qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27
  28/* ARM processors have a weak memory model */
  29#define TCG_GUEST_DEFAULT_MO      (0)
  30
  31#define EXCP_UDEF            1   /* undefined instruction */
  32#define EXCP_SWI             2   /* software interrupt */
  33#define EXCP_PREFETCH_ABORT  3
  34#define EXCP_DATA_ABORT      4
  35#define EXCP_IRQ             5
  36#define EXCP_FIQ             6
  37#define EXCP_BKPT            7
  38#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  39#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  40#define EXCP_HVC            11   /* HyperVisor Call */
  41#define EXCP_HYP_TRAP       12
  42#define EXCP_SMC            13   /* Secure Monitor Call */
  43#define EXCP_VIRQ           14
  44#define EXCP_VFIQ           15
  45#define EXCP_SEMIHOST       16   /* semihosting call */
  46#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  47#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  48#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  49#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  50#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  51#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  53
  54#define ARMV7M_EXCP_RESET   1
  55#define ARMV7M_EXCP_NMI     2
  56#define ARMV7M_EXCP_HARD    3
  57#define ARMV7M_EXCP_MEM     4
  58#define ARMV7M_EXCP_BUS     5
  59#define ARMV7M_EXCP_USAGE   6
  60#define ARMV7M_EXCP_SECURE  7
  61#define ARMV7M_EXCP_SVC     11
  62#define ARMV7M_EXCP_DEBUG   12
  63#define ARMV7M_EXCP_PENDSV  14
  64#define ARMV7M_EXCP_SYSTICK 15
  65
  66/* For M profile, some registers are banked secure vs non-secure;
  67 * these are represented as a 2-element array where the first element
  68 * is the non-secure copy and the second is the secure copy.
  69 * When the CPU does not have implement the security extension then
  70 * only the first element is used.
  71 * This means that the copy for the current security state can be
  72 * accessed via env->registerfield[env->v7m.secure] (whether the security
  73 * extension is implemented or not).
  74 */
  75enum {
  76    M_REG_NS = 0,
  77    M_REG_S = 1,
  78    M_REG_NUM_BANKS = 2,
  79};
  80
  81/* ARM-specific interrupt pending bits.  */
  82#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  83#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  84#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  85
  86/* The usual mapping for an AArch64 system register to its AArch32
  87 * counterpart is for the 32 bit world to have access to the lower
  88 * half only (with writes leaving the upper half untouched). It's
  89 * therefore useful to be able to pass TCG the offset of the least
  90 * significant half of a uint64_t struct member.
  91 */
  92#ifdef HOST_WORDS_BIGENDIAN
  93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  94#define offsetofhigh32(S, M) offsetof(S, M)
  95#else
  96#define offsetoflow32(S, M) offsetof(S, M)
  97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  98#endif
  99
 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
 101#define ARM_CPU_IRQ 0
 102#define ARM_CPU_FIQ 1
 103#define ARM_CPU_VIRQ 2
 104#define ARM_CPU_VFIQ 3
 105
 106/* ARM-specific extra insn start words:
 107 * 1: Conditional execution bits
 108 * 2: Partial exception syndrome for data aborts
 109 */
 110#define TARGET_INSN_START_EXTRA_WORDS 2
 111
 112/* The 2nd extra word holding syndrome info for data aborts does not use
 113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 114 * help the sleb128 encoder do a better job.
 115 * When restoring the CPU state, we shift it back up.
 116 */
 117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 118#define ARM_INSN_START_WORD2_SHIFT 14
 119
 120/* We currently assume float and double are IEEE single and double
 121   precision respectively.
 122   Doing runtime conversions is tricky because VFP registers may contain
 123   integer values (eg. as the result of a FTOSI instruction).
 124   s<2n> maps to the least significant half of d<n>
 125   s<2n+1> maps to the most significant half of d<n>
 126 */
 127
 128/**
 129 * DynamicGDBXMLInfo:
 130 * @desc: Contains the XML descriptions.
 131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
 132 * @cpregs_keys: Array that contains the corresponding Key of
 133 * a given cpreg with the same order of the cpreg in the XML description.
 134 */
 135typedef struct DynamicGDBXMLInfo {
 136    char *desc;
 137    int num_cpregs;
 138    uint32_t *cpregs_keys;
 139} DynamicGDBXMLInfo;
 140
 141/* CPU state for each instance of a generic timer (in cp15 c14) */
 142typedef struct ARMGenericTimer {
 143    uint64_t cval; /* Timer CompareValue register */
 144    uint64_t ctl; /* Timer Control register */
 145} ARMGenericTimer;
 146
 147#define GTIMER_PHYS 0
 148#define GTIMER_VIRT 1
 149#define GTIMER_HYP  2
 150#define GTIMER_SEC  3
 151#define NUM_GTIMERS 4
 152
 153typedef struct {
 154    uint64_t raw_tcr;
 155    uint32_t mask;
 156    uint32_t base_mask;
 157} TCR;
 158
 159/* Define a maximum sized vector register.
 160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 161 * For 64-bit, this is a 2048-bit SVE register.
 162 *
 163 * Note that the mapping between S, D, and Q views of the register bank
 164 * differs between AArch64 and AArch32.
 165 * In AArch32:
 166 *  Qn = regs[n].d[1]:regs[n].d[0]
 167 *  Dn = regs[n / 2].d[n & 1]
 168 *  Sn = regs[n / 4].d[n % 4 / 2],
 169 *       bits 31..0 for even n, and bits 63..32 for odd n
 170 *       (and regs[16] to regs[31] are inaccessible)
 171 * In AArch64:
 172 *  Zn = regs[n].d[*]
 173 *  Qn = regs[n].d[1]:regs[n].d[0]
 174 *  Dn = regs[n].d[0]
 175 *  Sn = regs[n].d[0] bits 31..0
 176 *  Hn = regs[n].d[0] bits 15..0
 177 *
 178 * This corresponds to the architecturally defined mapping between
 179 * the two execution states, and means we do not need to explicitly
 180 * map these registers when changing states.
 181 *
 182 * Align the data for use with TCG host vector operations.
 183 */
 184
 185#ifdef TARGET_AARCH64
 186# define ARM_MAX_VQ    16
 187#else
 188# define ARM_MAX_VQ    1
 189#endif
 190
 191typedef struct ARMVectorReg {
 192    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 193} ARMVectorReg;
 194
 195#ifdef TARGET_AARCH64
 196/* In AArch32 mode, predicate registers do not exist at all.  */
 197typedef struct ARMPredicateReg {
 198    uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
 199} ARMPredicateReg;
 200
 201/* In AArch32 mode, PAC keys do not exist at all.  */
 202typedef struct ARMPACKey {
 203    uint64_t lo, hi;
 204} ARMPACKey;
 205#endif
 206
 207
 208typedef struct CPUARMState {
 209    /* Regs for current mode.  */
 210    uint32_t regs[16];
 211
 212    /* 32/64 switch only happens when taking and returning from
 213     * exceptions so the overlap semantics are taken care of then
 214     * instead of having a complicated union.
 215     */
 216    /* Regs for A64 mode.  */
 217    uint64_t xregs[32];
 218    uint64_t pc;
 219    /* PSTATE isn't an architectural register for ARMv8. However, it is
 220     * convenient for us to assemble the underlying state into a 32 bit format
 221     * identical to the architectural format used for the SPSR. (This is also
 222     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 223     * 'pstate' register are.) Of the PSTATE bits:
 224     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 225     *    semantics as for AArch32, as described in the comments on each field)
 226     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 227     *  DAIF (exception masks) are kept in env->daif
 228     *  BTYPE is kept in env->btype
 229     *  all other bits are stored in their correct places in env->pstate
 230     */
 231    uint32_t pstate;
 232    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 233
 234    /* Frequently accessed CPSR bits are stored separately for efficiency.
 235       This contains all the other bits.  Use cpsr_{read,write} to access
 236       the whole CPSR.  */
 237    uint32_t uncached_cpsr;
 238    uint32_t spsr;
 239
 240    /* Banked registers.  */
 241    uint64_t banked_spsr[8];
 242    uint32_t banked_r13[8];
 243    uint32_t banked_r14[8];
 244
 245    /* These hold r8-r12.  */
 246    uint32_t usr_regs[5];
 247    uint32_t fiq_regs[5];
 248
 249    /* cpsr flag cache for faster execution */
 250    uint32_t CF; /* 0 or 1 */
 251    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 252    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 253    uint32_t ZF; /* Z set if zero.  */
 254    uint32_t QF; /* 0 or 1 */
 255    uint32_t GE; /* cpsr[19:16] */
 256    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 257    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 258    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 259    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 260
 261    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 262    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 263
 264    /* System control coprocessor (cp15) */
 265    struct {
 266        uint32_t c0_cpuid;
 267        union { /* Cache size selection */
 268            struct {
 269                uint64_t _unused_csselr0;
 270                uint64_t csselr_ns;
 271                uint64_t _unused_csselr1;
 272                uint64_t csselr_s;
 273            };
 274            uint64_t csselr_el[4];
 275        };
 276        union { /* System control register. */
 277            struct {
 278                uint64_t _unused_sctlr;
 279                uint64_t sctlr_ns;
 280                uint64_t hsctlr;
 281                uint64_t sctlr_s;
 282            };
 283            uint64_t sctlr_el[4];
 284        };
 285        uint64_t cpacr_el1; /* Architectural feature access control register */
 286        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 287        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 288        uint64_t sder; /* Secure debug enable register. */
 289        uint32_t nsacr; /* Non-secure access control register. */
 290        union { /* MMU translation table base 0. */
 291            struct {
 292                uint64_t _unused_ttbr0_0;
 293                uint64_t ttbr0_ns;
 294                uint64_t _unused_ttbr0_1;
 295                uint64_t ttbr0_s;
 296            };
 297            uint64_t ttbr0_el[4];
 298        };
 299        union { /* MMU translation table base 1. */
 300            struct {
 301                uint64_t _unused_ttbr1_0;
 302                uint64_t ttbr1_ns;
 303                uint64_t _unused_ttbr1_1;
 304                uint64_t ttbr1_s;
 305            };
 306            uint64_t ttbr1_el[4];
 307        };
 308        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 309        /* MMU translation table base control. */
 310        TCR tcr_el[4];
 311        TCR vtcr_el2; /* Virtualization Translation Control.  */
 312        uint32_t c2_data; /* MPU data cacheable bits.  */
 313        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 314        union { /* MMU domain access control register
 315                 * MPU write buffer control.
 316                 */
 317            struct {
 318                uint64_t dacr_ns;
 319                uint64_t dacr_s;
 320            };
 321            struct {
 322                uint64_t dacr32_el2;
 323            };
 324        };
 325        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 326        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 327        uint64_t hcr_el2; /* Hypervisor configuration register */
 328        uint64_t scr_el3; /* Secure configuration register.  */
 329        union { /* Fault status registers.  */
 330            struct {
 331                uint64_t ifsr_ns;
 332                uint64_t ifsr_s;
 333            };
 334            struct {
 335                uint64_t ifsr32_el2;
 336            };
 337        };
 338        union {
 339            struct {
 340                uint64_t _unused_dfsr;
 341                uint64_t dfsr_ns;
 342                uint64_t hsr;
 343                uint64_t dfsr_s;
 344            };
 345            uint64_t esr_el[4];
 346        };
 347        uint32_t c6_region[8]; /* MPU base/size registers.  */
 348        union { /* Fault address registers. */
 349            struct {
 350                uint64_t _unused_far0;
 351#ifdef HOST_WORDS_BIGENDIAN
 352                uint32_t ifar_ns;
 353                uint32_t dfar_ns;
 354                uint32_t ifar_s;
 355                uint32_t dfar_s;
 356#else
 357                uint32_t dfar_ns;
 358                uint32_t ifar_ns;
 359                uint32_t dfar_s;
 360                uint32_t ifar_s;
 361#endif
 362                uint64_t _unused_far3;
 363            };
 364            uint64_t far_el[4];
 365        };
 366        uint64_t hpfar_el2;
 367        uint64_t hstr_el2;
 368        union { /* Translation result. */
 369            struct {
 370                uint64_t _unused_par_0;
 371                uint64_t par_ns;
 372                uint64_t _unused_par_1;
 373                uint64_t par_s;
 374            };
 375            uint64_t par_el[4];
 376        };
 377
 378        uint32_t c9_insn; /* Cache lockdown registers.  */
 379        uint32_t c9_data;
 380        uint64_t c9_pmcr; /* performance monitor control register */
 381        uint64_t c9_pmcnten; /* perf monitor counter enables */
 382        uint64_t c9_pmovsr; /* perf monitor overflow status */
 383        uint64_t c9_pmuserenr; /* perf monitor user enable */
 384        uint64_t c9_pmselr; /* perf monitor counter selection register */
 385        uint64_t c9_pminten; /* perf monitor interrupt enables */
 386        union { /* Memory attribute redirection */
 387            struct {
 388#ifdef HOST_WORDS_BIGENDIAN
 389                uint64_t _unused_mair_0;
 390                uint32_t mair1_ns;
 391                uint32_t mair0_ns;
 392                uint64_t _unused_mair_1;
 393                uint32_t mair1_s;
 394                uint32_t mair0_s;
 395#else
 396                uint64_t _unused_mair_0;
 397                uint32_t mair0_ns;
 398                uint32_t mair1_ns;
 399                uint64_t _unused_mair_1;
 400                uint32_t mair0_s;
 401                uint32_t mair1_s;
 402#endif
 403            };
 404            uint64_t mair_el[4];
 405        };
 406        union { /* vector base address register */
 407            struct {
 408                uint64_t _unused_vbar;
 409                uint64_t vbar_ns;
 410                uint64_t hvbar;
 411                uint64_t vbar_s;
 412            };
 413            uint64_t vbar_el[4];
 414        };
 415        uint32_t mvbar; /* (monitor) vector base address register */
 416        struct { /* FCSE PID. */
 417            uint32_t fcseidr_ns;
 418            uint32_t fcseidr_s;
 419        };
 420        union { /* Context ID. */
 421            struct {
 422                uint64_t _unused_contextidr_0;
 423                uint64_t contextidr_ns;
 424                uint64_t _unused_contextidr_1;
 425                uint64_t contextidr_s;
 426            };
 427            uint64_t contextidr_el[4];
 428        };
 429        union { /* User RW Thread register. */
 430            struct {
 431                uint64_t tpidrurw_ns;
 432                uint64_t tpidrprw_ns;
 433                uint64_t htpidr;
 434                uint64_t _tpidr_el3;
 435            };
 436            uint64_t tpidr_el[4];
 437        };
 438        /* The secure banks of these registers don't map anywhere */
 439        uint64_t tpidrurw_s;
 440        uint64_t tpidrprw_s;
 441        uint64_t tpidruro_s;
 442
 443        union { /* User RO Thread register. */
 444            uint64_t tpidruro_ns;
 445            uint64_t tpidrro_el[1];
 446        };
 447        uint64_t c14_cntfrq; /* Counter Frequency register */
 448        uint64_t c14_cntkctl; /* Timer Control register */
 449        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 450        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 451        ARMGenericTimer c14_timer[NUM_GTIMERS];
 452        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 453        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 454        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 455        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 456        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 457        uint32_t c15_config_base_address; /* SCU base address.  */
 458        uint32_t c15_diagnostic; /* diagnostic register */
 459        uint32_t c15_power_diagnostic;
 460        uint32_t c15_power_control; /* power control */
 461        uint64_t dbgbvr[16]; /* breakpoint value registers */
 462        uint64_t dbgbcr[16]; /* breakpoint control registers */
 463        uint64_t dbgwvr[16]; /* watchpoint value registers */
 464        uint64_t dbgwcr[16]; /* watchpoint control registers */
 465        uint64_t mdscr_el1;
 466        uint64_t oslsr_el1; /* OS Lock Status */
 467        uint64_t mdcr_el2;
 468        uint64_t mdcr_el3;
 469        /* Stores the architectural value of the counter *the last time it was
 470         * updated* by pmccntr_op_start. Accesses should always be surrounded
 471         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 472         * architecturally-correct value is being read/set.
