qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/kvm.h"
  21#include "sysemu/kvm_int.h"
  22#include "kvm_arm.h"
  23#include "cpu.h"
  24#include "trace.h"
  25#include "internals.h"
  26#include "hw/pci/pci.h"
  27#include "exec/memattrs.h"
  28#include "exec/address-spaces.h"
  29#include "hw/boards.h"
  30#include "qemu/log.h"
  31
  32const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  33    KVM_CAP_LAST_INFO
  34};
  35
  36static bool cap_has_mp_state;
  37static bool cap_has_inject_serror_esr;
  38
  39static ARMHostCPUFeatures arm_host_cpu_features;
  40
  41int kvm_arm_vcpu_init(CPUState *cs)
  42{
  43    ARMCPU *cpu = ARM_CPU(cs);
  44    struct kvm_vcpu_init init;
  45
  46    init.target = cpu->kvm_target;
  47    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  48
  49    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  50}
  51
  52void kvm_arm_init_serror_injection(CPUState *cs)
  53{
  54    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  55                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  56}
  57
  58bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  59                                      int *fdarray,
  60                                      struct kvm_vcpu_init *init)
  61{
  62    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
  63
  64    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  65    if (kvmfd < 0) {
  66        goto err;
  67    }
  68    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  69    if (vmfd < 0) {
  70        goto err;
  71    }
  72    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  73    if (cpufd < 0) {
  74        goto err;
  75    }
  76
  77    if (!init) {
  78        /* Caller doesn't want the VCPU to be initialized, so skip it */
  79        goto finish;
  80    }
  81
  82    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
  83    if (ret >= 0) {
  84        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  85        if (ret < 0) {
  86            goto err;
  87        }
  88    } else if (cpus_to_try) {
  89        /* Old kernel which doesn't know about the
  90         * PREFERRED_TARGET ioctl: we know it will only support
  91         * creating one kind of guest CPU which is its preferred
  92         * CPU type.
  93         */
  94        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
  95            init->target = *cpus_to_try++;
  96            memset(init->features, 0, sizeof(init->features));
  97            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  98            if (ret >= 0) {
  99                break;
 100            }
 101        }
 102        if (ret < 0) {
 103            goto err;
 104        }
 105    } else {
 106        /* Treat a NULL cpus_to_try argument the same as an empty
 107         * list, which means we will fail the call since this must
 108         * be an old kernel which doesn't support PREFERRED_TARGET.
 109         */
 110        goto err;
 111    }
 112
 113finish:
 114    fdarray[0] = kvmfd;
 115    fdarray[1] = vmfd;
 116    fdarray[2] = cpufd;
 117
 118    return true;
 119
 120err:
 121    if (cpufd >= 0) {
 122        close(cpufd);
 123    }
 124    if (vmfd >= 0) {
 125        close(vmfd);
 126    }
 127    if (kvmfd >= 0) {
 128        close(kvmfd);
 129    }
 130
 131    return false;
 132}
 133
 134void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 135{
 136    int i;
 137
 138    for (i = 2; i >= 0; i--) {
 139        close(fdarray[i]);
 140    }
 141}
 142
 143void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 144{
 145    CPUARMState *env = &cpu->env;
 146
 147    if (!arm_host_cpu_features.dtb_compatible) {
 148        if (!kvm_enabled() ||
 149            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 150            /* We can't report this error yet, so flag that we need to
 151             * in arm_cpu_realizefn().
 152             */
 153            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 154            cpu->host_cpu_probe_failed = true;
 155            return;
 156        }
 157    }
 158
 159    cpu->kvm_target = arm_host_cpu_features.target;
 160    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 161    cpu->isar = arm_host_cpu_features.isar;
 162    env->features = arm_host_cpu_features.features;
 163}
 164
 165int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
 166{
 167    KVMState *s = KVM_STATE(ms->accelerator);
 168    int ret;
 169
 170    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 171    return ret > 0 ? ret : 40;
 172}
 173
 174int kvm_arch_init(MachineState *ms, KVMState *s)
 175{
 176    /* For ARM interrupt delivery is always asynchronous,
 177     * whether we are using an in-kernel VGIC or not.
