qemu/target/arm/helper-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 specific helpers
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/gdbstub.h"
  23#include "exec/helper-proto.h"
  24#include "qemu/host-utils.h"
  25#include "qemu/log.h"
  26#include "sysemu/sysemu.h"
  27#include "qemu/bitops.h"
  28#include "internals.h"
  29#include "qemu/crc32c.h"
  30#include "exec/exec-all.h"
  31#include "exec/cpu_ldst.h"
  32#include "qemu/int128.h"
  33#include "qemu/atomic128.h"
  34#include "tcg.h"
  35#include "fpu/softfloat.h"
  36#include <zlib.h> /* For crc32 */
  37
  38/* C2.4.7 Multiply and divide */
  39/* special cases for 0 and LLONG_MIN are mandated by the standard */
  40uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
  41{
  42    if (den == 0) {
  43        return 0;
  44    }
  45    return num / den;
  46}
  47
  48int64_t HELPER(sdiv64)(int64_t num, int64_t den)
  49{
  50    if (den == 0) {
  51        return 0;
  52    }
  53    if (num == LLONG_MIN && den == -1) {
  54        return LLONG_MIN;
  55    }
  56    return num / den;
  57}
  58
  59uint64_t HELPER(rbit64)(uint64_t x)
  60{
  61    return revbit64(x);
  62}
  63
  64void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
  65{
  66    update_spsel(env, imm);
  67}
  68
  69static void daif_check(CPUARMState *env, uint32_t op,
  70                       uint32_t imm, uintptr_t ra)
  71{
  72    /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
  73    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
  74        raise_exception_ra(env, EXCP_UDEF,
  75                           syn_aa64_sysregtrap(0, extract32(op, 0, 3),
  76                                               extract32(op, 3, 3), 4,
  77                                               imm, 0x1f, 0),
  78                           exception_target_el(env), ra);
  79    }
  80}
  81
  82void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
  83{
  84    daif_check(env, 0x1e, imm, GETPC());
  85    env->daif |= (imm << 6) & PSTATE_DAIF;
  86}
  87
  88void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
  89{
  90    daif_check(env, 0x1f, imm, GETPC());
  91    env->daif &= ~((imm << 6) & PSTATE_DAIF);
  92}
  93
  94/* Convert a softfloat float_relation_ (as returned by
  95 * the float*_compare functions) to the correct ARM
  96 * NZCV flag state.
  97 */
  98static inline uint32_t float_rel_to_flags(int res)
  99{
 100    uint64_t flags;
 101    switch (res) {
 102    case float_relation_equal:
 103        flags = PSTATE_Z | PSTATE_C;
 104        break;
 105    case float_relation_less:
 106        flags = PSTATE_N;
 107        break;
 108    case float_relation_greater:
 109        flags = PSTATE_C;
 110        break;
 111    case float_relation_unordered:
 112    default:
 113        flags = PSTATE_C | PSTATE_V;
 114        break;
 115    }
 116    return flags;
 117}
 118
 119uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
 120{
 121    return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
 122}
 123
 124uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
 125{
 126    return float_rel_to_flags(float16_compare(x, y, fp_status));
 127}
 128
 129uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 130{
 131    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 132}
 133
 134uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 135{
 136    return float_rel_to_flags(float32_compare(x, y, fp_status));
 137}
 138
 139uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 140{
 141    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 142}
 143
 144uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 145{
 146    return float_rel_to_flags(float64_compare(x, y, fp_status));
 147}
 148
 149float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 150{
 151    float_status *fpst = fpstp;
 152
 153    a = float32_squash_input_denormal(a, fpst);
 154    b = float32_squash_input_denormal(b, fpst);
 155
 156    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 157        (float32_is_infinity(a) && float32_is_zero(b))) {
 158        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 159        return make_float32((1U << 30) |
 160                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 161    }
 162    return float32_mul(a, b, fpst);
 163}
 164
 165float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 166{
 167    float_status *fpst = fpstp;
 168
 169    a = float64_squash_input_denormal(a, fpst);
 170    b = float64_squash_input_denormal(b, fpst);
 171
 172    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 173        (float64_is_infinity(a) && float64_is_zero(b))) {
 174        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 175        return make_float64((1ULL << 62) |
 176                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 177    }
 178    return float64_mul(a, b, fpst);
 179}
 180
 181uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 182                          uint32_t rn, uint32_t numregs)
 183{
 184    /* Helper function for SIMD TBL and TBX. We have to do the table
 185     * lookup part for the 64 bits worth of indices we're passed in.