 473         */
 474        uint64_t c15_ccnt;
 475        /* Stores the delta between the architectural value and the underlying
 476         * cycle count during normal operation. It is used to update c15_ccnt
 477         * to be the correct architectural value before accesses. During
 478         * accesses, c15_ccnt_delta contains the underlying count being used
 479         * for the access, after which it reverts to the delta value in
 480         * pmccntr_op_finish.
 481         */
 482        uint64_t c15_ccnt_delta;
 483        uint64_t c14_pmevcntr[31];
 484        uint64_t c14_pmevcntr_delta[31];
 485        uint64_t c14_pmevtyper[31];
 486        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 487        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 488        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 489    } cp15;
 490
 491    struct {
 492        /* M profile has up to 4 stack pointers:
 493         * a Main Stack Pointer and a Process Stack Pointer for each
 494         * of the Secure and Non-Secure states. (If the CPU doesn't support
 495         * the security extension then it has only two SPs.)
 496         * In QEMU we always store the currently active SP in regs[13],
 497         * and the non-active SP for the current security state in
 498         * v7m.other_sp. The stack pointers for the inactive security state
 499         * are stored in other_ss_msp and other_ss_psp.
 500         * switch_v7m_security_state() is responsible for rearranging them
 501         * when we change security state.
 502         */
 503        uint32_t other_sp;
 504        uint32_t other_ss_msp;
 505        uint32_t other_ss_psp;
 506        uint32_t vecbase[M_REG_NUM_BANKS];
 507        uint32_t basepri[M_REG_NUM_BANKS];
 508        uint32_t control[M_REG_NUM_BANKS];
 509        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 510        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 511        uint32_t hfsr; /* HardFault Status */
 512        uint32_t dfsr; /* Debug Fault Status Register */
 513        uint32_t sfsr; /* Secure Fault Status Register */
 514        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 515        uint32_t bfar; /* BusFault Address */
 516        uint32_t sfar; /* Secure Fault Address Register */
 517        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 518        int exception;
 519        uint32_t primask[M_REG_NUM_BANKS];
 520        uint32_t faultmask[M_REG_NUM_BANKS];
 521        uint32_t aircr; /* only holds r/w state if security extn implemented */
 522        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 523        uint32_t csselr[M_REG_NUM_BANKS];
 524        uint32_t scr[M_REG_NUM_BANKS];
 525        uint32_t msplim[M_REG_NUM_BANKS];
 526        uint32_t psplim[M_REG_NUM_BANKS];
 527        uint32_t fpcar[M_REG_NUM_BANKS];
 528        uint32_t fpccr[M_REG_NUM_BANKS];
 529        uint32_t fpdscr[M_REG_NUM_BANKS];
 530        uint32_t cpacr[M_REG_NUM_BANKS];
 531        uint32_t nsacr;
 532    } v7m;
 533
 534    /* Information associated with an exception about to be taken:
 535     * code which raises an exception must set cs->exception_index and
 536     * the relevant parts of this structure; the cpu_do_interrupt function
 537     * will then set the guest-visible registers as part of the exception
 538     * entry process.
 539     */
 540    struct {
 541        uint32_t syndrome; /* AArch64 format syndrome register */
 542        uint32_t fsr; /* AArch32 format fault status register info */
 543        uint64_t vaddress; /* virtual addr associated with exception, if any */
 544        uint32_t target_el; /* EL the exception should be targeted for */
 545        /* If we implement EL2 we will also need to store information
 546         * about the intermediate physical address for stage 2 faults.
 547         */
 548    } exception;
 549
 550    /* Information associated with an SError */
 551    struct {
 552        uint8_t pending;
 553        uint8_t has_esr;
 554        uint64_t esr;
 555    } serror;
 556
 557    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 558    uint32_t irq_line_state;
 559
 560    /* Thumb-2 EE state.  */
 561    uint32_t teecr;
 562    uint32_t teehbr;
 563
 564    /* VFP coprocessor state.  */
 565    struct {
 566        ARMVectorReg zregs[32];
 567
 568#ifdef TARGET_AARCH64
 569        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 570#define FFR_PRED_NUM 16
 571        ARMPredicateReg pregs[17];
 572        /* Scratch space for aa64 sve predicate temporary.  */
 573        ARMPredicateReg preg_tmp;
 574#endif
 575
 576        /* We store these fpcsr fields separately for convenience.  */
 577        uint32_t qc[4] QEMU_ALIGNED(16);
 578        int vec_len;
 579        int vec_stride;
 580
 581        uint32_t xregs[16];
 582
 583        /* Scratch space for aa32 neon expansion.  */
 584        uint32_t scratch[8];
 585
 586        /* There are a number of distinct float control structures:
 587         *
 588         *  fp_status: is the "normal" fp status.
 589         *  fp_status_fp16: used for half-precision calculations
 590         *  standard_fp_status : the ARM "Standard FPSCR Value"
 591         *
 592         * Half-precision operations are governed by a separate
 593         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 594         * status structure to control this.
 595         *
 596         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 597         * round-to-nearest and is used by any operations (generally
 598         * Neon) which the architecture defines as controlled by the
 599         * standard FPSCR value rather than the FPSCR.
 600         *
 601         * To avoid having to transfer exception bits around, we simply
 602         * say that the FPSCR cumulative exception flags are the logical
 603         * OR of the flags in the three fp statuses. This relies on the
 604         * only thing which needs to read the exception flags being
 605         * an explicit FPSCR read.
 606         */
 607        float_status fp_status;
 608        float_status fp_status_f16;
 609        float_status standard_fp_status;
 610
 611        /* ZCR_EL[1-3] */
 612        uint64_t zcr_el[4];
 613    } vfp;
 614    uint64_t exclusive_addr;
 615    uint64_t exclusive_val;
 616    uint64_t exclusive_high;
 617
 618    /* iwMMXt coprocessor state.  */
 619    struct {
 620        uint64_t regs[16];
 621        uint64_t val;
 622
 623        uint32_t cregs[16];
 624    } iwmmxt;
 625
 626#ifdef TARGET_AARCH64
 627    struct {
 628        ARMPACKey apia;
 629        ARMPACKey apib;
 630        ARMPACKey apda;
 631        ARMPACKey apdb;
 632        ARMPACKey apga;
 633    } keys;
 634#endif
 635
 636#if defined(CONFIG_USER_ONLY)
 637    /* For usermode syscall translation.  */
 638    int eabi;
 639#endif
 640
 641    struct CPUBreakpoint *cpu_breakpoint[16];
 642    struct CPUWatchpoint *cpu_watchpoint[16];
 643
 644    /* Fields up to this point are cleared by a CPU reset */
 645    struct {} end_reset_fields;
 646
 647    /* Fields after this point are preserved across CPU reset. */
 648
 649    /* Internal CPU feature flags.  */
 650    uint64_t features;
 651
 652    /* PMSAv7 MPU */
 653    struct {
 654        uint32_t *drbar;
 655        uint32_t *drsr;
 656        uint32_t *dracr;
 657        uint32_t rnr[M_REG_NUM_BANKS];
 658    } pmsav7;
 659
 660    /* PMSAv8 MPU */
 661    struct {
 662        /* The PMSAv8 implementation also shares some PMSAv7 config
 663         * and state:
 664         *  pmsav7.rnr (region number register)
 665         *  pmsav7_dregion (number of configured regions)
 666         */
 667        uint32_t *rbar[M_REG_NUM_BANKS];
 668        uint32_t *rlar[M_REG_NUM_BANKS];
 669        uint32_t mair0[M_REG_NUM_BANKS];
 670        uint32_t mair1[M_REG_NUM_BANKS];
 671    } pmsav8;
 672
 673    /* v8M SAU */
 674    struct {
 675        uint32_t *rbar;
 676        uint32_t *rlar;
 677        uint32_t rnr;
 678        uint32_t ctrl;
 679    } sau;
 680
 681    void *nvic;
 682    const struct arm_boot_info *boot_info;
 683    /* Store GICv3CPUState to access from this struct */
 684    void *gicv3state;
 685} CPUARMState;
 686
 687/**
 688 * ARMELChangeHookFn:
 689 * type of a function which can be registered via arm_register_el_change_hook()
 690 * to get callbacks when the CPU changes its exception level or mode.
 691 */
 692typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 693typedef struct ARMELChangeHook ARMELChangeHook;
 694struct ARMELChangeHook {
 695    ARMELChangeHookFn *hook;
 696    void *opaque;
 697    QLIST_ENTRY(ARMELChangeHook) node;
 698};
 699
 700/* These values map onto the return values for
 701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 702typedef enum ARMPSCIState {
 703    PSCI_ON = 0,
 704    PSCI_OFF = 1,
 705    PSCI_ON_PENDING = 2
 706} ARMPSCIState;
 707
 708typedef struct ARMISARegisters ARMISARegisters;
 709
 710/**
 711 * ARMCPU:
 712 * @env: #CPUARMState
 713 *
 714 * An ARM CPU core.
 715 */
 716struct ARMCPU {
 717    /*< private >*/
 718    CPUState parent_obj;
 719    /*< public >*/
 720
 721    CPUNegativeOffsetState neg;
 722    CPUARMState env;
 723
 724    /* Coprocessor information */
 725    GHashTable *cp_regs;
 726    /* For marshalling (mostly coprocessor) register state between the
 727     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 728     * we use these arrays.
 729     */
 730    /* List of register indexes managed via these arrays; (full KVM style
 731     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 732     */
 733    uint64_t *cpreg_indexes;
 734    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 735    uint64_t *cpreg_values;
 736    /* Length of the indexes, values, reset_values arrays */
 737    int32_t cpreg_array_len;
 738    /* These are used only for migration: incoming data arrives in
 739     * these fields and is sanity checked in post_load before copying
 740     * to the working data structures above.
 741     */
 742    uint64_t *cpreg_vmstate_indexes;
 743    uint64_t *cpreg_vmstate_values;
 744    int32_t cpreg_vmstate_array_len;
 745
 746    DynamicGDBXMLInfo dyn_xml;
 747
 748    /* Timers used by the generic (architected) timer */
 749    QEMUTimer *gt_timer[NUM_GTIMERS];
 750    /*
 751     * Timer used by the PMU. Its state is restored after migration by
 752     * pmu_op_finish() - it does not need other handling during migration
 753     */
 754    QEMUTimer *pmu_timer;
 755    /* GPIO outputs for generic timer */
 756    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 757    /* GPIO output for GICv3 maintenance interrupt signal */
 758    qemu_irq gicv3_maintenance_interrupt;
 759    /* GPIO output for the PMU interrupt */
 760    qemu_irq pmu_interrupt;
 761
 762    /* MemoryRegion to use for secure physical accesses */
 763    MemoryRegion *secure_memory;
 764
 765    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 766    Object *idau;
 767
 768    /* 'compatible' string for this CPU for Linux device trees */
 769    const char *dtb_compatible;
 770
 771    /* PSCI version for this CPU
 772     * Bits[31:16] = Major Version
 773     * Bits[15:0] = Minor Version
 774     */
 775    uint32_t psci_version;
 776
 777    /* Should CPU start in PSCI powered-off state? */
 778    bool start_powered_off;
 779
 780    /* Current power state, access guarded by BQL */
 781    ARMPSCIState power_state;
 782
 783    /* CPU has virtualization extension */
 784    bool has_el2;
 785    /* CPU has security extension */
 786    bool has_el3;
 787    /* CPU has PMU (Performance Monitor Unit) */
 788    bool has_pmu;
 789    /* CPU has VFP */
 790    bool has_vfp;
 791    /* CPU has Neon */
 792    bool has_neon;
 793    /* CPU has M-profile DSP extension */
 794    bool has_dsp;
 795
 796    /* CPU has memory protection unit */
 797    bool has_mpu;
 798    /* PMSAv7 MPU number of supported regions */
 799    uint32_t pmsav7_dregion;
 800    /* v8M SAU number of supported regions */
 801    uint32_t sau_sregion;
 802
 803    /* PSCI conduit used to invoke PSCI methods
 804     * 0 - disabled, 1 - smc, 2 - hvc
 805     */
 806    uint32_t psci_conduit;
 807
 808    /* For v8M, initial value of the Secure VTOR */
 809    uint32_t init_svtor;
 810
 811    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 812     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 813     */
 814    uint32_t kvm_target;
 815
 816    /* KVM init features for this CPU */
 817    uint32_t kvm_init_features[7];
 818
 819    /* Uniprocessor system with MP extensions */
 820    bool mp_is_up;
 821
 822    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 823     * and the probe failed (so we need to report the error in realize)
 824     */
 825    bool host_cpu_probe_failed;
 826
 827    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 828     * register.
 829     */
 830    int32_t core_count;
 831
 832    /* The instance init functions for implementation-specific subclasses
 833     * set these fields to specify the implementation-dependent values of
 834     * various constant registers and reset values of non-constant
 835     * registers.
 836     * Some of these might become QOM properties eventually.
 837     * Field names match the official register names as defined in the
 838     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 839     * is used for reset values of non-constant registers; no reset_
 840     * prefix means a constant register.
