error *local_err = NULL;
4422
4423                        ret = qemu_ram_resize(block, length,
4424                                              &local_err);
4425                        if (local_err) {
4426                            error_report_err(local_err);
4427                        }
4428                    }
4429                    /* For postcopy we need to check hugepage sizes match */
4430                    if (postcopy_advised &&
4431                        block->page_size != qemu_host_page_size) {
4432                        uint64_t remote_page_size = qemu_get_be64(f);
4433                        if (remote_page_size != block->page_size) {
4434                            error_report("Mismatched RAM page size %s "
4435                                         "(local) %zd != %" PRId64,
4436                                         id, block->page_size,
4437                                         remote_page_size);
4438                            ret = -EINVAL;
4439                        }
4440                    }
4441                    if (migrate_ignore_shared()) {
4442                        hwaddr addr = qemu_get_be64(f);
4443                        if (ramblock_is_ignored(block) &&
4444                            block->mr->addr != addr) {
4445                            error_report("Mismatched GPAs for block %s "
4446                                         "%" PRId64 "!= %" PRId64,
4447                                         id, (uint64_t)addr,
4448                                         (uint64_t)block->mr->addr);
4449                            ret = -EINVAL;
4450                        }
4451                    }
4452                    ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4453                                          block->idstr);
4454                } else {
4455                    error_report("Unknown ramblock \"%s\", cannot "
4456                                 "accept migration", id);
4457                    ret = -EINVAL;
4458                }
4459
4460                total_ram_bytes -= length;
4461            }
4462            break;
4463
4464        case RAM_SAVE_FLAG_ZERO:
4465            ch = qemu_get_byte(f);
4466            ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4467            break;
4468
4469        case RAM_SAVE_FLAG_PAGE:
4470            qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4471            break;
4472
4473        case RAM_SAVE_FLAG_COMPRESS_PAGE:
4474            len = qemu_get_be32(f);
4475            if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4476                error_report("Invalid compressed data length: %d", len);
4477                ret = -EINVAL;
4478                break;
4479            }
4480            decompress_data_with_multi_threads(f, host, len);
4481            break;
4482
4483        case RAM_SAVE_FLAG_XBZRLE:
4484            if (load_xbzrle(f, addr, host) < 0) {
4485                error_report("Failed to decompress XBZRLE page at "
4486                             RAM_ADDR_FMT, addr);
4487                ret = -EINVAL;
4488                break;
4489            }
4490            break;
4491        case RAM_SAVE_FLAG_EOS:
4492            /* normal exit */
4493            multifd_recv_sync_main();
4494            break;
4495        default:
4496            if (flags & RAM_SAVE_FLAG_HOOK) {
4497                ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4498            } else {
4499                error_report("Unknown combination of migration flags: %#x",
4500                             flags);
4501                ret = -EINVAL;
4502            }
4503        }
4504        if (!ret) {
4505            ret = qemu_file_get_error(f);
4506        }
4507    }
4508
4509    ret |= wait_for_decompress_done();
4510    rcu_read_unlock();
4511    trace_ram_load_complete(ret, seq_iter);
4512
4513    if (!ret  && migration_incoming_in_colo_state()) {
4514        colo_flush_ram_cache();
4515    }
4516    return ret;
4517}
4518
4519static bool ram_has_postcopy(void *opaque)
4520{
4521    RAMBlock *rb;
4522    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4523        if (ramblock_is_pmem(rb)) {
4524            info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4525                         "is not supported now!", rb->idstr, rb->host);
4526            return false;
4527        }
4528    }
4529
4530    return migrate_postcopy_ram();
4531}
4532
4533/* Sync all the dirty bitmap with destination VM.  */
4534static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4535{
4536    RAMBlock *block;
4537    QEMUFile *file = s->to_dst_file;
4538    int ramblock_count = 0;
4539
4540    trace_ram_dirty_bitmap_sync_start();
4541
4542    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4543        qemu_savevm_send_recv_bitmap(file, block->idstr);
4544        trace_ram_dirty_bitmap_request(block->idstr);
4545        ramblock_count++;
4546    }
4547
4548    trace_ram_dirty_bitmap_sync_wait();
4549
4550    /* Wait until all the ramblocks' dirty bitmap synced */
4551    while (ramblock_count--) {
4552        qemu_sem_wait(&s->rp_state.rp_sem);
4553    }
4554
4555    trace_ram_dirty_bitmap_sync_complete();
4556
4557    return 0;
4558}
4559
4560static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4561{
4562    qemu_sem_post(&s->rp_state.rp_sem);
4563}
4564
4565/*
4566 * Read the received bitmap, revert it as the initial dirty bitmap.