 178     */
 179    kvm_async_interrupts_allowed = true;
 180
 181    /*
 182     * PSCI wakes up secondary cores, so we always need to
 183     * have vCPUs waiting in kernel space
 184     */
 185    kvm_halt_in_kernel_allowed = true;
 186
 187    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 188
 189    return 0;
 190}
 191
 192unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 193{
 194    return cpu->cpu_index;
 195}
 196
 197/* We track all the KVM devices which need their memory addresses
 198 * passing to the kernel in a list of these structures.
 199 * When board init is complete we run through the list and
 200 * tell the kernel the base addresses of the memory regions.
 201 * We use a MemoryListener to track mapping and unmapping of
 202 * the regions during board creation, so the board models don't
 203 * need to do anything special for the KVM case.
 204 *
 205 * Sometimes the address must be OR'ed with some other fields
 206 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 207 * @kda_addr_ormask aims at storing the value of those fields.
 208 */
 209typedef struct KVMDevice {
 210    struct kvm_arm_device_addr kda;
 211    struct kvm_device_attr kdattr;
 212    uint64_t kda_addr_ormask;
 213    MemoryRegion *mr;
 214    QSLIST_ENTRY(KVMDevice) entries;
 215    int dev_fd;
 216} KVMDevice;
 217
 218static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 219
 220static void kvm_arm_devlistener_add(MemoryListener *listener,
 221                                    MemoryRegionSection *section)
 222{
 223    KVMDevice *kd;
 224
 225    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 226        if (section->mr == kd->mr) {
 227            kd->kda.addr = section->offset_within_address_space;
 228        }
 229    }
 230}
 231
 232static void kvm_arm_devlistener_del(MemoryListener *listener,
 233                                    MemoryRegionSection *section)
 234{
 235    KVMDevice *kd;
 236
 237    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 238        if (section->mr == kd->mr) {
 239            kd->kda.addr = -1;
 240        }
 241    }
 242}
 243
 244static MemoryListener devlistener = {
 245    .region_add = kvm_arm_devlistener_add,
 246    .region_del = kvm_arm_devlistener_del,
 247};
 248
 249static void kvm_arm_set_device_addr(KVMDevice *kd)
 250{
 251    struct kvm_device_attr *attr = &kd->kdattr;
 252    int ret;
 253
 254    /* If the device control API is available and we have a device fd on the
 255     * KVMDevice struct, let's use the newer API
 256     */
 257    if (kd->dev_fd >= 0) {
 258        uint64_t addr = kd->kda.addr;
 259
 260        addr |= kd->kda_addr_ormask;
 261        attr->addr = (uintptr_t)&addr;
 262        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 263    } else {
 264        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 265    }
 266
 267    if (ret < 0) {
 268        fprintf(stderr, "Failed to set device address: %s\n",
 269                strerror(-ret));
 270        abort();
 271    }
 272}
 273
 274static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 275{
 276    KVMDevice *kd, *tkd;
 277
 278    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 279        if (kd->kda.addr != -1) {
 280            kvm_arm_set_device_addr(kd);
 281        }
 282        memory_region_unref(kd->mr);
 283        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 284        g_free(kd);
 285    }
 286    memory_listener_unregister(&devlistener);
 287}
 288
 289static Notifier notify = {
 290    .notify = kvm_arm_machine_init_done,
 291};
 292
 293void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 294                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 295{
 296    KVMDevice *kd;
 297
 298    if (!kvm_irqchip_in_kernel()) {
 299        return;
 300    }
 301
 302    if (QSLIST_EMPTY(&kvm_devices_head)) {
 303        memory_listener_register(&devlistener, &address_space_memory);
 304        qemu_add_machine_init_done_notifier(&notify);
 305    }
 306    kd = g_new0(KVMDevice, 1);
 307    kd->mr = mr;
 308    kd->kda.id = devid;
 309    kd->kda.addr = -1;
 310    kd->kdattr.flags = 0;
 311    kd->kdattr.group = group;
 312    kd->kdattr.attr = attr;
 313    kd->dev_fd = dev_fd;
 314    kd->kda_addr_ormask = addr_ormask;
 315    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 316    memory_region_ref(kd->mr);
 317}
 318
 319static int compare_u64(const void *a, const void *b)
 320{
 321    if (*(uint64_t *)a > *(uint64_t *)b) {
 322        return 1;
 323    }
 324    if (*(uint64_t *)a < *(uint64_t *)b) {
 325        return -1;
 326    }
 327    return 0;
 328}
 329
 330/* Initialize the ARMCPU cpreg list according to the kernel's
 331 * definition of what CPU registers it knows about (and throw away
 332 * the previous TCG-created cpreg list).