 841     * Some of these registers are split out into a substructure that
 842     * is shared with the translators to control the ISA.
 843     */
 844    struct ARMISARegisters {
 845        uint32_t id_isar0;
 846        uint32_t id_isar1;
 847        uint32_t id_isar2;
 848        uint32_t id_isar3;
 849        uint32_t id_isar4;
 850        uint32_t id_isar5;
 851        uint32_t id_isar6;
 852        uint32_t mvfr0;
 853        uint32_t mvfr1;
 854        uint32_t mvfr2;
 855        uint64_t id_aa64isar0;
 856        uint64_t id_aa64isar1;
 857        uint64_t id_aa64pfr0;
 858        uint64_t id_aa64pfr1;
 859        uint64_t id_aa64mmfr0;
 860        uint64_t id_aa64mmfr1;
 861    } isar;
 862    uint32_t midr;
 863    uint32_t revidr;
 864    uint32_t reset_fpsid;
 865    uint32_t ctr;
 866    uint32_t reset_sctlr;
 867    uint32_t id_pfr0;
 868    uint32_t id_pfr1;
 869    uint32_t id_dfr0;
 870    uint64_t pmceid0;
 871    uint64_t pmceid1;
 872    uint32_t id_afr0;
 873    uint32_t id_mmfr0;
 874    uint32_t id_mmfr1;
 875    uint32_t id_mmfr2;
 876    uint32_t id_mmfr3;
 877    uint32_t id_mmfr4;
 878    uint64_t id_aa64dfr0;
 879    uint64_t id_aa64dfr1;
 880    uint64_t id_aa64afr0;
 881    uint64_t id_aa64afr1;
 882    uint32_t dbgdidr;
 883    uint32_t clidr;
 884    uint64_t mp_affinity; /* MP ID without feature bits */
 885    /* The elements of this array are the CCSIDR values for each cache,
 886     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 887     */
 888    uint32_t ccsidr[16];
 889    uint64_t reset_cbar;
 890    uint32_t reset_auxcr;
 891    bool reset_hivecs;
 892    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 893    uint32_t dcz_blocksize;
 894    uint64_t rvbar;
 895
 896    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 897    int gic_num_lrs; /* number of list registers */
 898    int gic_vpribits; /* number of virtual priority bits */
 899    int gic_vprebits; /* number of virtual preemption bits */
 900
 901    /* Whether the cfgend input is high (i.e. this CPU should reset into
 902     * big-endian mode).  This setting isn't used directly: instead it modifies
 903     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 904     * architecture version.
 905     */
 906    bool cfgend;
 907
 908    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 909    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 910
 911    int32_t node_id; /* NUMA node this CPU belongs to */
 912
 913    /* Used to synchronize KVM and QEMU in-kernel device levels */
 914    uint8_t device_irq_level;
 915
 916    /* Used to set the maximum vector length the cpu will support.  */
 917    uint32_t sve_max_vq;
 918};
 919
 920void arm_cpu_post_init(Object *obj);
 921
 922uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 923
 924#ifndef CONFIG_USER_ONLY
 925extern const struct VMStateDescription vmstate_arm_cpu;
 926#endif
 927
 928void arm_cpu_do_interrupt(CPUState *cpu);
 929void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 930bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 931
 932hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 933                                         MemTxAttrs *attrs);
 934
 935int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 936int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 937
 938/* Dynamically generates for gdb stub an XML description of the sysregs from
 939 * the cp_regs hashtable. Returns the registered sysregs number.
 940 */
 941int arm_gen_dynamic_xml(CPUState *cpu);
 942
 943/* Returns the dynamically generated XML for the gdb stub.
 944 * Returns a pointer to the XML contents for the specified XML file or NULL
 945 * if the XML name doesn't match the predefined one.
 946 */
 947const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
 948
 949int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 950                             int cpuid, void *opaque);
 951int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 952                             int cpuid, void *opaque);
 953
 954#ifdef TARGET_AARCH64
 955int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 956int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 957void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
 958void aarch64_sve_change_el(CPUARMState *env, int old_el,
 959                           int new_el, bool el0_a64);
 960#else
 961static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
 962static inline void aarch64_sve_change_el(CPUARMState *env, int o,
 963                                         int n, bool a)
 964{ }
 965#endif
 966
 967#if !defined(CONFIG_TCG)
 968static inline target_ulong do_arm_semihosting(CPUARMState *env)
 969{
 970    g_assert_not_reached();
 971}
 972#else
 973target_ulong do_arm_semihosting(CPUARMState *env);
 974#endif
 975void aarch64_sync_32_to_64(CPUARMState *env);
 976void aarch64_sync_64_to_32(CPUARMState *env);
 977
 978int fp_exception_el(CPUARMState *env, int cur_el);
 979int sve_exception_el(CPUARMState *env, int cur_el);
 980uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
 981
 982static inline bool is_a64(CPUARMState *env)
 983{
 984    return env->aarch64;
 985}
 986
 987/* you can call this signal handler from your SIGBUS and SIGSEGV
 988   signal handlers to inform the virtual CPU of exceptions. non zero
 989   is returned if the signal was handled by the virtual CPU.  */
 990int cpu_arm_signal_handler(int host_signum, void *pinfo,
 991                           void *puc);
 992
 993/**
 994 * pmu_op_start/finish
 995 * @env: CPUARMState
 996 *
 997 * Convert all PMU counters between their delta form (the typical mode when
 998 * they are enabled) and the guest-visible values. These two calls must
 999 * surround any action which might affect the counters.
1000 */
1001void pmu_op_start(CPUARMState *env);
1002void pmu_op_finish(CPUARMState *env);
1003
1004/*
1005 * Called when a PMU counter is due to overflow
1006 */
1007void arm_pmu_timer_cb(void *opaque);
1008
1009/**
1010 * Functions to register as EL change hooks for PMU mode filtering
1011 */
1012void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1013void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1014
1015/*
1016 * pmu_init
1017 * @cpu: ARMCPU
1018 *
1019 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1020 * for the current configuration
1021 */
1022void pmu_init(ARMCPU *cpu);
1023
1024/* SCTLR bit meanings. Several bits have been reused in newer
1025 * versions of the architecture; in that case we define constants
1026 * for both old and new bit meanings. Code which tests against those
1027 * bits should probably check or otherwise arrange that the CPU
1028 * is the architectural version it expects.
1029 */
1030#define SCTLR_M       (1U << 0)
1031#define SCTLR_A       (1U << 1)
1032#define SCTLR_C       (1U << 2)
1033#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1034#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1035#define SCTLR_SA      (1U << 3) /* AArch64 only */
1036#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1037#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1038#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1039#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1040#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1041#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1042#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1043#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1044#define SCTLR_ITD     (1U << 7) /* v8 onward */
1045#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1046#define SCTLR_SED     (1U << 8) /* v8 onward */
1047#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1048#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1049#define SCTLR_F       (1U << 10) /* up to v6 */
1050#define SCTLR_SW      (1U << 10) /* v7 */
1051#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1052#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1053#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1054#define SCTLR_I       (1U << 12)
1055#define SCTLR_V       (1U << 13) /* AArch32 only */
1056#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1057#define SCTLR_RR      (1U << 14) /* up to v7 */
1058#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1059#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1060#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1061#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1062#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1063#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1064#define SCTLR_BR      (1U << 17) /* PMSA only */
1065#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1066#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1067#define SCTLR_WXN     (1U << 19)
1068#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1069#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1070#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1071#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1072#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1073#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1074#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1075#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1076#define SCTLR_VE      (1U << 24) /* up to v7 */
1077#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1078#define SCTLR_EE      (1U << 25)
1079#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1080#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1081#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1082#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1083#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1084#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1085#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1086#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1087#define SCTLR_TE      (1U << 30) /* AArch32 only */
1088#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1089#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1090#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1091#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1092#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1093#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1094#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1095#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1096#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1097#define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1098
1099#define CPTR_TCPAC    (1U << 31)
1100#define CPTR_TTA      (1U << 20)
1101#define CPTR_TFP      (1U << 10)
1102#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1103#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1104
1105#define MDCR_EPMAD    (1U << 21)
1106#define MDCR_EDAD     (1U << 20)
1107#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1108#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1109#define MDCR_SDD      (1U << 16)
1110#define MDCR_SPD      (3U << 14)
1111#define MDCR_TDRA     (1U << 11)
1112#define MDCR_TDOSA    (1U << 10)
1113#define MDCR_TDA      (1U << 9)
1114#define MDCR_TDE      (1U << 8)
1115#define MDCR_HPME     (1U << 7)
1116#define MDCR_TPM      (1U << 6)
1117#define MDCR_TPMCR    (1U << 5)
1118#define MDCR_HPMN     (0x1fU)
1119
1120/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1121#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1122
1123#define CPSR_M (0x1fU)
1124#define CPSR_T (1U << 5)
1125#define CPSR_F (1U << 6)
1126#define CPSR_I (1U << 7)
1127#define CPSR_A (1U << 8)
1128#define CPSR_E (1U << 9)
1129#define CPSR_IT_2_7 (0xfc00U)
1130#define CPSR_GE (0xfU << 16)
1131#define CPSR_IL (1U << 20)
1132/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1133 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1134 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1135 * where it is live state but not accessible to the AArch32 code.
1136 */
1137#define CPSR_RESERVED (0x7U << 21)
1138#define CPSR_J (1U << 24)
1139#define CPSR_IT_0_1 (3U << 25)
1140#define CPSR_Q (1U << 27)
1141#define CPSR_V (1U << 28)
1142#define CPSR_C (1U << 29)
1143#define CPSR_Z (1U << 30)
1144#define CPSR_N (1U << 31)
1145#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1146#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1147
1148#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1149#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1150    | CPSR_NZCV)
1151/* Bits writable in user mode.  */
1152#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1153/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1154#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1155/* Mask of bits which may be set by exception return copying them from SPSR */
1156#define CPSR_ERET_MASK (~CPSR_RESERVED)
1157
1158/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1159#define XPSR_EXCP 0x1ffU
1160#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1161#define XPSR_IT_2_7 CPSR_IT_2_7
1162#define XPSR_GE CPSR_GE
1163#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1164#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1165#define XPSR_IT_0_1 CPSR_IT_0_1
1166#define XPSR_Q CPSR_Q
1167#define XPSR_V CPSR_V
1168#define XPSR_C CPSR_C
1169#define XPSR_Z CPSR_Z
1170#define XPSR_N CPSR_N
1171#define XPSR_NZCV CPSR_NZCV
1172#define XPSR_IT CPSR_IT
1173
1174#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1175#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1176#define TTBCR_PD0    (1U << 4)
1177#define TTBCR_PD1    (1U << 5)
1178#define TTBCR_EPD0   (1U << 7)
1179#define TTBCR_IRGN0  (3U << 8)
1180#define TTBCR_ORGN0  (3U << 10)
1181#define TTBCR_SH0    (3U << 12)
1182#define TTBCR_T1SZ   (3U << 16)
1183#define TTBCR_A1     (1U << 22)
1184#define TTBCR_EPD1   (1U << 23)
1185#define TTBCR_IRGN1  (3U << 24)
1186#define TTBCR_ORGN1  (3U << 26)
1187#define TTBCR_SH1    (1U << 28)
1188#define TTBCR_EAE    (1U << 31)
1189
1190/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1191 * Only these are valid when in AArch64 mode; in
1192 * AArch32 mode SPSRs are basically CPSR-format.
1193 */
1194#define PSTATE_SP (1U)
1195#define PSTATE_M (0xFU)
1196#define PSTATE_nRW (1U << 4)
1197#define PSTATE_F (1U << 6)
1198#define PSTATE_I (1U << 7)
1199#define PSTATE_A (1U << 8)
1200#define PSTATE_D (1U << 9)
1201#define PSTATE_BTYPE (3U << 10)
1202#define PSTATE_IL (1U << 20)
1203#define PSTATE_SS (1U << 21)
1204#define PSTATE_V (1U << 28)
1205#define PSTATE_C (1U << 29)
1206#define PSTATE_Z (1U << 30)
1207#define PSTATE_N (1U << 31)
1208#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1209#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1210#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1211/* Mode values for AArch64 */
1212#define PSTATE_MODE_EL3h 13
1213#define PSTATE_MODE_EL3t 12
1214#define PSTATE_MODE_EL2h 9
1215#define PSTATE_MODE_EL2t 8
1216#define PSTATE_MODE_EL1h 5
1217#define PSTATE_MODE_EL1t 4
1218#define PSTATE_MODE_EL0t 0
1219
1220/* Write a new value to v7m.exception, thus transitioning into or out
1221 * of Handler mode; this may result in a change of active stack pointer.
1222 */
1223void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1224
1225/* Map EL and handler into a PSTATE_MODE.  */
1226static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1227{
1228    return (el << 2) | handler;
1229}
1230
1231/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1232 * interprocessing, so we don't attempt to sync with the cpsr state used by
1233 * the 32 bit decoder.
