qemu/target/arm/arm-powerctl.c
<<
>>
Prefs
   1/*
   2 * QEMU support -- ARM Power Control specific functions.
   3 *
   4 * Copyright (c) 2016 Jean-Christophe Dubois
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include "cpu.h"
  13#include "cpu-qom.h"
  14#include "internals.h"
  15#include "arm-powerctl.h"
  16#include "qemu/log.h"
  17#include "qemu/main-loop.h"
  18
  19#ifndef DEBUG_ARM_POWERCTL
  20#define DEBUG_ARM_POWERCTL 0
  21#endif
  22
  23#define DPRINTF(fmt, args...) \
  24    do { \
  25        if (DEBUG_ARM_POWERCTL) { \
  26            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
  27        } \
  28    } while (0)
  29
  30CPUState *arm_get_cpu_by_id(uint64_t id)
  31{
  32    CPUState *cpu;
  33
  34    DPRINTF("cpu %" PRId64 "\n", id);
  35
  36    CPU_FOREACH(cpu) {
  37        ARMCPU *armcpu = ARM_CPU(cpu);
  38
  39        if (armcpu->mp_affinity == id) {
  40            return cpu;
  41        }
  42    }
  43
  44    qemu_log_mask(LOG_GUEST_ERROR,
  45                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
  46                  __func__, id);
  47
  48    return NULL;
  49}
  50
  51struct CpuOnInfo {
  52    uint64_t entry;
  53    uint64_t context_id;
  54    uint32_t target_el;
  55    bool target_aa64;
  56};
  57
  58
  59static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
  60                                      run_on_cpu_data data)
  61{
  62    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
  63    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
  64
  65    /* Initialize the cpu we are turning on */
  66    cpu_reset(target_cpu_state);
  67    target_cpu_state->halted = 0;
  68
  69    if (info->target_aa64) {
  70        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
  71                                                 ARM_FEATURE_EL3)) {
  72            /*
  73             * As target mode is AArch64, we need to set lower
  74             * exception level (the requested level 2) to AArch64
  75             */
  76            target_cpu->env.cp15.scr_el3 |= SCR_RW;
  77        }
  78
  79        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
  80                                                 ARM_FEATURE_EL2)) {
  81            /*
  82             * As target mode is AArch64, we need to set lower
  83             * exception level (the requested level 1) to AArch64
  84             */
  85            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
  86        }
  87
  88        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
  89    } else {
  90        /* We are requested to boot in AArch32 mode */
  91        static const uint32_t mode_for_el[] = { 0,
  92                                                ARM_CPU_MODE_SVC,
  93                                                ARM_CPU_MODE_HYP,
  94                                                ARM_CPU_MODE_SVC };
  95
  96        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
  97                   CPSRWriteRaw);
  98    }
  99
 100    if (info->target_el == 3) {
 101        /* Processor is in secure mode */
 102        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 103    } else {
 104        /* Processor is not in secure mode */
 105        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 106
 107        /*
 108         * If QEMU is providing the equivalent of EL3 firmware, then we need
 109         * to make sure a CPU targeting EL2 comes out of reset with a
 110         * functional HVC insn.
 111         */
 112        if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
 113            && info->target_el == 2) {
 114            target_cpu->env.cp15.scr_el3 |= SCR_HCE;
 115        }
 116    }
 117
 118    /* We check if the started CPU is now at the correct level */
 119    assert(info->target_el == arm_current_el(&target_cpu->env));
 120
 121    if (info->target_aa64) {
 122        target_cpu->env.xregs[0] = info->context_id;
 123    } else {
 124        target_cpu->env.regs[0] = info->context_id;
 125    }
 126
 127    /* Start the new CPU at the requested address */
 128    cpu_set_pc(target_cpu_state, info->entry);
 129
 130    g_free(info);
 131
 132    /* Finally set the power status */
 133    assert(qemu_mutex_iothread_locked());
 134    target_cpu->power_state = PSCI_ON;
 135}
 136
 137int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 138                   uint32_t target_el, bool target_aa64)
 139{
 140    CPUState *target_cpu_state;
 141    ARMCPU *target_cpu;
 142    struct CpuOnInfo *info;
 143
 144    assert(qemu_mutex_iothread_locked());
 145
 146    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 147            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 148            context_id);
 149
 150    /* requested EL level need to be in the 1 to 3 range */
 151    assert((target_el > 0) && (target_el < 4));
 152
 153    if (target_aa64 && (entry & 3)) {
 154        /*
 155         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 156         * aligned.
 157         */
 158        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 159    }
 160
 161    /* Retrieve the cpu we are powering up */
 162    target_cpu_state = arm_get_cpu_by_id(cpuid);
 163    if (!target_cpu_state) {
 164        /* The cpu was not found */
 165        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 166    }
 167
 168    target_cpu = ARM_CPU(target_cpu_state);
 169    if (target_cpu->power_state == PSCI_ON) {
 170        qemu_log_mask(LOG_GUEST_ERROR,
 171                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 172                      __func__, cpuid);
 173        return QEMU_ARM_POWERCTL_ALREADY_ON;
 174    }
 175
 176    /*
 177     * The newly brought CPU is requested to enter the exception level
 178     * "target_el" and be in the requested mode (AArch64 or AArch32).