4567 * This is only used when the postcopy migration is paused but wants
4568 * to resume from a middle point.
4569 */
4570int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4571{
4572    int ret = -EINVAL;
4573    QEMUFile *file = s->rp_state.from_dst_file;
4574    unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4575    uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4576    uint64_t size, end_mark;
4577
4578    trace_ram_dirty_bitmap_reload_begin(block->idstr);
4579
4580    if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4581        error_report("%s: incorrect state %s", __func__,
4582                     MigrationStatus_str(s->state));
4583        return -EINVAL;
4584    }
4585
4586    /*
4587     * Note: see comments in ramblock_recv_bitmap_send() on why we
4588     * need the endianess convertion, and the paddings.
4589     */
4590    local_size = ROUND_UP(local_size, 8);
4591
4592    /* Add paddings */
4593    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4594
4595    size = qemu_get_be64(file);
4596
4597    /* The size of the bitmap should match with our ramblock */
4598    if (size != local_size) {
4599        error_report("%s: ramblock '%s' bitmap size mismatch "
4600                     "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4601                     block->idstr, size, local_size);
4602        ret = -EINVAL;
4603        goto out;
4604    }
4605
4606    size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4607    end_mark = qemu_get_be64(file);
4608
4609    ret = qemu_file_get_error(file);
4610    if (ret || size != local_size) {
4611        error_report("%s: read bitmap failed for ramblock '%s': %d"
4612                     " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4613                     __func__, block->idstr, ret, local_size, size);
4614        ret = -EIO;
4615        goto out;
4616    }
4617
4618    if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4619        error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4620                     __func__, block->idstr, end_mark);
4621        ret = -EINVAL;
4622        goto out;
4623    }
4624
4625    /*
4626     * Endianess convertion. We are during postcopy (though paused).
4627     * The dirty bitmap won't change. We can directly modify it.
4628     */
4629    bitmap_from_le(block->bmap, le_bitmap, nbits);
4630
4631    /*
4632     * What we received is "received bitmap". Revert it as the initial
4633     * dirty bitmap for this ramblock.
4634     */
4635    bitmap_complement(block->bmap, block->bmap, nbits);
4636
4637    trace_ram_dirty_bitmap_reload_complete(block->idstr);
4638
4639    /*
4640     * We succeeded to sync bitmap for current ramblock. If this is
4641     * the last one to sync, we need to notify the main send thread.
4642     */
4643    ram_dirty_bitmap_reload_notify(s);
4644
4645    ret = 0;
4646out:
4647    g_free(le_bitmap);
4648    return ret;
4649}
4650
4651static int ram_resume_prepare(MigrationState *s, void *opaque)
4652{
4653    RAMState *rs = *(RAMState **)opaque;
4654    int ret;
4655
4656    ret = ram_dirty_bitmap_sync_all(s, rs);
4657    if (ret) {
4658        return ret;
4659    }
4660
4661    ram_state_resume_prepare(rs, s->to_dst_file);
4662
4663    return 0;
4664}
4665
4666static SaveVMHandlers savevm_ram_handlers = {
4667    .save_setup = ram_save_setup,
4668    .save_live_iterate = ram_save_iterate,
4669    .save_live_complete_postcopy = ram_save_complete,
4670    .save_live_complete_precopy = ram_save_complete,
4671    .has_postcopy = ram_has_postcopy,
4672    .save_live_pending = ram_save_pending,
4673    .load_state = ram_load,
4674    .save_cleanup = ram_save_cleanup,
4675    .load_setup = ram_load_setup,
4676    .load_cleanup = ram_load_cleanup,
4677    .resume_prepare = ram_resume_prepare,
4678};
4679
4680void ram_mig_init(void)
4681{
4682    qemu_mutex_init(&XBZRLE.lock);
4683    register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4684}
4685