1234 */
1235static inline uint32_t pstate_read(CPUARMState *env)
1236{
1237    int ZF;
1238
1239    ZF = (env->ZF == 0);
1240    return (env->NF & 0x80000000) | (ZF << 30)
1241        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1242        | env->pstate | env->daif | (env->btype << 10);
1243}
1244
1245static inline void pstate_write(CPUARMState *env, uint32_t val)
1246{
1247    env->ZF = (~val) & PSTATE_Z;
1248    env->NF = val;
1249    env->CF = (val >> 29) & 1;
1250    env->VF = (val << 3) & 0x80000000;
1251    env->daif = val & PSTATE_DAIF;
1252    env->btype = (val >> 10) & 3;
1253    env->pstate = val & ~CACHED_PSTATE_BITS;
1254}
1255
1256/* Return the current CPSR value.  */
1257uint32_t cpsr_read(CPUARMState *env);
1258
1259typedef enum CPSRWriteType {
1260    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1261    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1262    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1263    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1264} CPSRWriteType;
1265
1266/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1267void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1268                CPSRWriteType write_type);
1269
1270/* Return the current xPSR value.  */
1271static inline uint32_t xpsr_read(CPUARMState *env)
1272{
1273    int ZF;
1274    ZF = (env->ZF == 0);
1275    return (env->NF & 0x80000000) | (ZF << 30)
1276        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1277        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1278        | ((env->condexec_bits & 0xfc) << 8)
1279        | (env->GE << 16)
1280        | env->v7m.exception;
1281}
1282
1283/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1284static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1285{
1286    if (mask & XPSR_NZCV) {
1287        env->ZF = (~val) & XPSR_Z;
1288        env->NF = val;
1289        env->CF = (val >> 29) & 1;
1290        env->VF = (val << 3) & 0x80000000;
1291    }
1292    if (mask & XPSR_Q) {
1293        env->QF = ((val & XPSR_Q) != 0);
1294    }
1295    if (mask & XPSR_GE) {
1296        env->GE = (val & XPSR_GE) >> 16;
1297    }
1298    if (mask & XPSR_T) {
1299        env->thumb = ((val & XPSR_T) != 0);
1300    }
1301    if (mask & XPSR_IT_0_1) {
1302        env->condexec_bits &= ~3;
1303        env->condexec_bits |= (val >> 25) & 3;
1304    }
1305    if (mask & XPSR_IT_2_7) {
1306        env->condexec_bits &= 3;
1307        env->condexec_bits |= (val >> 8) & 0xfc;
1308    }
1309    if (mask & XPSR_EXCP) {
1310        /* Note that this only happens on exception exit */
1311        write_v7m_exception(env, val & XPSR_EXCP);
1312    }
1313}
1314
1315#define HCR_VM        (1ULL << 0)
1316#define HCR_SWIO      (1ULL << 1)
1317#define HCR_PTW       (1ULL << 2)
1318#define HCR_FMO       (1ULL << 3)
1319#define HCR_IMO       (1ULL << 4)
1320#define HCR_AMO       (1ULL << 5)
1321#define HCR_VF        (1ULL << 6)
1322#define HCR_VI        (1ULL << 7)
1323#define HCR_VSE       (1ULL << 8)
1324#define HCR_FB        (1ULL << 9)
1325#define HCR_BSU_MASK  (3ULL << 10)
1326#define HCR_DC        (1ULL << 12)
1327#define HCR_TWI       (1ULL << 13)
1328#define HCR_TWE       (1ULL << 14)
1329#define HCR_TID0      (1ULL << 15)
1330#define HCR_TID1      (1ULL << 16)
1331#define HCR_TID2      (1ULL << 17)
1332#define HCR_TID3      (1ULL << 18)
1333#define HCR_TSC       (1ULL << 19)
1334#define HCR_TIDCP     (1ULL << 20)
1335#define HCR_TACR      (1ULL << 21)
1336#define HCR_TSW       (1ULL << 22)
1337#define HCR_TPCP      (1ULL << 23)
1338#define HCR_TPU       (1ULL << 24)
1339#define HCR_TTLB      (1ULL << 25)
1340#define HCR_TVM       (1ULL << 26)
1341#define HCR_TGE       (1ULL << 27)
1342#define HCR_TDZ       (1ULL << 28)
1343#define HCR_HCD       (1ULL << 29)
1344#define HCR_TRVM      (1ULL << 30)
1345#define HCR_RW        (1ULL << 31)
1346#define HCR_CD        (1ULL << 32)
1347#define HCR_ID        (1ULL << 33)
1348#define HCR_E2H       (1ULL << 34)
1349#define HCR_TLOR      (1ULL << 35)
1350#define HCR_TERR      (1ULL << 36)
1351#define HCR_TEA       (1ULL << 37)
1352#define HCR_MIOCNCE   (1ULL << 38)
1353#define HCR_APK       (1ULL << 40)
1354#define HCR_API       (1ULL << 41)
1355#define HCR_NV        (1ULL << 42)
1356#define HCR_NV1       (1ULL << 43)
1357#define HCR_AT        (1ULL << 44)
1358#define HCR_NV2       (1ULL << 45)
1359#define HCR_FWB       (1ULL << 46)
1360#define HCR_FIEN      (1ULL << 47)
1361#define HCR_TID4      (1ULL << 49)
1362#define HCR_TICAB     (1ULL << 50)
1363#define HCR_TOCU      (1ULL << 52)
1364#define HCR_TTLBIS    (1ULL << 54)
1365#define HCR_TTLBOS    (1ULL << 55)
1366#define HCR_ATA       (1ULL << 56)
1367#define HCR_DCT       (1ULL << 57)
1368
1369/*
1370 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1371 * HCR_MASK and then clear it again if the feature bit is not set in
1372 * hcr_write().
1373 */
1374#define HCR_MASK      ((1ULL << 34) - 1)
1375
1376#define SCR_NS                (1U << 0)
1377#define SCR_IRQ               (1U << 1)
1378#define SCR_FIQ               (1U << 2)
1379#define SCR_EA                (1U << 3)
1380#define SCR_FW                (1U << 4)
1381#define SCR_AW                (1U << 5)
1382#define SCR_NET               (1U << 6)
1383#define SCR_SMD               (1U << 7)
1384#define SCR_HCE               (1U << 8)
1385#define SCR_SIF               (1U << 9)
1386#define SCR_RW                (1U << 10)
1387#define SCR_ST                (1U << 11)
1388#define SCR_TWI               (1U << 12)
1389#define SCR_TWE               (1U << 13)
1390#define SCR_TLOR              (1U << 14)
1391#define SCR_TERR              (1U << 15)
1392#define SCR_APK               (1U << 16)
1393#define SCR_API               (1U << 17)
1394#define SCR_EEL2              (1U << 18)
1395#define SCR_EASE              (1U << 19)
1396#define SCR_NMEA              (1U << 20)
1397#define SCR_FIEN              (1U << 21)
1398#define SCR_ENSCXT            (1U << 25)
1399#define SCR_ATA               (1U << 26)
1400
1401/* Return the current FPSCR value.  */
1402uint32_t vfp_get_fpscr(CPUARMState *env);
1403void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1404
1405/* FPCR, Floating Point Control Register
1406 * FPSR, Floating Poiht Status Register
1407 *
1408 * For A64 the FPSCR is split into two logically distinct registers,
1409 * FPCR and FPSR. However since they still use non-overlapping bits
1410 * we store the underlying state in fpscr and just mask on read/write.
1411 */
1412#define FPSR_MASK 0xf800009f
1413#define FPCR_MASK 0x07ff9f00
1414
1415#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1416#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1417#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1418#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1419#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1420#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1421#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1422#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1423#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1424#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1425
1426static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1427{
1428    return vfp_get_fpscr(env) & FPSR_MASK;
1429}
1430
1431static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1432{
1433    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1434    vfp_set_fpscr(env, new_fpscr);
1435}
1436
1437static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1438{
1439    return vfp_get_fpscr(env) & FPCR_MASK;
1440}
1441
1442static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1443{
1444    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1445    vfp_set_fpscr(env, new_fpscr);
1446}
1447
1448enum arm_cpu_mode {
1449  ARM_CPU_MODE_USR = 0x10,
1450  ARM_CPU_MODE_FIQ = 0x11,
1451  ARM_CPU_MODE_IRQ = 0x12,
1452  ARM_CPU_MODE_SVC = 0x13,
1453  ARM_CPU_MODE_MON = 0x16,
1454  ARM_CPU_MODE_ABT = 0x17,
1455  ARM_CPU_MODE_HYP = 0x1a,
1456  ARM_CPU_MODE_UND = 0x1b,
1457  ARM_CPU_MODE_SYS = 0x1f
1458};
1459
1460/* VFP system registers.  */
1461#define ARM_VFP_FPSID   0
1462#define ARM_VFP_FPSCR   1
1463#define ARM_VFP_MVFR2   5
1464#define ARM_VFP_MVFR1   6
1465#define ARM_VFP_MVFR0   7
1466#define ARM_VFP_FPEXC   8
1467#define ARM_VFP_FPINST  9
1468#define ARM_VFP_FPINST2 10
1469
1470/* iwMMXt coprocessor control registers.  */
1471#define ARM_IWMMXT_wCID  0
1472#define ARM_IWMMXT_wCon  1
1473#define ARM_IWMMXT_wCSSF 2
1474#define ARM_IWMMXT_wCASF 3
1475#define ARM_IWMMXT_wCGR0 8
1476#define ARM_IWMMXT_wCGR1 9
1477#define ARM_IWMMXT_wCGR2 10
1478#define ARM_IWMMXT_wCGR3 11
1479
1480/* V7M CCR bits */
1481FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1482FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1483FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1484FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1485FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1486FIELD(V7M_CCR, STKALIGN, 9, 1)
1487FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1488FIELD(V7M_CCR, DC, 16, 1)
1489FIELD(V7M_CCR, IC, 17, 1)
1490FIELD(V7M_CCR, BP, 18, 1)
1491
1492/* V7M SCR bits */
1493FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1494FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1495FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1496FIELD(V7M_SCR, SEVONPEND, 4, 1)
1497
1498/* V7M AIRCR bits */
1499FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1500FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1501FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1502FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1503FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1504FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1505FIELD(V7M_AIRCR, PRIS, 14, 1)
1506FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1507FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1508
1509/* V7M CFSR bits for MMFSR */
1510FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1511FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1512FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1513FIELD(V7M_CFSR, MSTKERR, 4, 1)
1514FIELD(V7M_CFSR, MLSPERR, 5, 1)
1515FIELD(V7M_CFSR, MMARVALID, 7, 1)
1516
1517/* V7M CFSR bits for BFSR */
1518FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1519FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1520FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1521FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1522FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1523FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1524FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1525
1526/* V7M CFSR bits for UFSR */
1527FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1528FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1529FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1530FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1531FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1532FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1533FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1534
1535/* V7M CFSR bit masks covering all of the subregister bits */
1536FIELD(V7M_CFSR, MMFSR, 0, 8)
1537FIELD(V7M_CFSR, BFSR, 8, 8)
1538FIELD(V7M_CFSR, UFSR, 16, 16)
1539
1540/* V7M HFSR bits */
1541FIELD(V7M_HFSR, VECTTBL, 1, 1)
1542FIELD(V7M_HFSR, FORCED, 30, 1)
1543FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1544
1545/* V7M DFSR bits */
1546FIELD(V7M_DFSR, HALTED, 0, 1)
1547FIELD(V7M_DFSR, BKPT, 1, 1)
1548FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1549FIELD(V7M_DFSR, VCATCH, 3, 1)
1550FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1551
1552/* V7M SFSR bits */
1553FIELD(V7M_SFSR, INVEP, 0, 1)
1554FIELD(V7M_SFSR, INVIS, 1, 1)
1555FIELD(V7M_SFSR, INVER, 2, 1)
1556FIELD(V7M_SFSR, AUVIOL, 3, 1)
1557FIELD(V7M_SFSR, INVTRAN, 4, 1)
1558FIELD(V7M_SFSR, LSPERR, 5, 1)
1559FIELD(V7M_SFSR, SFARVALID, 6, 1)
1560FIELD(V7M_SFSR, LSERR, 7, 1)
1561
1562/* v7M MPU_CTRL bits */
1563FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1564FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1565FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1566
1567/* v7M CLIDR bits */
1568FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1569FIELD(V7M_CLIDR, LOUIS, 21, 3)
1570FIELD(V7M_CLIDR, LOC, 24, 3)
1571FIELD(V7M_CLIDR, LOUU, 27, 3)
1572FIELD(V7M_CLIDR, ICB, 30, 2)
1573
1574FIELD(V7M_CSSELR, IND, 0, 1)
1575FIELD(V7M_CSSELR, LEVEL, 1, 3)
1576/* We use the combination of InD and Level to index into cpu->ccsidr[];
1577 * define a mask for this and check that it doesn't permit running off
1578 * the end of the array.
1579 */
1580FIELD(V7M_CSSELR, INDEX, 0, 4)
1581
1582/* v7M FPCCR bits */
1583FIELD(V7M_FPCCR, LSPACT, 0, 1)
1584FIELD(V7M_FPCCR, USER, 1, 1)
1585FIELD(V7M_FPCCR, S, 2, 1)
1586FIELD(V7M_FPCCR, THREAD, 3, 1)
1587FIELD(V7M_FPCCR, HFRDY, 4, 1)
1588FIELD(V7M_FPCCR, MMRDY, 5, 1)
1589FIELD(V7M_FPCCR, BFRDY, 6, 1)
1590FIELD(V7M_FPCCR, SFRDY, 7, 1)
1591FIELD(V7M_FPCCR, MONRDY, 8, 1)
1592FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1593FIELD(V7M_FPCCR, UFRDY, 10, 1)
1594FIELD(V7M_FPCCR, RES0, 11, 15)
1595FIELD(V7M_FPCCR, TS, 26, 1)
1596FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1597FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1598FIELD(V7M_FPCCR, LSPENS, 29, 1)
1599FIELD(V7M_FPCCR, LSPEN, 30, 1)
1600FIELD(V7M_FPCCR, ASPEN, 31, 1)
1601/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1602#define R_V7M_FPCCR_BANKED_MASK                 \
1603    (R_V7M_FPCCR_LSPACT_MASK |                  \
1604     R_V7M_FPCCR_USER_MASK |                    \
1605     R_V7M_FPCCR_THREAD_MASK |                  \
1606     R_V7M_FPCCR_MMRDY_MASK |                   \
1607     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1608     R_V7M_FPCCR_UFRDY_MASK |                   \
1609     R_V7M_FPCCR_ASPEN_MASK)
1610
1611/*
1612 * System register ID fields.