 186     * result is the initial results vector (either zeroes for TBL
 187     * or some guest values for TBX), rn the register number where
 188     * the table starts, and numregs the number of registers in the table.
 189     * We return the results of the lookups.
 190     */
 191    int shift;
 192
 193    for (shift = 0; shift < 64; shift += 8) {
 194        int index = extract64(indices, shift, 8);
 195        if (index < 16 * numregs) {
 196            /* Convert index (a byte offset into the virtual table
 197             * which is a series of 128-bit vectors concatenated)
 198             * into the correct register element plus a bit offset
 199             * into that element, bearing in mind that the table
 200             * can wrap around from V31 to V0.
 201             */
 202            int elt = (rn * 2 + (index >> 3)) % 64;
 203            int bitidx = (index & 7) * 8;
 204            uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
 205            uint64_t val = extract64(q[elt & 1], bitidx, 8);
 206
 207            result = deposit64(result, shift, 8, val);
 208        }
 209    }
 210    return result;
 211}
 212
 213/* 64bit/double versions of the neon float compare functions */
 214uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 215{
 216    float_status *fpst = fpstp;
 217    return -float64_eq_quiet(a, b, fpst);
 218}
 219
 220uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 221{
 222    float_status *fpst = fpstp;
 223    return -float64_le(b, a, fpst);
 224}
 225
 226uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 227{
 228    float_status *fpst = fpstp;
 229    return -float64_lt(b, a, fpst);
 230}
 231
 232/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 233 * versions, these do a fully fused multiply-add or
 234 * multiply-add-and-halve.
 235 */
 236#define float16_two make_float16(0x4000)
 237#define float16_three make_float16(0x4200)
 238#define float16_one_point_five make_float16(0x3e00)
 239
 240#define float32_two make_float32(0x40000000)
 241#define float32_three make_float32(0x40400000)
 242#define float32_one_point_five make_float32(0x3fc00000)
 243
 244#define float64_two make_float64(0x4000000000000000ULL)
 245#define float64_three make_float64(0x4008000000000000ULL)
 246#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 247
 248uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
 249{
 250    float_status *fpst = fpstp;
 251
 252    a = float16_squash_input_denormal(a, fpst);
 253    b = float16_squash_input_denormal(b, fpst);
 254
 255    a = float16_chs(a);
 256    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 257        (float16_is_infinity(b) && float16_is_zero(a))) {
 258        return float16_two;
 259    }
 260    return float16_muladd(a, b, float16_two, 0, fpst);
 261}
 262
 263float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 264{
 265    float_status *fpst = fpstp;
 266
 267    a = float32_squash_input_denormal(a, fpst);
 268    b = float32_squash_input_denormal(b, fpst);
 269
 270    a = float32_chs(a);
 271    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 272        (float32_is_infinity(b) && float32_is_zero(a))) {
 273        return float32_two;
 274    }
 275    return float32_muladd(a, b, float32_two, 0, fpst);
 276}
 277
 278float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 279{
 280    float_status *fpst = fpstp;
 281
 282    a = float64_squash_input_denormal(a, fpst);
 283    b = float64_squash_input_denormal(b, fpst);
 284
 285    a = float64_chs(a);
 286    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 287        (float64_is_infinity(b) && float64_is_zero(a))) {
 288        return float64_two;
 289    }
 290    return float64_muladd(a, b, float64_two, 0, fpst);
 291}
 292
 293uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
 294{
 295    float_status *fpst = fpstp;
 296
 297    a = float16_squash_input_denormal(a, fpst);
 298    b = float16_squash_input_denormal(b, fpst);
 299
 300    a = float16_chs(a);
 301    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 302        (float16_is_infinity(b) && float16_is_zero(a))) {
 303        return float16_one_point_five;
 304    }