 333 */
 334int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 335{
 336    struct kvm_reg_list rl;
 337    struct kvm_reg_list *rlp;
 338    int i, ret, arraylen;
 339    CPUState *cs = CPU(cpu);
 340
 341    rl.n = 0;
 342    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 343    if (ret != -E2BIG) {
 344        return ret;
 345    }
 346    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 347    rlp->n = rl.n;
 348    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 349    if (ret) {
 350        goto out;
 351    }
 352    /* Sort the list we get back from the kernel, since cpreg_tuples
 353     * must be in strictly ascending order.
 354     */
 355    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 356
 357    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 358        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 359            continue;
 360        }
 361        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 362        case KVM_REG_SIZE_U32:
 363        case KVM_REG_SIZE_U64:
 364            break;
 365        default:
 366            fprintf(stderr, "Can't handle size of register in kernel list\n");
 367            ret = -EINVAL;
 368            goto out;
 369        }
 370
 371        arraylen++;
 372    }
 373
 374    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 375    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 376    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 377                                         arraylen);
 378    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 379                                        arraylen);
 380    cpu->cpreg_array_len = arraylen;
 381    cpu->cpreg_vmstate_array_len = arraylen;
 382
 383    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 384        uint64_t regidx = rlp->reg[i];
 385        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 386            continue;
 387        }
 388        cpu->cpreg_indexes[arraylen] = regidx;
 389        arraylen++;
 390    }
 391    assert(cpu->cpreg_array_len == arraylen);
 392
 393    if (!write_kvmstate_to_list(cpu)) {
 394        /* Shouldn't happen unless kernel is inconsistent about
 395         * what registers exist.
 396         */
 397        fprintf(stderr, "Initial read of kernel register state failed\n");
 398        ret = -EINVAL;
 399        goto out;
 400    }
 401
 402out:
 403    g_free(rlp);
 404    return ret;
 405}
 406
 407bool write_kvmstate_to_list(ARMCPU *cpu)
 408{
 409    CPUState *cs = CPU(cpu);
 410    int i;
 411    bool ok = true;
 412
 413    for (i = 0; i < cpu->cpreg_array_len; i++) {
 414        struct kvm_one_reg r;
 415        uint64_t regidx = cpu->cpreg_indexes[i];
 416        uint32_t v32;
 417        int ret;
 418
 419        r.id = regidx;
 420
 421        switch (regidx & KVM_REG_SIZE_MASK) {
 422        case KVM_REG_SIZE_U32:
 423            r.addr = (uintptr_t)&v32;
 424            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 425            if (!ret) {
 426                cpu->cpreg_values[i] = v32;
 427            }
 428            break;
 429        case KVM_REG_SIZE_U64:
 430            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 431            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 432            break;
 433        default:
 434            abort();
 435        }
 436        if (ret) {
 437            ok = false;
 438        }
 439    }
 440    return ok;
 441}
 442
 443bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 444{
 445    CPUState *cs = CPU(cpu);
 446    int i;
 447    bool ok = true;
 448
 449    for (i = 0; i < cpu->cpreg_array_len; i++) {
 450        struct kvm_one_reg r;
 451        uint64_t regidx = cpu->cpreg_indexes[i];
 452        uint32_t v32;
 453        int ret;
 454
 455        if (kvm_arm_cpreg_level(regidx) > level) {
 456            continue;
 457        }
 458
 459        r.id = regidx;
 460        switch (regidx & KVM_REG_SIZE_MASK) {
 461        case KVM_REG_SIZE_U32:
 462            v32 = cpu->cpreg_values[i];
 463            r.addr = (uintptr_t)&v32;
 464            break;
 465        case KVM_REG_SIZE_U64:
 466            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 467            break;
 468        default:
 469            abort();
 470        }
 471        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 472        if (ret) {
 473            /* We might fail for "unknown register" and also for
 474             * "you tried to set a register which is constant with
 475             * a different value from what it actually contains".