1613 */
1614FIELD(ID_ISAR0, SWAP, 0, 4)
1615FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1616FIELD(ID_ISAR0, BITFIELD, 8, 4)
1617FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1618FIELD(ID_ISAR0, COPROC, 16, 4)
1619FIELD(ID_ISAR0, DEBUG, 20, 4)
1620FIELD(ID_ISAR0, DIVIDE, 24, 4)
1621
1622FIELD(ID_ISAR1, ENDIAN, 0, 4)
1623FIELD(ID_ISAR1, EXCEPT, 4, 4)
1624FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1625FIELD(ID_ISAR1, EXTEND, 12, 4)
1626FIELD(ID_ISAR1, IFTHEN, 16, 4)
1627FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1628FIELD(ID_ISAR1, INTERWORK, 24, 4)
1629FIELD(ID_ISAR1, JAZELLE, 28, 4)
1630
1631FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1632FIELD(ID_ISAR2, MEMHINT, 4, 4)
1633FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1634FIELD(ID_ISAR2, MULT, 12, 4)
1635FIELD(ID_ISAR2, MULTS, 16, 4)
1636FIELD(ID_ISAR2, MULTU, 20, 4)
1637FIELD(ID_ISAR2, PSR_AR, 24, 4)
1638FIELD(ID_ISAR2, REVERSAL, 28, 4)
1639
1640FIELD(ID_ISAR3, SATURATE, 0, 4)
1641FIELD(ID_ISAR3, SIMD, 4, 4)
1642FIELD(ID_ISAR3, SVC, 8, 4)
1643FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1644FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1645FIELD(ID_ISAR3, T32COPY, 20, 4)
1646FIELD(ID_ISAR3, TRUENOP, 24, 4)
1647FIELD(ID_ISAR3, T32EE, 28, 4)
1648
1649FIELD(ID_ISAR4, UNPRIV, 0, 4)
1650FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1651FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1652FIELD(ID_ISAR4, SMC, 12, 4)
1653FIELD(ID_ISAR4, BARRIER, 16, 4)
1654FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1655FIELD(ID_ISAR4, PSR_M, 24, 4)
1656FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1657
1658FIELD(ID_ISAR5, SEVL, 0, 4)
1659FIELD(ID_ISAR5, AES, 4, 4)
1660FIELD(ID_ISAR5, SHA1, 8, 4)
1661FIELD(ID_ISAR5, SHA2, 12, 4)
1662FIELD(ID_ISAR5, CRC32, 16, 4)
1663FIELD(ID_ISAR5, RDM, 24, 4)
1664FIELD(ID_ISAR5, VCMA, 28, 4)
1665
1666FIELD(ID_ISAR6, JSCVT, 0, 4)
1667FIELD(ID_ISAR6, DP, 4, 4)
1668FIELD(ID_ISAR6, FHM, 8, 4)
1669FIELD(ID_ISAR6, SB, 12, 4)
1670FIELD(ID_ISAR6, SPECRES, 16, 4)
1671
1672FIELD(ID_MMFR4, SPECSEI, 0, 4)
1673FIELD(ID_MMFR4, AC2, 4, 4)
1674FIELD(ID_MMFR4, XNX, 8, 4)
1675FIELD(ID_MMFR4, CNP, 12, 4)
1676FIELD(ID_MMFR4, HPDS, 16, 4)
1677FIELD(ID_MMFR4, LSM, 20, 4)
1678FIELD(ID_MMFR4, CCIDX, 24, 4)
1679FIELD(ID_MMFR4, EVT, 28, 4)
1680
1681FIELD(ID_AA64ISAR0, AES, 4, 4)
1682FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1683FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1684FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1685FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1686FIELD(ID_AA64ISAR0, RDM, 28, 4)
1687FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1688FIELD(ID_AA64ISAR0, SM3, 36, 4)
1689FIELD(ID_AA64ISAR0, SM4, 40, 4)
1690FIELD(ID_AA64ISAR0, DP, 44, 4)
1691FIELD(ID_AA64ISAR0, FHM, 48, 4)
1692FIELD(ID_AA64ISAR0, TS, 52, 4)
1693FIELD(ID_AA64ISAR0, TLB, 56, 4)
1694FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1695
1696FIELD(ID_AA64ISAR1, DPB, 0, 4)
1697FIELD(ID_AA64ISAR1, APA, 4, 4)
1698FIELD(ID_AA64ISAR1, API, 8, 4)
1699FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1700FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1701FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1702FIELD(ID_AA64ISAR1, GPA, 24, 4)
1703FIELD(ID_AA64ISAR1, GPI, 28, 4)
1704FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1705FIELD(ID_AA64ISAR1, SB, 36, 4)
1706FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1707
1708FIELD(ID_AA64PFR0, EL0, 0, 4)
1709FIELD(ID_AA64PFR0, EL1, 4, 4)
1710FIELD(ID_AA64PFR0, EL2, 8, 4)
1711FIELD(ID_AA64PFR0, EL3, 12, 4)
1712FIELD(ID_AA64PFR0, FP, 16, 4)
1713FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1714FIELD(ID_AA64PFR0, GIC, 24, 4)
1715FIELD(ID_AA64PFR0, RAS, 28, 4)
1716FIELD(ID_AA64PFR0, SVE, 32, 4)
1717
1718FIELD(ID_AA64PFR1, BT, 0, 4)
1719FIELD(ID_AA64PFR1, SBSS, 4, 4)
1720FIELD(ID_AA64PFR1, MTE, 8, 4)
1721FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1722
1723FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1724FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1725FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1726FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1727FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1728FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1729FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1730FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1731FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1732FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1733FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1734FIELD(ID_AA64MMFR0, EXS, 44, 4)
1735
1736FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1737FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1738FIELD(ID_AA64MMFR1, VH, 8, 4)
1739FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1740FIELD(ID_AA64MMFR1, LO, 16, 4)
1741FIELD(ID_AA64MMFR1, PAN, 20, 4)
1742FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1743FIELD(ID_AA64MMFR1, XNX, 28, 4)
1744
1745FIELD(ID_DFR0, COPDBG, 0, 4)
1746FIELD(ID_DFR0, COPSDBG, 4, 4)
1747FIELD(ID_DFR0, MMAPDBG, 8, 4)
1748FIELD(ID_DFR0, COPTRC, 12, 4)
1749FIELD(ID_DFR0, MMAPTRC, 16, 4)
1750FIELD(ID_DFR0, MPROFDBG, 20, 4)
1751FIELD(ID_DFR0, PERFMON, 24, 4)
1752FIELD(ID_DFR0, TRACEFILT, 28, 4)
1753
1754FIELD(MVFR0, SIMDREG, 0, 4)
1755FIELD(MVFR0, FPSP, 4, 4)
1756FIELD(MVFR0, FPDP, 8, 4)
1757FIELD(MVFR0, FPTRAP, 12, 4)
1758FIELD(MVFR0, FPDIVIDE, 16, 4)
1759FIELD(MVFR0, FPSQRT, 20, 4)
1760FIELD(MVFR0, FPSHVEC, 24, 4)
1761FIELD(MVFR0, FPROUND, 28, 4)
1762
1763FIELD(MVFR1, FPFTZ, 0, 4)
1764FIELD(MVFR1, FPDNAN, 4, 4)
1765FIELD(MVFR1, SIMDLS, 8, 4)
1766FIELD(MVFR1, SIMDINT, 12, 4)
1767FIELD(MVFR1, SIMDSP, 16, 4)
1768FIELD(MVFR1, SIMDHP, 20, 4)
1769FIELD(MVFR1, FPHP, 24, 4)
1770FIELD(MVFR1, SIMDFMAC, 28, 4)
1771
1772FIELD(MVFR2, SIMDMISC, 0, 4)
1773FIELD(MVFR2, FPMISC, 4, 4)
1774
1775QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1776
1777/* If adding a feature bit which corresponds to a Linux ELF
1778 * HWCAP bit, remember to update the feature-bit-to-hwcap
1779 * mapping in linux-user/elfload.c:get_elf_hwcap().
1780 */
1781enum arm_features {
1782    ARM_FEATURE_VFP,
1783    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1784    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1785    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1786    ARM_FEATURE_V6,
1787    ARM_FEATURE_V6K,
1788    ARM_FEATURE_V7,
1789    ARM_FEATURE_THUMB2,
1790    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1791    ARM_FEATURE_VFP3,
1792    ARM_FEATURE_NEON,
1793    ARM_FEATURE_M, /* Microcontroller profile.  */
1794    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1795    ARM_FEATURE_THUMB2EE,
1796    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1797    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1798    ARM_FEATURE_V4T,
1799    ARM_FEATURE_V5,
1800    ARM_FEATURE_STRONGARM,
1801    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1802    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1803    ARM_FEATURE_GENERIC_TIMER,
1804    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1805    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1806    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1807    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1808    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1809    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1810    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1811    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1812    ARM_FEATURE_V8,
1813    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1814    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1815    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1816    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1817    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1818    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1819    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1820    ARM_FEATURE_PMU, /* has PMU support */
1821    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1822    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1823    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1824};
1825
1826static inline int arm_feature(CPUARMState *env, int feature)
1827{
1828    return (env->features & (1ULL << feature)) != 0;
1829}
1830
1831#if !defined(CONFIG_USER_ONLY)
1832/* Return true if exception levels below EL3 are in secure state,
1833 * or would be following an exception return to that level.
1834 * Unlike arm_is_secure() (which is always a question about the
1835 * _current_ state of the CPU) this doesn't care about the current
1836 * EL or mode.
1837 */
1838static inline bool arm_is_secure_below_el3(CPUARMState *env)
1839{
1840    if (arm_feature(env, ARM_FEATURE_EL3)) {
1841        return !(env->cp15.scr_el3 & SCR_NS);
1842    } else {
1843        /* If EL3 is not supported then the secure state is implementation
1844         * defined, in which case QEMU defaults to non-secure.
1845         */
1846        return false;
1847    }
1848}
1849
1850/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1851static inline bool arm_is_el3_or_mon(CPUARMState *env)
1852{
1853    if (arm_feature(env, ARM_FEATURE_EL3)) {
1854        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1855            /* CPU currently in AArch64 state and EL3 */
1856            return true;
1857        } else if (!is_a64(env) &&
1858                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1859            /* CPU currently in AArch32 state and monitor mode */
1860            return true;
1861        }
1862    }
1863    return false;
1864}
1865
1866/* Return true if the processor is in secure state */
1867static inline bool arm_is_secure(CPUARMState *env)
1868{
1869    if (arm_is_el3_or_mon(env)) {
1870        return true;
1871    }
1872    return arm_is_secure_below_el3(env);
1873}
1874
1875#else
1876static inline bool arm_is_secure_below_el3(CPUARMState *env)
1877{
1878    return false;
1879}
1880
1881static inline bool arm_is_secure(CPUARMState *env)
1882{
1883    return false;
1884}
1885#endif
1886
1887/**
1888 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1889 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1890 * "for all purposes other than a direct read or write access of HCR_EL2."
1891 * Not included here is HCR_RW.
1892 */
1893uint64_t arm_hcr_el2_eff(CPUARMState *env);
1894
1895/* Return true if the specified exception level is running in AArch64 state. */
1896static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1897{
1898    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1899     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1900     */
1901    assert(el >= 1 && el <= 3);
1902    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1903
1904    /* The highest exception level is always at the maximum supported
1905     * register width, and then lower levels have a register width controlled
1906     * by bits in the SCR or HCR registers.
1907     */
1908    if (el == 3) {
1909        return aa64;
1910    }
1911
1912    if (arm_feature(env, ARM_FEATURE_EL3)) {
1913        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1914    }
1915
1916    if (el == 2) {
1917        return aa64;
1918    }
1919
1920    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1921        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1922    }
1923
1924    return aa64;
1925}
1926
1927/* Function for determing whether guest cp register reads and writes should
1928 * access the secure or non-secure bank of a cp register.  When EL3 is
1929 * operating in AArch32 state, the NS-bit determines whether the secure
1930 * instance of a cp register should be used. When EL3 is AArch64 (or if
1931 * it doesn't exist at all) then there is no register banking, and all
1932 * accesses are to the non-secure version.
1933 */
1934static inline bool access_secure_reg(CPUARMState *env)
1935{
1936    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1937                !arm_el_is_aa64(env, 3) &&
1938                !(env->cp15.scr_el3 & SCR_NS));
1939
1940    return ret;
1941}
1942
1943/* Macros for accessing a specified CP register bank */
1944#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1945    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1946
1947#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1948    do {                                                \
1949        if (_secure) {                                   \
1950            (_env)->cp15._regname##_s = (_val);            \
1951        } else {                                        \
1952            (_env)->cp15._regname##_ns = (_val);           \
1953        }                                               \
1954    } while (0)
1955
1956/* Macros for automatically accessing a specific CP register bank depending on
1957 * the current secure state of the system.  These macros are not intended for
1958 * supporting instruction translation reads/writes as these are dependent
1959 * solely on the SCR.NS bit and not the mode.
1960 */
1961#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1962    A32_BANKED_REG_GET((_env), _regname,                \
1963                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1964
1965#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1966    A32_BANKED_REG_SET((_env), _regname,                                    \
1967                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1968                       (_val))
1969
1970void arm_cpu_list(void);
1971uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1972                                 uint32_t cur_el, bool secure);
1973
1974/* Interface between CPU and Interrupt controller.  */
1975#ifndef CONFIG_USER_ONLY
1976bool armv7m_nvic_can_take_pending_exception(void *opaque);
1977#else
1978static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1979{
1980    return true;
1981}
1982#endif
1983/**
1984 * armv7m_nvic_set_pending: mark the specified exception as pending
1985 * @opaque: the NVIC
1986 * @irq: the exception number to mark pending
1987 * @secure: false for non-banked exceptions or for the nonsecure
1988 * version of a banked exception, true for the secure version of a banked
1989 * exception.
1990 *
1991 * Marks the specified exception as pending. Note that we will assert()
1992 * if @secure is true and @irq does not specify one of the fixed set
1993 * of architecturally banked exceptions.
1994 */
1995void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1996/**
1997 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1998 * @opaque: the NVIC
1999 * @irq: the exception number to mark pending
2000 * @secure: false for non-banked exceptions or for the nonsecure
2001 * version of a banked exception, true for the secure version of a banked
2002 * exception.
2003 *
2004 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2005 * exceptions (exceptions generated in the course of trying to take
2006 * a different exception).
2007 */
2008void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2009/**
2010 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2011 * @opaque: the NVIC
2012 * @irq: the exception number to mark pending
2013 * @secure: false for non-banked exceptions or for the nonsecure
2014 * version of a banked exception, true for the secure version of a banked
2015 * exception.
2016 *
2017 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2018 * generated in the course of lazy stacking of FP registers.
2019 */
2020void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2021/**
2022 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2023 *    exception, and whether it targets Secure state
2024 * @opaque: the NVIC
2025 * @pirq: set to pending exception number
2026 * @ptargets_secure: set to whether pending exception targets Secure
2027 *
2028 * This function writes the number of the highest priority pending
2029 * exception (the one which would be made active by
2030 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2031 * to true if the current highest priority pending exception should
2032 * be taken to Secure state, false for NS.
2033 */
2034void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2035                                      bool *ptargets_secure);
2036/**
2037 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2038 * @opaque: the NVIC
2039 *
2040 * Move the current highest priority pending exception from the pending
2041 * state to the active state, and update v7m.exception to indicate that
2042 * it is the exception currently being handled.
2043 */
2044void armv7m_nvic_acknowledge_irq(void *opaque);
2045/**
2046 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2047 * @opaque: the NVIC
2048 * @irq: the exception number to complete
2049 * @secure: true if this exception was secure
2050 *
2051 * Returns: -1 if the irq was not active
2052 *           1 if completing this irq brought us back to base (no active irqs)
2053 *           0 if there is still an irq active after this one was completed
2054 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2055 */
2056int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2057/**
2058 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2059 * @opaque: the NVIC
2060 * @irq: the exception number to mark pending
2061 * @secure: false for non-banked exceptions or for the nonsecure
2062 * version of a banked exception, true for the secure version of a banked
2063 * exception.