 305    return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
 306}
 307
 308float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 309{
 310    float_status *fpst = fpstp;
 311
 312    a = float32_squash_input_denormal(a, fpst);
 313    b = float32_squash_input_denormal(b, fpst);
 314
 315    a = float32_chs(a);
 316    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 317        (float32_is_infinity(b) && float32_is_zero(a))) {
 318        return float32_one_point_five;
 319    }
 320    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 321}
 322
 323float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 324{
 325    float_status *fpst = fpstp;
 326
 327    a = float64_squash_input_denormal(a, fpst);
 328    b = float64_squash_input_denormal(b, fpst);
 329
 330    a = float64_chs(a);
 331    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 332        (float64_is_infinity(b) && float64_is_zero(a))) {
 333        return float64_one_point_five;
 334    }
 335    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 336}
 337
 338/* Pairwise long add: add pairs of adjacent elements into
 339 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 340 */
 341uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 342{
 343    uint64_t nsignmask = 0x0080008000800080ULL;
 344    uint64_t wsignmask = 0x8000800080008000ULL;
 345    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 346    uint64_t tmp1, tmp2;
 347    uint64_t res, signres;
 348
 349    /* Extract odd elements, sign extend each to a 16 bit field */
 350    tmp1 = a & elementmask;
 351    tmp1 ^= nsignmask;
 352    tmp1 |= wsignmask;
 353    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 354    /* Ditto for the even elements */
 355    tmp2 = (a >> 8) & elementmask;
 356    tmp2 ^= nsignmask;
 357    tmp2 |= wsignmask;
 358    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 359
 360    /* calculate the result by summing bits 0..14, 16..22, etc,
 361     * and then adjusting the sign bits 15, 23, etc manually.
 362     * This ensures the addition can't overflow the 16 bit field.
 363     */
 364    signres = (tmp1 ^ tmp2) & wsignmask;
 365    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 366    res ^= signres;
 367
 368    return res;
 369}
 370
 371uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 372{
 373    uint64_t tmp;
 374
 375    tmp = a & 0x00ff00ff00ff00ffULL;
 376    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 377    return tmp;
 378}
 379
 380uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 381{
 382    int32_t reslo, reshi;
 383
 384    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 385    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 386
 387    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 388}
 389
 390uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 391{
 392    uint64_t tmp;
 393
 394    tmp = a & 0x0000ffff0000ffffULL;
 395    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 396    return tmp;
 397}
 398
 399/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 400uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
 401{
 402    float_status *fpst = fpstp;
 403    uint16_t val16, sbit;
 404    int16_t exp;
 405
 406    if (float16_is_any_nan(a)) {
 407        float16 nan = a;
 408        if (float16_is_signaling_nan(a, fpst)) {
 409            float_raise(float_flag_invalid, fpst);
 410            nan = float16_silence_nan(a, fpst);
 411        }
 412        if (fpst->default_nan_mode) {
 413            nan = float16_default_nan(fpst);
 414        }
 415        return nan;
 416    }
 417
 418    a = float16_squash_input_denormal(a, fpst);
 419
 420    val16 = float16_val(a);
 421    sbit = 0x8000 & val16;
 422    exp = extract32(val16, 10, 5);
 423
 424    if (exp == 0) {
 425        return make_float16(deposit32(sbit, 10, 5, 0x1e));
 426    } else {
 427        return make_float16(deposit32(sbit, 10, 5, ~exp));
 428    }
 429}
 430
 431float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 432{
 433    float_status *fpst = fpstp;
 434    uint32_t val32, sbit;
 435    int32_t exp;
 436
 437    if (float32_is_any_nan(a)) {
 438        float32 nan = a;