 179     */
 180
 181    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 182        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 183        /*
 184         * The CPU does not support requested level
 185         */
 186        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 187    }
 188
 189    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 190        /*
 191         * For now we don't support booting an AArch64 CPU in AArch32 mode
 192         * TODO: We should add this support later
 193         */
 194        qemu_log_mask(LOG_UNIMP,
 195                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 196                      " in AArch32 mode is not supported yet\n",
 197                      __func__, cpuid);
 198        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 199    }
 200
 201    /*
 202     * If another CPU has powered the target on we are in the state
 203     * ON_PENDING and additional attempts to power on the CPU should
 204     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 205     * spec)
 206     */
 207    if (target_cpu->power_state == PSCI_ON_PENDING) {
 208        qemu_log_mask(LOG_GUEST_ERROR,
 209                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 210                      __func__, cpuid);
 211        return QEMU_ARM_POWERCTL_ON_PENDING;
 212    }
 213
 214    /* To avoid racing with a CPU we are just kicking off we do the
 215     * final bit of preparation for the work in the target CPUs
 216     * context.
 217     */
 218    info = g_new(struct CpuOnInfo, 1);
 219    info->entry = entry;
 220    info->context_id = context_id;
 221    info->target_el = target_el;
 222    info->target_aa64 = target_aa64;
 223
 224    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 225                     RUN_ON_CPU_HOST_PTR(info));
 226
 227    /* We are good to go */
 228    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 229}
 230
 231static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
 232                                                run_on_cpu_data data)
 233{
 234    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 235
 236    /* Initialize the cpu we are turning on */
 237    cpu_reset(target_cpu_state);
 238    target_cpu_state->halted = 0;
 239
 240    /* Finally set the power status */
 241    assert(qemu_mutex_iothread_locked());
 242    target_cpu->power_state = PSCI_ON;
 243}
 244
 245int arm_set_cpu_on_and_reset(uint64_t cpuid)
 246{
 247    CPUState *target_cpu_state;
 248    ARMCPU *target_cpu;
 249
 250    assert(qemu_mutex_iothread_locked());
 251
 252    /* Retrieve the cpu we are powering up */
 253    target_cpu_state = arm_get_cpu_by_id(cpuid);
 254    if (!target_cpu_state) {
 255        /* The cpu was not found */
 256        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 257    }
 258
 259    target_cpu = ARM_CPU(target_cpu_state);
 260    if (target_cpu->power_state == PSCI_ON) {
 261        qemu_log_mask(LOG_GUEST_ERROR,
 262                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 263                      __func__, cpuid);
 264        return QEMU_ARM_POWERCTL_ALREADY_ON;
 265    }
 266
 267    /*
 268     * If another CPU has powered the target on we are in the state
 269     * ON_PENDING and additional attempts to power on the CPU should
 270     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 271     * spec)
 272     */
 273    if (target_cpu->power_state == PSCI_ON_PENDING) {
 274        qemu_log_mask(LOG_GUEST_ERROR,
 275                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 276                      __func__, cpuid);
 277        return QEMU_ARM_POWERCTL_ON_PENDING;
 278    }
 279
 280    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
 281                     RUN_ON_CPU_NULL);
 282
 283    /* We are good to go */
 284    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 285}
 286
 287static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 288                                       run_on_cpu_data data)
 289{
 290    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 291
 292    assert(qemu_mutex_iothread_locked());
 293    target_cpu->power_state = PSCI_OFF;
 294    target_cpu_state->halted = 1;
 295    target_cpu_state->exception_index = EXCP_HLT;
 296}
 297
 298int arm_set_cpu_off(uint64_t cpuid)
 299{
 300    CPUState *target_cpu_state;
 301    ARMCPU *target_cpu;
 302
 303    assert(qemu_mutex_iothread_locked());
 304
 305    DPRINTF("cpu %" PRId64 "\n", cpuid);
 306
 307    /* change to the cpu we are powering up */
 308    target_cpu_state = arm_get_cpu_by_id(cpuid);
 309    if (!target_cpu_state) {
 310        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 311    }
 312    target_cpu = ARM_CPU(target_cpu_state);
 313    if (target_cpu->power_state == PSCI_OFF) {
 314        qemu_log_mask(LOG_GUEST_ERROR,
 315                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 316                      __func__, cpuid);
 317        return QEMU_ARM_POWERCTL_IS_OFF;
 318    }
 319
 320    /* Queue work to run under the target vCPUs context */
 321    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 322                     RUN_ON_CPU_NULL);
 323
 324    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 325}
 326
 327static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 328                                     run_on_cpu_data data)
 329{
 330    /* Reset the cpu */
 331    cpu_reset(target_cpu_state);
 332}
 333
 334int arm_reset_cpu(uint64_t cpuid)
 335{
 336    CPUState *target_cpu_state;
 337    ARMCPU *target_cpu;
 338
 339    assert(qemu_mutex_iothread_locked());
 340
 341    DPRINTF("cpu %" PRId64 "\n", cpuid);
 342
 343    /* change to the cpu we are resetting */
 344    target_cpu_state = arm_get_cpu_by_id(cpuid);
 345    if (!target_cpu_state) {
 346        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 347    }
 348    target_cpu = ARM_CPU(target_cpu_state);
 349
 350    if (target_cpu->power_state == PSCI_OFF) {
 351        qemu_log_mask(LOG_GUEST_ERROR,
 352                      "[ARM]%s: CPU %" PRId64 " is off\n",
 353                      __func__, cpuid);
 354        return QEMU_ARM_POWERCTL_IS_OFF;
 355    }
 356
 357    /* Queue work to run under the target vCPUs context */
 358    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 359                     RUN_ON_CPU_NULL);
 360
 361    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 362}
 363