2064 *
2065 * Return whether an exception is "ready", i.e. whether the exception is
2066 * enabled and is configured at a priority which would allow it to
2067 * interrupt the current execution priority. This controls whether the
2068 * RDY bit for it in the FPCCR is set.
2069 */
2070bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2071/**
2072 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2073 * @opaque: the NVIC
2074 *
2075 * Returns: the raw execution priority as defined by the v8M architecture.
2076 * This is the execution priority minus the effects of AIRCR.PRIS,
2077 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2078 * (v8M ARM ARM I_PKLD.)
2079 */
2080int armv7m_nvic_raw_execution_priority(void *opaque);
2081/**
2082 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2083 * priority is negative for the specified security state.
2084 * @opaque: the NVIC
2085 * @secure: the security state to test
2086 * This corresponds to the pseudocode IsReqExecPriNeg().
2087 */
2088#ifndef CONFIG_USER_ONLY
2089bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2090#else
2091static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2092{
2093    return false;
2094}
2095#endif
2096
2097/* Interface for defining coprocessor registers.
2098 * Registers are defined in tables of arm_cp_reginfo structs
2099 * which are passed to define_arm_cp_regs().
2100 */
2101
2102/* When looking up a coprocessor register we look for it
2103 * via an integer which encodes all of:
2104 *  coprocessor number
2105 *  Crn, Crm, opc1, opc2 fields
2106 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2107 *    or via MRRC/MCRR?)
2108 *  non-secure/secure bank (AArch32 only)
2109 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2110 * (In this case crn and opc2 should be zero.)
2111 * For AArch64, there is no 32/64 bit size distinction;
2112 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2113 * and 4 bit CRn and CRm. The encoding patterns are chosen
2114 * to be easy to convert to and from the KVM encodings, and also
2115 * so that the hashtable can contain both AArch32 and AArch64
2116 * registers (to allow for interprocessing where we might run
2117 * 32 bit code on a 64 bit core).
2118 */
2119/* This bit is private to our hashtable cpreg; in KVM register
2120 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2121 * in the upper bits of the 64 bit ID.
2122 */
2123#define CP_REG_AA64_SHIFT 28
2124#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2125
2126/* To enable banking of coprocessor registers depending on ns-bit we
2127 * add a bit to distinguish between secure and non-secure cpregs in the
2128 * hashtable.
2129 */
2130#define CP_REG_NS_SHIFT 29
2131#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2132
2133#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2134    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2135     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2136
2137#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2138    (CP_REG_AA64_MASK |                                 \
2139     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2140     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2141     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2142     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2143     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2144     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2145
2146/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2147 * version used as a key for the coprocessor register hashtable
2148 */
2149static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2150{
2151    uint32_t cpregid = kvmid;
2152    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2153        cpregid |= CP_REG_AA64_MASK;
2154    } else {
2155        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2156            cpregid |= (1 << 15);
2157        }
2158
2159        /* KVM is always non-secure so add the NS flag on AArch32 register
2160         * entries.
2161         */
2162         cpregid |= 1 << CP_REG_NS_SHIFT;
2163    }
2164    return cpregid;
2165}
2166
2167/* Convert a truncated 32 bit hashtable key into the full
2168 * 64 bit KVM register ID.
2169 */
2170static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2171{
2172    uint64_t kvmid;
2173
2174    if (cpregid & CP_REG_AA64_MASK) {
2175        kvmid = cpregid & ~CP_REG_AA64_MASK;
2176        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2177    } else {
2178        kvmid = cpregid & ~(1 << 15);
2179        if (cpregid & (1 << 15)) {
2180            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2181        } else {
2182            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2183        }
2184    }
2185    return kvmid;
2186}
2187
2188/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2189 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2190 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2191 * TCG can assume the value to be constant (ie load at translate time)
2192 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2193 * indicates that the TB should not be ended after a write to this register
2194 * (the default is that the TB ends after cp writes). OVERRIDE permits
2195 * a register definition to override a previous definition for the
2196 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2197 * old must have the OVERRIDE bit set.
2198 * ALIAS indicates that this register is an alias view of some underlying
2199 * state which is also visible via another register, and that the other
2200 * register is handling migration and reset; registers marked ALIAS will not be
2201 * migrated but may have their state set by syncing of register state from KVM.
2202 * NO_RAW indicates that this register has no underlying state and does not
2203 * support raw access for state saving/loading; it will not be used for either
2204 * migration or KVM state synchronization. (Typically this is for "registers"
2205 * which are actually used as instructions for cache maintenance and so on.)
2206 * IO indicates that this register does I/O and therefore its accesses
2207 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2208 * registers which implement clocks or timers require this.
2209 */
2210#define ARM_CP_SPECIAL           0x0001
2211#define ARM_CP_CONST             0x0002
2212#define ARM_CP_64BIT             0x0004
2213#define ARM_CP_SUPPRESS_TB_END   0x0008
2214#define ARM_CP_OVERRIDE          0x0010
2215#define ARM_CP_ALIAS             0x0020
2216#define ARM_CP_IO                0x0040
2217#define ARM_CP_NO_RAW            0x0080
2218#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2219#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2220#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2221#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2222#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2223#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2224#define ARM_CP_FPU               0x1000
2225#define ARM_CP_SVE               0x2000
2226#define ARM_CP_NO_GDB            0x4000
2227/* Used only as a terminator for ARMCPRegInfo lists */
2228#define ARM_CP_SENTINEL          0xffff
2229/* Mask of only the flag bits in a type field */
2230#define ARM_CP_FLAG_MASK         0x70ff
2231
2232/* Valid values for ARMCPRegInfo state field, indicating which of
2233 * the AArch32 and AArch64 execution states this register is visible in.
2234 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2235 * If the reginfo is declared to be visible in both states then a second
2236 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2237 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2238 * Note that we rely on the values of these enums as we iterate through
2239 * the various states in some places.
2240 */
2241enum {
2242    ARM_CP_STATE_AA32 = 0,
2243    ARM_CP_STATE_AA64 = 1,
2244    ARM_CP_STATE_BOTH = 2,
2245};
2246
2247/* ARM CP register secure state flags.  These flags identify security state
2248 * attributes for a given CP register entry.
2249 * The existence of both or neither secure and non-secure flags indicates that
2250 * the register has both a secure and non-secure hash entry.  A single one of
2251 * these flags causes the register to only be hashed for the specified
2252 * security state.
2253 * Although definitions may have any combination of the S/NS bits, each
2254 * registered entry will only have one to identify whether the entry is secure
2255 * or non-secure.
2256 */
2257enum {
2258    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2259    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2260};
2261
2262/* Return true if cptype is a valid type field. This is used to try to
2263 * catch errors where the sentinel has been accidentally left off the end
2264 * of a list of registers.
2265 */
2266static inline bool cptype_valid(int cptype)
2267{
2268    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2269        || ((cptype & ARM_CP_SPECIAL) &&
2270            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2271}
2272
2273/* Access rights:
2274 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2275 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2276 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2277 * (ie any of the privileged modes in Secure state, or Monitor mode).
2278 * If a register is accessible in one privilege level it's always accessible
2279 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2280 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2281 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2282 * terminology a little and call this PL3.
2283 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2284 * with the ELx exception levels.
2285 *
2286 * If access permissions for a register are more complex than can be
2287 * described with these bits, then use a laxer set of restrictions, and
2288 * do the more restrictive/complex check inside a helper function.
2289 */
2290#define PL3_R 0x80
2291#define PL3_W 0x40
2292#define PL2_R (0x20 | PL3_R)
2293#define PL2_W (0x10 | PL3_W)
2294#define PL1_R (0x08 | PL2_R)
2295#define PL1_W (0x04 | PL2_W)
2296#define PL0_R (0x02 | PL1_R)
2297#define PL0_W (0x01 | PL1_W)
2298
2299/*
2300 * For user-mode some registers are accessible to EL0 via a kernel
2301 * trap-and-emulate ABI. In this case we define the read permissions
2302 * as actually being PL0_R. However some bits of any given register
2303 * may still be masked.
2304 */
2305#ifdef CONFIG_USER_ONLY
2306#define PL0U_R PL0_R
2307#else
2308#define PL0U_R PL1_R
2309#endif
2310
2311#define PL3_RW (PL3_R | PL3_W)
2312#define PL2_RW (PL2_R | PL2_W)
2313#define PL1_RW (PL1_R | PL1_W)
2314#define PL0_RW (PL0_R | PL0_W)
2315
2316/* Return the highest implemented Exception Level */
2317static inline int arm_highest_el(CPUARMState *env)
2318{
2319    if (arm_feature(env, ARM_FEATURE_EL3)) {
2320        return 3;
2321    }
2322    if (arm_feature(env, ARM_FEATURE_EL2)) {
2323        return 2;
2324    }
2325    return 1;
2326}
2327
2328/* Return true if a v7M CPU is in Handler mode */
2329static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2330{
2331    return env->v7m.exception != 0;
2332}
2333
2334/* Return the current Exception Level (as per ARMv8; note that this differs
2335 * from the ARMv7 Privilege Level).
2336 */
2337static inline int arm_current_el(CPUARMState *env)
2338{
2339    if (arm_feature(env, ARM_FEATURE_M)) {
2340        return arm_v7m_is_handler_mode(env) ||
2341            !(env->v7m.control[env->v7m.secure] & 1);
2342    }
2343
2344    if (is_a64(env)) {
2345        return extract32(env->pstate, 2, 2);
2346    }
2347
2348    switch (env->uncached_cpsr & 0x1f) {
2349    case ARM_CPU_MODE_USR:
2350        return 0;
2351    case ARM_CPU_MODE_HYP:
2352        return 2;
2353    case ARM_CPU_MODE_MON:
2354        return 3;
2355    default:
2356        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2357            /* If EL3 is 32-bit then all secure privileged modes run in
2358             * EL3
2359             */
2360            return 3;
2361        }
2362
2363        return 1;
2364    }
2365}
2366
2367typedef struct ARMCPRegInfo ARMCPRegInfo;
2368
2369typedef enum CPAccessResult {
2370    /* Access is permitted */
2371    CP_ACCESS_OK = 0,
2372    /* Access fails due to a configurable trap or enable which would
2373     * result in a categorized exception syndrome giving information about
2374     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2375     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2376     * PL1 if in EL0, otherwise to the current EL).
2377     */
2378    CP_ACCESS_TRAP = 1,
2379    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2380     * Note that this is not a catch-all case -- the set of cases which may
2381     * result in this failure is specifically defined by the architecture.
2382     */
2383    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2384    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2385    CP_ACCESS_TRAP_EL2 = 3,
2386    CP_ACCESS_TRAP_EL3 = 4,
2387    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2388    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2389    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2390    /* Access fails and results in an exception syndrome for an FP access,
2391     * trapped directly to EL2 or EL3
2392     */
2393    CP_ACCESS_TRAP_FP_EL2 = 7,
2394    CP_ACCESS_TRAP_FP_EL3 = 8,
2395} CPAccessResult;
2396
2397/* Access functions for coprocessor registers. These cannot fail and
2398 * may not raise exceptions.
2399 */
2400typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2401typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2402                       uint64_t value);
2403/* Access permission check functions for coprocessor registers. */
2404typedef CPAccessResult CPAccessFn(CPUARMState *env,
2405                                  const ARMCPRegInfo *opaque,
2406                                  bool isread);
2407/* Hook function for register reset */
2408typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2409
2410#define CP_ANY 0xff
2411
2412/* Definition of an ARM coprocessor register */
2413struct ARMCPRegInfo {
2414    /* Name of register (useful mainly for debugging, need not be unique) */
2415    const char *name;
2416    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2417     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2418     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2419     * will be decoded to this register. The register read and write
2420     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2421     * used by the program, so it is possible to register a wildcard and
2422     * then behave differently on read/write if necessary.
2423     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2424     * must both be zero.
2425     * For AArch64-visible registers, opc0 is also used.
2426     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2427     * way to distinguish (for KVM's benefit) guest-visible system registers
2428     * from demuxed ones provided to preserve the "no side effects on
2429     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2430     * visible (to match KVM's encoding); cp==0 will be converted to
2431     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2432     */
2433    uint8_t cp;
2434    uint8_t crn;
2435    uint8_t crm;
2436    uint8_t opc0;
2437    uint8_t opc1;
2438    uint8_t opc2;
2439    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2440    int state;
2441    /* Register type: ARM_CP_* bits/values */
2442    int type;
2443    /* Access rights: PL*_[RW] */
2444    int access;
2445    /* Security state: ARM_CP_SECSTATE_* bits/values */
2446    int secure;
2447    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2448     * this register was defined: can be used to hand data through to the
2449     * register read/write functions, since they are passed the ARMCPRegInfo*.
2450     */
2451    void *opaque;
2452    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2453     * fieldoffset is non-zero, the reset value of the register.
2454     */
2455    uint64_t resetvalue;
2456    /* Offset of the field in CPUARMState for this register.
2457     *
2458     * This is not needed if either:
2459     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2460     *  2. both readfn and writefn are specified
2461     */
2462    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2463
2464    /* Offsets of the secure and non-secure fields in CPUARMState for the
2465     * register if it is banked.  These fields are only used during the static
2466     * registration of a register.  During hashing the bank associated
2467     * with a given security state is copied to fieldoffset which is used from
2468     * there on out.
2469     *
2470     * It is expected that register definitions use either fieldoffset or
2471     * bank_fieldoffsets in the definition but not both.  It is also expected
2472     * that both bank offsets are set when defining a banked register.  This
2473     * use indicates that a register is banked.
2474     */
2475    ptrdiff_t bank_fieldoffsets[2];
2476
2477    /* Function for making any access checks for this register in addition to
2478     * those specified by the 'access' permissions bits. If NULL, no extra
2479     * checks required. The access check is performed at runtime, not at
2480     * translate time.
2481     */
2482    CPAccessFn *accessfn;
2483    /* Function for handling reads of this register. If NULL, then reads
2484     * will be done by loading from the offset into CPUARMState specified
2485     * by fieldoffset.
2486     */
2487    CPReadFn *readfn;
2488    /* Function for handling writes of this register. If NULL, then writes
2489     * will be done by writing to the offset into CPUARMState specified
2490     * by fieldoffset.
2491     */
2492    CPWriteFn *writefn;
2493    /* Function for doing a "raw" read; used when we need to copy
2494     * coprocessor state to the kernel for KVM or out for
2495     * migration. This only needs to be provided if there is also a
2496     * readfn and it has side effects (for instance clear-on-read bits).