 439        if (float32_is_signaling_nan(a, fpst)) {
 440            float_raise(float_flag_invalid, fpst);
 441            nan = float32_silence_nan(a, fpst);
 442        }
 443        if (fpst->default_nan_mode) {
 444            nan = float32_default_nan(fpst);
 445        }
 446        return nan;
 447    }
 448
 449    a = float32_squash_input_denormal(a, fpst);
 450
 451    val32 = float32_val(a);
 452    sbit = 0x80000000ULL & val32;
 453    exp = extract32(val32, 23, 8);
 454
 455    if (exp == 0) {
 456        return make_float32(sbit | (0xfe << 23));
 457    } else {
 458        return make_float32(sbit | (~exp & 0xff) << 23);
 459    }
 460}
 461
 462float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 463{
 464    float_status *fpst = fpstp;
 465    uint64_t val64, sbit;
 466    int64_t exp;
 467
 468    if (float64_is_any_nan(a)) {
 469        float64 nan = a;
 470        if (float64_is_signaling_nan(a, fpst)) {
 471            float_raise(float_flag_invalid, fpst);
 472            nan = float64_silence_nan(a, fpst);
 473        }
 474        if (fpst->default_nan_mode) {
 475            nan = float64_default_nan(fpst);
 476        }
 477        return nan;
 478    }
 479
 480    a = float64_squash_input_denormal(a, fpst);
 481
 482    val64 = float64_val(a);
 483    sbit = 0x8000000000000000ULL & val64;
 484    exp = extract64(float64_val(a), 52, 11);
 485
 486    if (exp == 0) {
 487        return make_float64(sbit | (0x7feULL << 52));
 488    } else {
 489        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 490    }
 491}
 492
 493float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 494{
 495    /* Von Neumann rounding is implemented by using round-to-zero
 496     * and then setting the LSB of the result if Inexact was raised.
 497     */
 498    float32 r;
 499    float_status *fpst = &env->vfp.fp_status;
 500    float_status tstat = *fpst;
 501    int exflags;
 502
 503    set_float_rounding_mode(float_round_to_zero, &tstat);
 504    set_float_exception_flags(0, &tstat);
 505    r = float64_to_float32(a, &tstat);
 506    exflags = get_float_exception_flags(&tstat);
 507    if (exflags & float_flag_inexact) {
 508        r = make_float32(float32_val(r) | 1);
 509    }
 510    exflags |= get_float_exception_flags(fpst);
 511    set_float_exception_flags(exflags, fpst);
 512    return r;
 513}
 514
 515/* 64-bit versions of the CRC helpers. Note that although the operation
 516 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 517 * 32 bits of the accumulator and result are used, we pass and return
 518 * uint64_t for convenience of the generated code. Unlike the 32-bit
 519 * instruction set versions, val may genuinely have 64 bits of data in it.
 520 * The upper bytes of val (above the number specified by 'bytes') must have
 521 * been zeroed out by the caller.
 522 */
 523uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 524{
 525    uint8_t buf[8];
 526
 527    stq_le_p(buf, val);
 528
 529    /* zlib crc32 converts the accumulator and output to one's complement.  */
 530    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 531}
 532
 533uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 534{
 535    uint8_t buf[8];
 536
 537    stq_le_p(buf, val);
 538
 539    /* Linux crc32c converts the output to one's complement.  */
 540    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 541}
 542
 543uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
 544                                     uint64_t new_lo, uint64_t new_hi)
 545{
 546    Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
 547    Int128 newv = int128_make128(new_lo, new_hi);
 548    Int128 oldv;
 549    uintptr_t ra = GETPC();
 550    uint64_t o0, o1;
 551    bool success;
 552
 553#ifdef CONFIG_USER_ONLY
 554    /* ??? Enforce alignment.  */
 555    uint64_t *haddr = g2h(addr);
 556
 557    set_helper_retaddr(ra);
 558    o0 = ldq_le_p(haddr + 0);
 559    o1 = ldq_le_p(haddr + 1);
 560    oldv = int128_make128(o0, o1);
 561
 562    success = int128_eq(oldv, cmpv);
 563    if (success) {
 564        stq_le_p(haddr + 0, int128_getlo(newv));
 565        stq_le_p(haddr + 1, int128_gethi(newv));
 566    }
 567    clear_helper_retaddr();
 568#else