 476             */
 477            ok = false;
 478        }
 479    }
 480    return ok;
 481}
 482
 483void kvm_arm_reset_vcpu(ARMCPU *cpu)
 484{
 485    int ret;
 486
 487    /* Re-init VCPU so that all registers are set to
 488     * their respective reset values.
 489     */
 490    ret = kvm_arm_vcpu_init(CPU(cpu));
 491    if (ret < 0) {
 492        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 493        abort();
 494    }
 495    if (!write_kvmstate_to_list(cpu)) {
 496        fprintf(stderr, "write_kvmstate_to_list failed\n");
 497        abort();
 498    }
 499    /*
 500     * Sync the reset values also into the CPUState. This is necessary
 501     * because the next thing we do will be a kvm_arch_put_registers()
 502     * which will update the list values from the CPUState before copying
 503     * the list values back to KVM. It's OK to ignore failure returns here
 504     * for the same reason we do so in kvm_arch_get_registers().
 505     */
 506    write_list_to_cpustate(cpu);
 507}
 508
 509/*
 510 * Update KVM's MP_STATE based on what QEMU thinks it is
 511 */
 512int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 513{
 514    if (cap_has_mp_state) {
 515        struct kvm_mp_state mp_state = {
 516            .mp_state = (cpu->power_state == PSCI_OFF) ?
 517            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 518        };
 519        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 520        if (ret) {
 521            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 522                    __func__, ret, strerror(-ret));
 523            return -1;
 524        }
 525    }
 526
 527    return 0;
 528}
 529
 530/*
 531 * Sync the KVM MP_STATE into QEMU
 532 */
 533int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 534{
 535    if (cap_has_mp_state) {
 536        struct kvm_mp_state mp_state;
 537        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 538        if (ret) {
 539            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 540                    __func__, ret, strerror(-ret));
 541            abort();
 542        }
 543        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 544            PSCI_OFF : PSCI_ON;
 545    }
 546
 547    return 0;
 548}
 549
 550int kvm_put_vcpu_events(ARMCPU *cpu)
 551{
 552    CPUARMState *env = &cpu->env;
 553    struct kvm_vcpu_events events;
 554    int ret;
 555
 556    if (!kvm_has_vcpu_events()) {
 557        return 0;
 558    }
 559
 560    memset(&events, 0, sizeof(events));
 561    events.exception.serror_pending = env->serror.pending;
 562
 563    /* Inject SError to guest with specified syndrome if host kernel
 564     * supports it, otherwise inject SError without syndrome.
 565     */
 566    if (cap_has_inject_serror_esr) {
 567        events.exception.serror_has_esr = env->serror.has_esr;
 568        events.exception.serror_esr = env->serror.esr;
 569    }
 570
 571    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 572    if (ret) {
 573        error_report("failed to put vcpu events");
 574    }
 575
 576    return ret;
 577}
 578
 579int kvm_get_vcpu_events(ARMCPU *cpu)
 580{
 581    CPUARMState *env = &cpu->env;
 582    struct kvm_vcpu_events events;
 583    int ret;
 584
 585    if (!kvm_has_vcpu_events()) {
 586        return 0;
 587    }
 588
 589    memset(&events, 0, sizeof(events));
 590    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 591    if (ret) {
 592        error_report("failed to get vcpu events");
 593        return ret;
 594    }
 595
 596    env->serror.pending = events.exception.serror_pending;
 597    env->serror.has_esr = events.exception.serror_has_esr;
 598    env->serror.esr = events.exception.serror_esr;
 599
 600    return 0;
 601}
 602
 603void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 604{
 605}
 606
 607MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 608{
 609    ARMCPU *cpu;
 610    uint32_t switched_level;
 611
 612    if (kvm_irqchip_in_kernel()) {
 613        /*
 614         * We only need to sync timer states with user-space interrupt
 615         * controllers, so return early and save cycles if we don't.