2497     */
2498    CPReadFn *raw_readfn;
2499    /* Function for doing a "raw" write; used when we need to copy KVM
2500     * kernel coprocessor state into userspace, or for inbound
2501     * migration. This only needs to be provided if there is also a
2502     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2503     * or similar behaviour.
2504     */
2505    CPWriteFn *raw_writefn;
2506    /* Function for resetting the register. If NULL, then reset will be done
2507     * by writing resetvalue to the field specified in fieldoffset. If
2508     * fieldoffset is 0 then no reset will be done.
2509     */
2510    CPResetFn *resetfn;
2511};
2512
2513/* Macros which are lvalues for the field in CPUARMState for the
2514 * ARMCPRegInfo *ri.
2515 */
2516#define CPREG_FIELD32(env, ri) \
2517    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2518#define CPREG_FIELD64(env, ri) \
2519    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2520
2521#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2522
2523void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2524                                    const ARMCPRegInfo *regs, void *opaque);
2525void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2526                                       const ARMCPRegInfo *regs, void *opaque);
2527static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2528{
2529    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2530}
2531static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2532{
2533    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2534}
2535const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2536
2537/*
2538 * Definition of an ARM co-processor register as viewed from
2539 * userspace. This is used for presenting sanitised versions of
2540 * registers to userspace when emulating the Linux AArch64 CPU
2541 * ID/feature ABI (advertised as HWCAP_CPUID).
2542 */
2543typedef struct ARMCPRegUserSpaceInfo {
2544    /* Name of register */
2545    const char *name;
2546
2547    /* Is the name actually a glob pattern */
2548    bool is_glob;
2549
2550    /* Only some bits are exported to user space */
2551    uint64_t exported_bits;
2552
2553    /* Fixed bits are applied after the mask */
2554    uint64_t fixed_bits;
2555} ARMCPRegUserSpaceInfo;
2556
2557#define REGUSERINFO_SENTINEL { .name = NULL }
2558
2559void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2560
2561/* CPWriteFn that can be used to implement writes-ignored behaviour */
2562void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2563                         uint64_t value);
2564/* CPReadFn that can be used for read-as-zero behaviour */
2565uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2566
2567/* CPResetFn that does nothing, for use if no reset is required even
2568 * if fieldoffset is non zero.
2569 */
2570void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2571
2572/* Return true if this reginfo struct's field in the cpu state struct
2573 * is 64 bits wide.
2574 */
2575static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2576{
2577    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2578}
2579
2580static inline bool cp_access_ok(int current_el,
2581                                const ARMCPRegInfo *ri, int isread)
2582{
2583    return (ri->access >> ((current_el * 2) + isread)) & 1;
2584}
2585
2586/* Raw read of a coprocessor register (as needed for migration, etc) */
2587uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2588
2589/**
2590 * write_list_to_cpustate
2591 * @cpu: ARMCPU
2592 *
2593 * For each register listed in the ARMCPU cpreg_indexes list, write
2594 * its value from the cpreg_values list into the ARMCPUState structure.
2595 * This updates TCG's working data structures from KVM data or
2596 * from incoming migration state.
2597 *
2598 * Returns: true if all register values were updated correctly,
2599 * false if some register was unknown or could not be written.
2600 * Note that we do not stop early on failure -- we will attempt
2601 * writing all registers in the list.
2602 */
2603bool write_list_to_cpustate(ARMCPU *cpu);
2604
2605/**
2606 * write_cpustate_to_list:
2607 * @cpu: ARMCPU
2608 * @kvm_sync: true if this is for syncing back to KVM
2609 *
2610 * For each register listed in the ARMCPU cpreg_indexes list, write
2611 * its value from the ARMCPUState structure into the cpreg_values list.
2612 * This is used to copy info from TCG's working data structures into
2613 * KVM or for outbound migration.
2614 *
2615 * @kvm_sync is true if we are doing this in order to sync the
2616 * register state back to KVM. In this case we will only update
2617 * values in the list if the previous list->cpustate sync actually
2618 * successfully wrote the CPU state. Otherwise we will keep the value
2619 * that is in the list.
2620 *
2621 * Returns: true if all register values were read correctly,
2622 * false if some register was unknown or could not be read.
2623 * Note that we do not stop early on failure -- we will attempt
2624 * reading all registers in the list.
2625 */
2626bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2627
2628#define ARM_CPUID_TI915T      0x54029152
2629#define ARM_CPUID_TI925T      0x54029252
2630
2631static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2632                                     unsigned int target_el)
2633{
2634    CPUARMState *env = cs->env_ptr;
2635    unsigned int cur_el = arm_current_el(env);
2636    bool secure = arm_is_secure(env);
2637    bool pstate_unmasked;
2638    int8_t unmasked = 0;
2639    uint64_t hcr_el2;
2640
2641    /* Don't take exceptions if they target a lower EL.
2642     * This check should catch any exceptions that would not be taken but left
2643     * pending.
2644     */
2645    if (cur_el > target_el) {
2646        return false;
2647    }
2648
2649    hcr_el2 = arm_hcr_el2_eff(env);
2650
2651    switch (excp_idx) {
2652    case EXCP_FIQ:
2653        pstate_unmasked = !(env->daif & PSTATE_F);
2654        break;
2655
2656    case EXCP_IRQ:
2657        pstate_unmasked = !(env->daif & PSTATE_I);
2658        break;
2659
2660    case EXCP_VFIQ:
2661        if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2662            /* VFIQs are only taken when hypervized and non-secure.  */
2663            return false;
2664        }
2665        return !(env->daif & PSTATE_F);
2666    case EXCP_VIRQ:
2667        if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2668            /* VIRQs are only taken when hypervized and non-secure.  */
2669            return false;
2670        }
2671        return !(env->daif & PSTATE_I);
2672    default:
2673        g_assert_not_reached();
2674    }
2675
2676    /* Use the target EL, current execution state and SCR/HCR settings to
2677     * determine whether the corresponding CPSR bit is used to mask the
2678     * interrupt.
2679     */
2680    if ((target_el > cur_el) && (target_el != 1)) {
2681        /* Exceptions targeting a higher EL may not be maskable */
2682        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2683            /* 64-bit masking rules are simple: exceptions to EL3
2684             * can't be masked, and exceptions to EL2 can only be
2685             * masked from Secure state. The HCR and SCR settings
2686             * don't affect the masking logic, only the interrupt routing.
2687             */
2688            if (target_el == 3 || !secure) {
2689                unmasked = 1;
2690            }
2691        } else {
2692            /* The old 32-bit-only environment has a more complicated
2693             * masking setup. HCR and SCR bits not only affect interrupt
2694             * routing but also change the behaviour of masking.
2695             */
2696            bool hcr, scr;
2697
2698            switch (excp_idx) {
2699            case EXCP_FIQ:
2700                /* If FIQs are routed to EL3 or EL2 then there are cases where
2701                 * we override the CPSR.F in determining if the exception is
2702                 * masked or not. If neither of these are set then we fall back
2703                 * to the CPSR.F setting otherwise we further assess the state
2704                 * below.
2705                 */
2706                hcr = hcr_el2 & HCR_FMO;
2707                scr = (env->cp15.scr_el3 & SCR_FIQ);
2708
2709                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2710                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2711                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2712                 * when non-secure but only when FIQs are only routed to EL3.
2713                 */
2714                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2715                break;
2716            case EXCP_IRQ:
2717                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2718                 * we may override the CPSR.I masking when in non-secure state.
2719                 * The SCR.IRQ setting has already been taken into consideration
2720                 * when setting the target EL, so it does not have a further
2721                 * affect here.
2722                 */
2723                hcr = hcr_el2 & HCR_IMO;
2724                scr = false;
2725                break;
2726            default:
2727                g_assert_not_reached();
2728            }
2729
2730            if ((scr || hcr) && !secure) {
2731                unmasked = 1;
2732            }
2733        }
2734    }
2735
2736    /* The PSTATE bits only mask the interrupt if we have not overriden the
2737     * ability above.
2738     */
2739    return unmasked || pstate_unmasked;
2740}
2741
2742#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2743#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2744#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2745
2746#define cpu_signal_handler cpu_arm_signal_handler
2747#define cpu_list arm_cpu_list
2748
2749/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2750 *
2751 * If EL3 is 64-bit:
2752 *  + NonSecure EL1 & 0 stage 1
2753 *  + NonSecure EL1 & 0 stage 2
2754 *  + NonSecure EL2
2755 *  + Secure EL1 & EL0
2756 *  + Secure EL3
2757 * If EL3 is 32-bit:
2758 *  + NonSecure PL1 & 0 stage 1
2759 *  + NonSecure PL1 & 0 stage 2
2760 *  + NonSecure PL2
2761 *  + Secure PL0 & PL1
2762 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2763 *
2764 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2765 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2766 *     may differ in access permissions even if the VA->PA map is the same
2767 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2768 *     translation, which means that we have one mmu_idx that deals with two
2769 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2770 *     architecturally permitted]
2771 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2772 *     handling via the TLB. The only way to do a stage 1 translation without
2773 *     the immediate stage 2 translation is via the ATS or AT system insns,
2774 *     which can be slow-pathed and always do a page table walk.
2775 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2776 *     translation regimes, because they map reasonably well to each other
2777 *     and they can't both be active at the same time.
2778 * This gives us the following list of mmu_idx values:
2779 *
2780 * NS EL0 (aka NS PL0) stage 1+2
2781 * NS EL1 (aka NS PL1) stage 1+2
2782 * NS EL2 (aka NS PL2)
2783 * S EL3 (aka S PL1)
2784 * S EL0 (aka S PL0)
2785 * S EL1 (not used if EL3 is 32 bit)
2786 * NS EL0+1 stage 2
2787 *
2788 * (The last of these is an mmu_idx because we want to be able to use the TLB
2789 * for the accesses done as part of a stage 1 page table walk, rather than
2790 * having to walk the stage 2 page table over and over.)
2791 *
2792 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2793 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2794 * NS EL2 if we ever model a Cortex-R52).
2795 *
2796 * M profile CPUs are rather different as they do not have a true MMU.
2797 * They have the following different MMU indexes:
2798 *  User
2799 *  Privileged
2800 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2801 *  Privileged, execution priority negative (ditto)
2802 * If the CPU supports the v8M Security Extension then there are also:
2803 *  Secure User
2804 *  Secure Privileged
2805 *  Secure User, execution priority negative
2806 *  Secure Privileged, execution priority negative
2807 *
2808 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2809 * are not quite the same -- different CPU types (most notably M profile
2810 * vs A/R profile) would like to use MMU indexes with different semantics,
2811 * but since we don't ever need to use all of those in a single CPU we
2812 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2813 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2814 * the same for any particular CPU.
2815 * Variables of type ARMMUIdx are always full values, and the core
2816 * index values are in variables of type 'int'.
2817 *
2818 * Our enumeration includes at the end some entries which are not "true"
2819 * mmu_idx values in that they don't have corresponding TLBs and are only
2820 * valid for doing slow path page table walks.
2821 *
2822 * The constant names here are patterned after the general style of the names
2823 * of the AT/ATS operations.
2824 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2825 * For M profile we arrange them to have a bit for priv, a bit for negpri
2826 * and a bit for secure.
2827 */
2828#define ARM_MMU_IDX_A 0x10 /* A profile */
2829#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2830#define ARM_MMU_IDX_M 0x40 /* M profile */
2831
2832/* meanings of the bits for M profile mmu idx values */
2833#define ARM_MMU_IDX_M_PRIV 0x1
2834#define ARM_MMU_IDX_M_NEGPRI 0x2
2835#define ARM_MMU_IDX_M_S 0x4
2836
2837#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2838#define ARM_MMU_IDX_COREIDX_MASK 0x7
2839
2840typedef enum ARMMMUIdx {
2841    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2842    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2843    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2844    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2845    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2846    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2847    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2848    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2849    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2850    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2851    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2852    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2853    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2854    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2855    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2856    /* Indexes below here don't have TLBs and are used only for AT system
2857     * instructions or for the first stage of an S12 page table walk.
2858     */
2859    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2860    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2861} ARMMMUIdx;
2862
2863/* Bit macros for the core-mmu-index values for each index,
2864 * for use when calling tlb_flush_by_mmuidx() and friends.
2865 */
2866typedef enum ARMMMUIdxBit {
2867    ARMMMUIdxBit_S12NSE0 = 1 << 0,
2868    ARMMMUIdxBit_S12NSE1 = 1 << 1,
2869    ARMMMUIdxBit_S1E2 = 1 << 2,
2870    ARMMMUIdxBit_S1E3 = 1 << 3,
2871    ARMMMUIdxBit_S1SE0 = 1 << 4,
2872    ARMMMUIdxBit_S1SE1 = 1 << 5,
2873    ARMMMUIdxBit_S2NS = 1 << 6,
2874    ARMMMUIdxBit_MUser = 1 << 0,
2875    ARMMMUIdxBit_MPriv = 1 << 1,
2876    ARMMMUIdxBit_MUserNegPri = 1 << 2,
2877    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2878    ARMMMUIdxBit_MSUser = 1 << 4,
2879    ARMMMUIdxBit_MSPriv = 1 << 5,
2880    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2881    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2882} ARMMMUIdxBit;
2883
2884#define MMU_USER_IDX 0
2885
2886static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2887{
2888    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2889}
2890
2891static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2892{
2893    if (arm_feature(env, ARM_FEATURE_M)) {
2894        return mmu_idx | ARM_MMU_IDX_M;
2895    } else {
2896        return mmu_idx | ARM_MMU_IDX_A;
2897    }
2898}
2899
2900/* Return the exception level we're running at if this is our mmu_idx */
2901static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2902{
2903    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2904    case ARM_MMU_IDX_A:
2905        return mmu_idx & 3;
2906    case ARM_MMU_IDX_M:
2907        return mmu_idx & ARM_MMU_IDX_M_PRIV;
2908    default:
2909        g_assert_not_reached();
2910    }
2911}
2912
2913/*
2914 * Return the MMU index for a v7M CPU with all relevant information
2915 * manually specified.
2916 */
2917ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2918                              bool secstate, bool priv, bool negpri);
2919
2920/* Return the MMU index for a v7M CPU in the specified security and
2921 * privilege state.
2922 */
2923ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2924                                                bool secstate, bool priv);
2925
2926/* Return the MMU index for a v7M CPU in the specified security state */
2927ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2928
2929/**
2930 * cpu_mmu_index:
2931 * @env: The cpu environment
2932 * @ifetch: True for code access, false for data access.