 569    int mem_idx = cpu_mmu_index(env, false);
 570    TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 571    TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
 572
 573    o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
 574    o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
 575    oldv = int128_make128(o0, o1);
 576
 577    success = int128_eq(oldv, cmpv);
 578    if (success) {
 579        helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
 580        helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
 581    }
 582#endif
 583
 584    return !success;
 585}
 586
 587uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
 588                                              uint64_t new_lo, uint64_t new_hi)
 589{
 590    Int128 oldv, cmpv, newv;
 591    uintptr_t ra = GETPC();
 592    bool success;
 593    int mem_idx;
 594    TCGMemOpIdx oi;
 595
 596    assert(HAVE_CMPXCHG128);
 597
 598    mem_idx = cpu_mmu_index(env, false);
 599    oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 600
 601    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
 602    newv = int128_make128(new_lo, new_hi);
 603    oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
 604
 605    success = int128_eq(oldv, cmpv);
 606    return !success;
 607}
 608
 609uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
 610                                     uint64_t new_lo, uint64_t new_hi)
 611{
 612    /*
 613     * High and low need to be switched here because this is not actually a
 614     * 128bit store but two doublewords stored consecutively
 615     */
 616    Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
 617    Int128 newv = int128_make128(new_hi, new_lo);
 618    Int128 oldv;
 619    uintptr_t ra = GETPC();
 620    uint64_t o0, o1;
 621    bool success;
 622
 623#ifdef CONFIG_USER_ONLY
 624    /* ??? Enforce alignment.  */
 625    uint64_t *haddr = g2h(addr);
 626
 627    set_helper_retaddr(ra);
 628    o1 = ldq_be_p(haddr + 0);
 629    o0 = ldq_be_p(haddr + 1);
 630    oldv = int128_make128(o0, o1);
 631
 632    success = int128_eq(oldv, cmpv);
 633    if (success) {
 634        stq_be_p(haddr + 0, int128_gethi(newv));
 635        stq_be_p(haddr + 1, int128_getlo(newv));
 636    }
 637    clear_helper_retaddr();
 638#else
 639    int mem_idx = cpu_mmu_index(env, false);
 640    TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 641    TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
 642
 643    o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
 644    o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
 645    oldv = int128_make128(o0, o1);
 646
 647    success = int128_eq(oldv, cmpv);
 648    if (success) {
 649        helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
 650        helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
 651    }
 652#endif
 653
 654    return !success;
 655}
 656
 657uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
 658                                              uint64_t new_lo, uint64_t new_hi)
 659{
 660    Int128 oldv, cmpv, newv;
 661    uintptr_t ra = GETPC();
 662    bool success;
 663    int mem_idx;
 664    TCGMemOpIdx oi;
 665
 666    assert(HAVE_CMPXCHG128);
 667
 668    mem_idx = cpu_mmu_index(env, false);
 669    oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
 670
 671    /*
 672     * High and low need to be switched here because this is not actually a
 673     * 128bit store but two doublewords stored consecutively
 674     */
 675    cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
 676    newv = int128_make128(new_hi, new_lo);
 677    oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
 678
 679    success = int128_eq(oldv, cmpv);
 680    return !success;
 681}
 682
 683/* Writes back the old data into Rs.  */
 684void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
 685                              uint64_t new_lo, uint64_t new_hi)
 686{
 687    Int128 oldv, cmpv, newv;
 688    uintptr_t ra = GETPC();
 689    int mem_idx;
 690    TCGMemOpIdx oi;
 691
 692    assert(HAVE_CMPXCHG128);
 693
 694    mem_idx = cpu_mmu_index(env, false);
 695    oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 696