 616         */
 617        return MEMTXATTRS_UNSPECIFIED;
 618    }
 619
 620    cpu = ARM_CPU(cs);
 621
 622    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 623    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 624        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 625
 626        qemu_mutex_lock_iothread();
 627
 628        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 629            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 630                         !!(run->s.regs.device_irq_level &
 631                            KVM_ARM_DEV_EL1_VTIMER));
 632            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 633        }
 634
 635        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 636            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 637                         !!(run->s.regs.device_irq_level &
 638                            KVM_ARM_DEV_EL1_PTIMER));
 639            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 640        }
 641
 642        if (switched_level & KVM_ARM_DEV_PMU) {
 643            qemu_set_irq(cpu->pmu_interrupt,
 644                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 645            switched_level &= ~KVM_ARM_DEV_PMU;
 646        }
 647
 648        if (switched_level) {
 649            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 650                          __func__, switched_level);
 651        }
 652
 653        /* We also mark unknown levels as processed to not waste cycles */
 654        cpu->device_irq_level = run->s.regs.device_irq_level;
 655        qemu_mutex_unlock_iothread();
 656    }
 657
 658    return MEMTXATTRS_UNSPECIFIED;
 659}
 660
 661
 662int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 663{
 664    int ret = 0;
 665
 666    switch (run->exit_reason) {
 667    case KVM_EXIT_DEBUG:
 668        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 669            ret = EXCP_DEBUG;
 670        } /* otherwise return to guest */
 671        break;
 672    default:
 673        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 674                      __func__, run->exit_reason);
 675        break;
 676    }
 677    return ret;
 678}
 679
 680bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 681{
 682    return true;
 683}
 684
 685int kvm_arch_process_async_events(CPUState *cs)
 686{
 687    return 0;
 688}
 689
 690/* The #ifdef protections are until 32bit headers are imported and can
 691 * be removed once both 32 and 64 bit reach feature parity.
 692 */
 693void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 694{
 695#ifdef KVM_GUESTDBG_USE_SW_BP
 696    if (kvm_sw_breakpoints_active(cs)) {
 697        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 698    }
 699#endif
 700#ifdef KVM_GUESTDBG_USE_HW
 701    if (kvm_arm_hw_debug_active(cs)) {
 702        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 703        kvm_arm_copy_hw_debug_data(&dbg->arch);
 704    }
 705#endif
 706}
 707
 708void kvm_arch_init_irq_routing(KVMState *s)
 709{
 710}
 711
 712int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 713{
 714     if (machine_kernel_irqchip_split(ms)) {
 715         perror("-machine kernel_irqchip=split is not supported on ARM.");
 716         exit(1);
 717    }
 718
 719    /* If we can create the VGIC using the newer device control API, we
 720     * let the device do this when it initializes itself, otherwise we
 721     * fall back to the old API */
 722    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 723}
 724
 725int kvm_arm_vgic_probe(void)
 726{
 727    if (kvm_create_device(kvm_state,
 728                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 729        return 3;
 730    } else if (kvm_create_device(kvm_state,
 731                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 732        return 2;
 733    } else {
 734        return 0;
 735    }
 736}
 737
 738int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 739                             uint64_t address, uint32_t data, PCIDevice *dev)
 740{
 741    AddressSpace *as = pci_device_iommu_address_space(dev);
 742    hwaddr xlat, len, doorbell_gpa;
 743    MemoryRegionSection mrs;
 744    MemoryRegion *mr;
 745    int ret = 1;
 746
 747    if (as == &address_space_memory) {
 748        return 0;
 749    }
 750
 751    /* MSI doorbell address is translated by an IOMMU */
 752
 753    rcu_read_lock();
 754    mr = address_space_translate(as, address, &xlat, &len, true,
 755                                 MEMTXATTRS_UNSPECIFIED);
 756    if (!mr) {
 757        goto unlock;
 758    }
 759    mrs = memory_region_find(mr, xlat, 1);
 760    if (!mrs.mr) {
 761        goto unlock;
 762    }
 763
 764    doorbell_gpa = mrs.offset_within_address_space;
 765    memory_region_unref(mrs.mr);
 766
 767    route->u.msi.address_lo = doorbell_gpa;
 768    route->u.msi.address_hi = doorbell_gpa >> 32;
 769
 770    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
 771
 772    ret = 0;
 773
 774unlock:
 775    rcu_read_unlock();
 776    return ret;
 777}
 778
 779int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
 780                                int vector, PCIDevice *dev)
 781{
 782    return 0;
 783}
 784
 785int kvm_arch_release_virq_post(int virq)
 786{
 787    return 0;
 788}
 789
 790int kvm_arch_msi_data_to_gsi(uint32_t data)
 791{
 792    return (data - 32) & 0xffff;
 793}
 794