2933 *
2934 * Return the core mmu index for the current translation regime.
2935 * This function is used by generic TCG code paths.
2936 */
2937int cpu_mmu_index(CPUARMState *env, bool ifetch);
2938
2939/* Indexes used when registering address spaces with cpu_address_space_init */
2940typedef enum ARMASIdx {
2941    ARMASIdx_NS = 0,
2942    ARMASIdx_S = 1,
2943} ARMASIdx;
2944
2945/* Return the Exception Level targeted by debug exceptions. */
2946static inline int arm_debug_target_el(CPUARMState *env)
2947{
2948    bool secure = arm_is_secure(env);
2949    bool route_to_el2 = false;
2950
2951    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2952        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2953                       env->cp15.mdcr_el2 & MDCR_TDE;
2954    }
2955
2956    if (route_to_el2) {
2957        return 2;
2958    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2959               !arm_el_is_aa64(env, 3) && secure) {
2960        return 3;
2961    } else {
2962        return 1;
2963    }
2964}
2965
2966static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2967{
2968    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2969     * CSSELR is RAZ/WI.
2970     */
2971    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2972}
2973
2974/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2975static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2976{
2977    int cur_el = arm_current_el(env);
2978    int debug_el;
2979
2980    if (cur_el == 3) {
2981        return false;
2982    }
2983
2984    /* MDCR_EL3.SDD disables debug events from Secure state */
2985    if (arm_is_secure_below_el3(env)
2986        && extract32(env->cp15.mdcr_el3, 16, 1)) {
2987        return false;
2988    }
2989
2990    /*
2991     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2992     * while not masking the (D)ebug bit in DAIF.
2993     */
2994    debug_el = arm_debug_target_el(env);
2995
2996    if (cur_el == debug_el) {
2997        return extract32(env->cp15.mdscr_el1, 13, 1)
2998            && !(env->daif & PSTATE_D);
2999    }
3000
3001    /* Otherwise the debug target needs to be a higher EL */
3002    return debug_el > cur_el;
3003}
3004
3005static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3006{
3007    int el = arm_current_el(env);
3008
3009    if (el == 0 && arm_el_is_aa64(env, 1)) {
3010        return aa64_generate_debug_exceptions(env);
3011    }
3012
3013    if (arm_is_secure(env)) {
3014        int spd;
3015
3016        if (el == 0 && (env->cp15.sder & 1)) {
3017            /* SDER.SUIDEN means debug exceptions from Secure EL0
3018             * are always enabled. Otherwise they are controlled by
3019             * SDCR.SPD like those from other Secure ELs.
3020             */
3021            return true;
3022        }
3023
3024        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3025        switch (spd) {
3026        case 1:
3027            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3028        case 0:
3029            /* For 0b00 we return true if external secure invasive debug
3030             * is enabled. On real hardware this is controlled by external
3031             * signals to the core. QEMU always permits debug, and behaves
3032             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3033             */
3034            return true;
3035        case 2:
3036            return false;
3037        case 3:
3038            return true;
3039        }
3040    }
3041
3042    return el != 2;
3043}
3044
3045/* Return true if debugging exceptions are currently enabled.
3046 * This corresponds to what in ARM ARM pseudocode would be
3047 *    if UsingAArch32() then
3048 *        return AArch32.GenerateDebugExceptions()
3049 *    else
3050 *        return AArch64.GenerateDebugExceptions()
3051 * We choose to push the if() down into this function for clarity,
3052 * since the pseudocode has it at all callsites except for the one in
3053 * CheckSoftwareStep(), where it is elided because both branches would
3054 * always return the same value.
3055 */
3056static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3057{
3058    if (env->aarch64) {
3059        return aa64_generate_debug_exceptions(env);
3060    } else {
3061        return aa32_generate_debug_exceptions(env);
3062    }
3063}
3064
3065/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3066 * implicitly means this always returns false in pre-v8 CPUs.)
3067 */
3068static inline bool arm_singlestep_active(CPUARMState *env)
3069{
3070    return extract32(env->cp15.mdscr_el1, 0, 1)
3071        && arm_el_is_aa64(env, arm_debug_target_el(env))
3072        && arm_generate_debug_exceptions(env);
3073}
3074
3075static inline bool arm_sctlr_b(CPUARMState *env)
3076{
3077    return
3078        /* We need not implement SCTLR.ITD in user-mode emulation, so
3079         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3080         * This lets people run BE32 binaries with "-cpu any".
3081         */
3082#ifndef CONFIG_USER_ONLY
3083        !arm_feature(env, ARM_FEATURE_V7) &&
3084#endif
3085        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3086}
3087
3088static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3089{
3090    if (el == 0) {
3091        /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3092        return env->cp15.sctlr_el[1];
3093    } else {
3094        return env->cp15.sctlr_el[el];
3095    }
3096}
3097
3098
3099/* Return true if the processor is in big-endian mode. */
3100static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3101{
3102    /* In 32bit endianness is determined by looking at CPSR's E bit */
3103    if (!is_a64(env)) {
3104        return
3105#ifdef CONFIG_USER_ONLY
3106            /* In system mode, BE32 is modelled in line with the
3107             * architecture (as word-invariant big-endianness), where loads
3108             * and stores are done little endian but from addresses which
3109             * are adjusted by XORing with the appropriate constant. So the
3110             * endianness to use for the raw data access is not affected by
3111             * SCTLR.B.
3112             * In user mode, however, we model BE32 as byte-invariant
3113             * big-endianness (because user-only code cannot tell the
3114             * difference), and so we need to use a data access endianness
3115             * that depends on SCTLR.B.
3116             */
3117            arm_sctlr_b(env) ||
3118#endif
3119                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3120    } else {
3121        int cur_el = arm_current_el(env);
3122        uint64_t sctlr = arm_sctlr(env, cur_el);
3123
3124        return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3125    }
3126}
3127
3128typedef CPUARMState CPUArchState;
3129typedef ARMCPU ArchCPU;
3130
3131#include "exec/cpu-all.h"
3132
3133/* Bit usage in the TB flags field: bit 31 indicates whether we are
3134 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3135 * We put flags which are shared between 32 and 64 bit mode at the top
3136 * of the word, and flags which apply to only one mode at the bottom.
3137 */
3138FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3139FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3140FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3141FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3142/* Target EL if we take a floating-point-disabled exception */
3143FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3144FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3145
3146/* Bit usage when in AArch32 state: */
3147FIELD(TBFLAG_A32, THUMB, 0, 1)
3148FIELD(TBFLAG_A32, VECLEN, 1, 3)
3149FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3150/*
3151 * We store the bottom two bits of the CPAR as TB flags and handle
3152 * checks on the other bits at runtime. This shares the same bits as
3153 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3154 */
3155FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3156/*
3157 * Indicates whether cp register reads and writes by guest code should access
3158 * the secure or nonsecure bank of banked registers; note that this is not
3159 * the same thing as the current security state of the processor!
3160 */
3161FIELD(TBFLAG_A32, NS, 6, 1)
3162FIELD(TBFLAG_A32, VFPEN, 7, 1)
3163FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3164FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3165/* For M profile only, set if FPCCR.LSPACT is set */
3166FIELD(TBFLAG_A32, LSPACT, 18, 1)
3167/* For M profile only, set if we must create a new FP context */
3168FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3169/* For M profile only, set if FPCCR.S does not match current security state */
3170FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3171/* For M profile only, Handler (ie not Thread) mode */
3172FIELD(TBFLAG_A32, HANDLER, 21, 1)
3173/* For M profile only, whether we should generate stack-limit checks */
3174FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3175
3176/* Bit usage when in AArch64 state */
3177FIELD(TBFLAG_A64, TBII, 0, 2)
3178FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3179FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3180FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3181FIELD(TBFLAG_A64, BT, 9, 1)
3182FIELD(TBFLAG_A64, BTYPE, 10, 2)
3183FIELD(TBFLAG_A64, TBID, 12, 2)
3184
3185static inline bool bswap_code(bool sctlr_b)
3186{
3187#ifdef CONFIG_USER_ONLY
3188    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3189     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3190     * would also end up as a mixed-endian mode with BE code, LE data.
3191     */
3192    return
3193#ifdef TARGET_WORDS_BIGENDIAN
3194        1 ^
3195#endif
3196        sctlr_b;
3197#else
3198    /* All code access in ARM is little endian, and there are no loaders
3199     * doing swaps that need to be reversed
3200     */
3201    return 0;
3202#endif
3203}
3204
3205#ifdef CONFIG_USER_ONLY
3206static inline bool arm_cpu_bswap_data(CPUARMState *env)
3207{
3208    return
3209#ifdef TARGET_WORDS_BIGENDIAN
3210       1 ^
3211#endif
3212       arm_cpu_data_is_big_endian(env);
3213}
3214#endif
3215
3216void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3217                          target_ulong *cs_base, uint32_t *flags);
3218
3219enum {
3220    QEMU_PSCI_CONDUIT_DISABLED = 0,
3221    QEMU_PSCI_CONDUIT_SMC = 1,
3222    QEMU_PSCI_CONDUIT_HVC = 2,
3223};
3224
3225#ifndef CONFIG_USER_ONLY
3226/* Return the address space index to use for a memory access */
3227static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3228{
3229    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3230}
3231
3232/* Return the AddressSpace to use for a memory access
3233 * (which depends on whether the access is S or NS, and whether
3234 * the board gave us a separate AddressSpace for S accesses).
3235 */
3236static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3237{
3238    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3239}
3240#endif
3241
3242/**
3243 * arm_register_pre_el_change_hook:
3244 * Register a hook function which will be called immediately before this
3245 * CPU changes exception level or mode. The hook function will be
3246 * passed a pointer to the ARMCPU and the opaque data pointer passed
3247 * to this function when the hook was registered.
3248 *
3249 * Note that if a pre-change hook is called, any registered post-change hooks
3250 * are guaranteed to subsequently be called.
3251 */
3252void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3253                                 void *opaque);
3254/**
3255 * arm_register_el_change_hook:
3256 * Register a hook function which will be called immediately after this
3257 * CPU changes exception level or mode. The hook function will be
3258 * passed a pointer to the ARMCPU and the opaque data pointer passed
3259 * to this function when the hook was registered.
3260 *
3261 * Note that any registered hooks registered here are guaranteed to be called
3262 * if pre-change hooks have been.
3263 */
3264void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3265        *opaque);
3266
3267/**
3268 * aa32_vfp_dreg:
3269 * Return a pointer to the Dn register within env in 32-bit mode.
3270 */
3271static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3272{
3273    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3274}
3275
3276/**
3277 * aa32_vfp_qreg:
3278 * Return a pointer to the Qn register within env in 32-bit mode.
3279 */
3280static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3281{
3282    return &env->vfp.zregs[regno].d[0];
3283}
3284
3285/**
3286 * aa64_vfp_qreg:
3287 * Return a pointer to the Qn register within env in 64-bit mode.
3288 */
3289static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3290{
3291    return &env->vfp.zregs[regno].d[0];
3292}
3293
3294/* Shared between translate-sve.c and sve_helper.c.  */
3295extern const uint64_t pred_esz_masks[4];
3296
3297/*
3298 * 32-bit feature tests via id registers.
3299 */
3300static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3301{
3302    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3303}
3304
3305static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3306{
3307    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3308}
3309
3310static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3311{
3312    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3313}
3314
3315static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3316{
3317    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3318}
3319
3320static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3321{
3322    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3323}
3324
3325static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3326{
3327    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3328}
3329
3330static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3331{
3332    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3333}
3334
3335static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3336{
3337    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3338}
3339
3340static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3341{
3342    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3343}
3344
3345static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3346{
3347    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3348}
3349
3350static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3351{
3352    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3353}
3354
3355static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3356{
3357    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3358}
3359
3360static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3361{
3362    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3363}
3364
3365static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3366{
3367    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3368}
3369
3370static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3371{
3372    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3373}
3374
3375static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3376{
3377    /*
3378     * This is a placeholder for use by VCMA until the rest of
3379     * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3380     * At which point we can properly set and check MVFR1.FPHP.
3381     */
3382    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3383}
3384
3385static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3386{
3387    /* Return true if D16-D31 are implemented */
3388    return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3389}
3390
3391static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3392{
3393    return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3394}
3395
3396static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3397{
3398    /* Return true if CPU supports double precision floating point */
3399    return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3400}
3401
3402/*
3403 * We always set the FP and SIMD FP16 fields to indicate identical
3404 * levels of support (assuming SIMD is implemented at all), so
3405 * we only need one set of accessors.
3406 */
3407static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3408{
3409    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3410}
3411
3412static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3413{
3414    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3415}
3416
3417static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3418{
3419    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3420}
3421
3422static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3423{
3424    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3425}
3426
3427static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3428{
3429    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3430}
3431
3432static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3433{
3434    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3435}
3436
3437/*
3438 * 64-bit feature tests via id registers.
3439 */
3440static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3441{
3442    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3443}
3444
3445static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3446{
3447    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3448}
3449
3450static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3451{
3452    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3453}
3454
3455static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3456{
3457    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3458}
3459
3460static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3461{
3462    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3463}
3464
3465static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3466{
3467    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3468}
3469
3470static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3471{
3472    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3473}
3474
3475static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3476{
3477    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3478}
3479
3480static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3481{
3482    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3483}
3484
3485static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3486{
3487    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3488}
3489
3490static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3491{
3492    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3493}
3494
3495static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3496{
3497    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3498}
3499
3500static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3501{
3502    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3503}
3504
3505static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3506{
3507    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3508}
3509
3510static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3511{
3512    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3513}
3514
3515static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3516{
3517    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3518}
3519
3520static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3521{
3522    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3523}
3524
3525static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3526{
3527    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3528}
3529
3530static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3531{
3532    /*
3533     * Note that while QEMU will only implement the architected algorithm
3534     * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3535     * defined algorithms, and thus API+GPI, and this predicate controls
3536     * migration of the 128-bit keys.
3537     */
3538    return (id->id_aa64isar1 &
3539            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3540             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3541             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3542             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3543}
3544
3545static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3546{
3547    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3548}
3549
3550static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3551{
3552    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3553}
3554
3555static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3556{
3557    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3558}
3559
3560static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3561{
3562    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3563    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3564}
3565
3566static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3567{
3568    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3569}
3570
3571static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3572{
3573    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3574}
3575
3576static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3577{
3578    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3579}
3580
3581static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3582{
3583    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3584}
3585
3586/*
3587 * Forward to the above feature tests given an ARMCPU pointer.
3588 */
3589#define cpu_isar_feature(name, cpu) \
3590    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3591
3592#endif
3593