 697    cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
 698    newv = int128_make128(new_lo, new_hi);
 699    oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
 700
 701    env->xregs[rs] = int128_getlo(oldv);
 702    env->xregs[rs + 1] = int128_gethi(oldv);
 703}
 704
 705void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
 706                              uint64_t new_hi, uint64_t new_lo)
 707{
 708    Int128 oldv, cmpv, newv;
 709    uintptr_t ra = GETPC();
 710    int mem_idx;
 711    TCGMemOpIdx oi;
 712
 713    assert(HAVE_CMPXCHG128);
 714
 715    mem_idx = cpu_mmu_index(env, false);
 716    oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
 717
 718    cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
 719    newv = int128_make128(new_lo, new_hi);
 720    oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
 721
 722    env->xregs[rs + 1] = int128_getlo(oldv);
 723    env->xregs[rs] = int128_gethi(oldv);
 724}
 725
 726/*
 727 * AdvSIMD half-precision
 728 */
 729
 730#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
 731
 732#define ADVSIMD_HALFOP(name) \
 733uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
 734{ \
 735    float_status *fpst = fpstp; \
 736    return float16_ ## name(a, b, fpst);    \
 737}
 738
 739ADVSIMD_HALFOP(add)
 740ADVSIMD_HALFOP(sub)
 741ADVSIMD_HALFOP(mul)
 742ADVSIMD_HALFOP(div)
 743ADVSIMD_HALFOP(min)
 744ADVSIMD_HALFOP(max)
 745ADVSIMD_HALFOP(minnum)
 746ADVSIMD_HALFOP(maxnum)
 747
 748#define ADVSIMD_TWOHALFOP(name)                                         \
 749uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
 750{ \
 751    float16  a1, a2, b1, b2;                        \
 752    uint32_t r1, r2;                                \
 753    float_status *fpst = fpstp;                     \
 754    a1 = extract32(two_a, 0, 16);                   \
 755    a2 = extract32(two_a, 16, 16);                  \
 756    b1 = extract32(two_b, 0, 16);                   \
 757    b2 = extract32(two_b, 16, 16);                  \
 758    r1 = float16_ ## name(a1, b1, fpst);            \
 759    r2 = float16_ ## name(a2, b2, fpst);            \
 760    return deposit32(r1, 16, 16, r2);               \
 761}
 762
 763ADVSIMD_TWOHALFOP(add)
 764ADVSIMD_TWOHALFOP(sub)
 765ADVSIMD_TWOHALFOP(mul)
 766ADVSIMD_TWOHALFOP(div)
 767ADVSIMD_TWOHALFOP(min)
 768ADVSIMD_TWOHALFOP(max)
 769ADVSIMD_TWOHALFOP(minnum)
 770ADVSIMD_TWOHALFOP(maxnum)
 771
 772/* Data processing - scalar floating-point and advanced SIMD */
 773static float16 float16_mulx(float16 a, float16 b, void *fpstp)
 774{
 775    float_status *fpst = fpstp;
 776
 777    a = float16_squash_input_denormal(a, fpst);
 778    b = float16_squash_input_denormal(b, fpst);
 779
 780    if ((float16_is_zero(a) && float16_is_infinity(b)) ||
 781        (float16_is_infinity(a) && float16_is_zero(b))) {
 782        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 783        return make_float16((1U << 14) |
 784                            ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
 785    }
 786    return float16_mul(a, b, fpst);
 787}
 788
 789ADVSIMD_HALFOP(mulx)
 790ADVSIMD_TWOHALFOP(mulx)
 791
 792/* fused multiply-accumulate */
 793uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
 794                                 void *fpstp)
 795{
 796    float_status *fpst = fpstp;
 797    return float16_muladd(a, b, c, 0, fpst);
 798}
 799
 800uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
 801                                  uint32_t two_c, void *fpstp)
 802{
 803    float_status *fpst = fpstp;
 804    float16  a1, a2, b1, b2, c1, c2;
 805    uint32_t r1, r2;
 806    a1 = extract32(two_a, 0, 16);
 807    a2 = extract32(two_a, 16, 16);
 808    b1 = extract32(two_b, 0, 16);
 809    b2 = extract32(two_b, 16, 16);
 810    c1 = extract32(two_c, 0, 16);
 811    c2 = extract32(two_c, 16, 16);
 812    r1 = float16_muladd(a1, b1, c1, 0, fpst);
 813    r2 = float16_muladd(a2, b2, c2, 0, fpst);
 814    return deposit32(r1, 16, 16, r2);
 815}
 816
 817/*
 818 * Floating point comparisons produce an integer result. Softfloat
 819 * routines return float_relation types which we convert to the 0/-1
 820 * Neon requires.
 821 */
 822
 823#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
 824
 825uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
 826{
 827    float_status *fpst = fpstp;
 828    int compare = float16_compare_quiet(a, b, fpst);
 829    return ADVSIMD_CMPRES(compare == float_relation_equal);
 830}
 831
 832uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
 833{
 834    float_status *fpst = fpstp;
 835    int compare = float16_compare(a, b, fpst);
 836    return ADVSIMD_CMPRES(compare == float_relation_greater ||
 837                          compare == float_relation_equal);
 838}
 839
 840uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
 841{
 842    float_status *fpst = fpstp;
 843    int compare = float16_compare(a, b, fpst);
 844    return ADVSIMD_CMPRES(compare == float_relation_greater);
 845}
 846
 847uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
 848{
 849    float_status *fpst = fpstp;
 850    float16 f0 = float16_abs(a);
 851    float16 f1 = float16_abs(b);
 852    int compare = float16_compare(f0, f1, fpst);
 853    return ADVSIMD_CMPRES(compare == float_relation_greater ||
 854                          compare == float_relation_equal);
 855}
 856
 857uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
 858{
 859    float_status *fpst = fpstp;
 860    float16 f0 = float16_abs(a);
 861    float16 f1 = float16_abs(b);
 862    int compare = float16_compare(f0, f1, fpst);
 863    return ADVSIMD_CMPRES(compare == float_relation_greater);
 864}
 865
 866/* round to integral */
 867uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
 868{
 869    return float16_round_to_int(x, fp_status);
 870}
 871
 872uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
 873{
 874    int old_flags = get_float_exception_flags(fp_status), new_flags;
 875    float16 ret;
 876
 877    ret = float16_round_to_int(x, fp_status);
 878
 879    /* Suppress any inexact exceptions the conversion produced */
 880    if (!(old_flags & float_flag_inexact)) {
 881        new_flags = get_float_exception_flags(fp_status);
 882        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 883    }
 884
 885    return ret;
 886}
 887
 888/*
 889 * Half-precision floating point conversion functions
 890 *
 891 * There are a multitude of conversion functions with various
 892 * different rounding modes. This is dealt with by the calling code
 893 * setting the mode appropriately before calling the helper.
 894 */
 895
 896uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
 897{
 898    float_status *fpst = fpstp;
 899
 900    /* Invalid if we are passed a NaN */
 901    if (float16_is_any_nan(a)) {
 902        float_raise(float_flag_invalid, fpst);
 903        return 0;
 904    }
 905    return float16_to_int16(a, fpst);
 906}
 907
 908uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
 909{
 910    float_status *fpst = fpstp;
 911
 912    /* Invalid if we are passed a NaN */
 913    if (float16_is_any_nan(a)) {
 914        float_raise(float_flag_invalid, fpst);
 915        return 0;
 916    }
 917    return float16_to_uint16(a, fpst);
 918}
 919
 920static int el_from_spsr(uint32_t spsr)
 921{
 922    /* Return the exception level that this SPSR is requesting a return to,
 923     * or -1 if it is invalid (an illegal return)
 924     */
 925    if (spsr & PSTATE_nRW) {
 926        switch (spsr & CPSR_M) {
 927        case ARM_CPU_MODE_USR:
 928            return 0;
 929        case ARM_CPU_MODE_HYP:
 930            return 2;
 931        case ARM_CPU_MODE_FIQ:
 932        case ARM_CPU_MODE_IRQ:
 933        case ARM_CPU_MODE_SVC:
 934        case ARM_CPU_MODE_ABT:
 935        case ARM_CPU_MODE_UND:
 936        case ARM_CPU_MODE_SYS:
 937            return 1;
 938        case ARM_CPU_MODE_MON:
 939            /* Returning to Mon from AArch64 is never possible,
 940             * so this is an illegal return.
 941             */
 942        default:
 943            return -1;
 944        }
 945    } else {
 946        if (extract32(spsr, 1, 1)) {
 947            /* Return with reserved M[1] bit set */
 948            return -1;
 949        }
 950        if (extract32(spsr, 0, 4) == 1) {
 951            /* return to EL0 with M[0] bit set */
 952            return -1;
 953        }
 954        return extract32(spsr, 2, 2);
 955    }
 956}
 957
 958void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
 959{
 960    int cur_el = arm_current_el(env);
 961    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
 962    uint32_t spsr = env->banked_spsr[spsr_idx];
 963    int new_el;
 964    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
 965
 966    aarch64_save_sp(env, cur_el);
 967
 968    arm_clear_exclusive(env);
 969
 970    /* We must squash the PSTATE.SS bit to zero unless both of the
 971     * following hold:
 972     *  1. debug exceptions are currently disabled
 973     *  2. singlestep will be active in the EL we return to
 974     * We check 1 here and 2 after we've done the pstate/cpsr write() to
 975     * transition to the EL we're going to.
 976     */
 977    if (arm_generate_debug_exceptions(env)) {
 978        spsr &= ~PSTATE_SS;
 979    }
 980
 981    new_el = el_from_spsr(spsr);
 982    if (new_el == -1) {
 983        goto illegal_return;
 984    }
 985    if (new_el > cur_el
 986        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
 987        /* Disallow return to an EL which is unimplemented or higher
 988         * than the current one.
 989         */
 990        goto illegal_return;
 991    }
 992
 993    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
 994        /* Return to an EL which is configured for a different register width */
 995        goto illegal_return;
 996    }
 997
 998    if (new_el == 2 && arm_is_secure_below_el3(env)) {
 999        /* Return to the non-existent secure-EL2 */
1000        goto illegal_return;
1001    }
1002
1003    if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
1004        goto illegal_return;
1005    }
1006
1007    qemu_mutex_lock_iothread();
1008    arm_call_pre_el_change_hook(env_archcpu(env));
1009    qemu_mutex_unlock_iothread();
1010
1011    if (!return_to_aa64) {
1012        env->aarch64 = 0;
1013        /* We do a raw CPSR write because aarch64_sync_64_to_32()
1014         * will sort the register banks out for us, and we've already
1015         * caught all the bad-mode cases in el_from_spsr().
1016         */
1017        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1018        if (!arm_singlestep_active(env)) {
1019            env->uncached_cpsr &= ~PSTATE_SS;
1020        }
1021        aarch64_sync_64_to_32(env);
1022
1023        if (spsr & CPSR_T) {
1024            env->regs[15] = new_pc & ~0x1;
1025        } else {
1026            env->regs[15] = new_pc & ~0x3;
1027        }
1028        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1029                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
1030                      cur_el, new_el, env->regs[15]);
1031    } else {
1032        env->aarch64 = 1;
1033        pstate_write(env, spsr);
1034        if (!arm_singlestep_active(env)) {
1035            env->pstate &= ~PSTATE_SS;
1036        }
1037        aarch64_restore_sp(env, new_el);
1038        env->pc = new_pc;
1039        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1040                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
1041                      cur_el, new_el, env->pc);
1042    }
1043    /*
1044     * Note that cur_el can never be 0.  If new_el is 0, then
1045     * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1046     */
1047    aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1048
1049    qemu_mutex_lock_iothread();
1050    arm_call_el_change_hook(env_archcpu(env));
1051    qemu_mutex_unlock_iothread();
1052
1053    return;
1054
1055illegal_return:
1056    /* Illegal return events of various kinds have architecturally
1057     * mandated behaviour:
1058     * restore NZCV and DAIF from SPSR_ELx
1059     * set PSTATE.IL
1060     * restore PC from ELR_ELx
1061     * no change to exception level, execution state or stack pointer
1062     */
1063    env->pstate |= PSTATE_IL;
1064    env->pc = new_pc;
1065    spsr &= PSTATE_NZCV | PSTATE_DAIF;
1066    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1067    pstate_write(env, spsr);
1068    if (!arm_singlestep_active(env)) {
1069        env->pstate &= ~PSTATE_SS;
1070    }
1071    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1072                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1073}
1074
1075/*
1076 * Square Root and Reciprocal square root
1077 */
1078
1079uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
1080{
1081    float_status *s = fpstp;
1082
1083    return float16_sqrt(a, s);
1084}
1085
1086
1087