qemu/target/arm/neon_helper.c
<<
>>
Prefs
   1/*
   2 * ARM NEON vector operations.
   3 *
   4 * Copyright (c) 2007, 2008 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GNU GPL v2.
   8 */
   9#include "qemu/osdep.h"
  10
  11#include "cpu.h"
  12#include "exec/helper-proto.h"
  13#include "fpu/softfloat.h"
  14
  15#define SIGNBIT (uint32_t)0x80000000
  16#define SIGNBIT64 ((uint64_t)1 << 63)
  17
  18#define SET_QC() env->vfp.qc[0] = 1
  19
  20#define NEON_TYPE1(name, type) \
  21typedef struct \
  22{ \
  23    type v1; \
  24} neon_##name;
  25#ifdef HOST_WORDS_BIGENDIAN
  26#define NEON_TYPE2(name, type) \
  27typedef struct \
  28{ \
  29    type v2; \
  30    type v1; \
  31} neon_##name;
  32#define NEON_TYPE4(name, type) \
  33typedef struct \
  34{ \
  35    type v4; \
  36    type v3; \
  37    type v2; \
  38    type v1; \
  39} neon_##name;
  40#else
  41#define NEON_TYPE2(name, type) \
  42typedef struct \
  43{ \
  44    type v1; \
  45    type v2; \
  46} neon_##name;
  47#define NEON_TYPE4(name, type) \
  48typedef struct \
  49{ \
  50    type v1; \
  51    type v2; \
  52    type v3; \
  53    type v4; \
  54} neon_##name;
  55#endif
  56
  57NEON_TYPE4(s8, int8_t)
  58NEON_TYPE4(u8, uint8_t)
  59NEON_TYPE2(s16, int16_t)
  60NEON_TYPE2(u16, uint16_t)
  61NEON_TYPE1(s32, int32_t)
  62NEON_TYPE1(u32, uint32_t)
  63#undef NEON_TYPE4
  64#undef NEON_TYPE2
  65#undef NEON_TYPE1
  66
  67/* Copy from a uint32_t to a vector structure type.  */
  68#define NEON_UNPACK(vtype, dest, val) do { \
  69    union { \
  70        vtype v; \
  71        uint32_t i; \
  72    } conv_u; \
  73    conv_u.i = (val); \
  74    dest = conv_u.v; \
  75    } while(0)
  76
  77/* Copy from a vector structure type to a uint32_t.  */
  78#define NEON_PACK(vtype, dest, val) do { \
  79    union { \
  80        vtype v; \
  81        uint32_t i; \
  82    } conv_u; \
  83    conv_u.v = (val); \
  84    dest = conv_u.i; \
  85    } while(0)
  86
  87#define NEON_DO1 \
  88    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
  89#define NEON_DO2 \
  90    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
  91    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
  92#define NEON_DO4 \
  93    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
  94    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
  95    NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
  96    NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
  97
  98#define NEON_VOP_BODY(vtype, n) \
  99{ \
 100    uint32_t res; \
 101    vtype vsrc1; \
 102    vtype vsrc2; \
 103    vtype vdest; \
 104    NEON_UNPACK(vtype, vsrc1, arg1); \
 105    NEON_UNPACK(vtype, vsrc2, arg2); \
 106    NEON_DO##n; \
 107    NEON_PACK(vtype, res, vdest); \
 108    return res; \
 109}
 110
 111#define NEON_VOP(name, vtype, n) \
 112uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
 113NEON_VOP_BODY(vtype, n)
 114
 115#define NEON_VOP_ENV(name, vtype, n) \
 116uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
 117NEON_VOP_BODY(vtype, n)
 118
 119/* Pairwise operations.  */
 120/* For 32-bit elements each segment only contains a single element, so
 121   the elementwise and pairwise operations are the same.  */
 122#define NEON_PDO2 \
 123    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
 124    NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
 125#define NEON_PDO4 \
 126    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
 127    NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
 128    NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
 129    NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
 130
 131#define NEON_POP(name, vtype, n) \
 132uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
 133{ \
 134    uint32_t res; \
 135    vtype vsrc1; \
 136    vtype vsrc2; \
 137    vtype vdest; \
 138    NEON_UNPACK(vtype, vsrc1, arg1); \
 139    NEON_UNPACK(vtype, vsrc2, arg2); \
 140    NEON_PDO##n; \
 141    NEON_PACK(vtype, res, vdest); \
 142    return res; \
 143}
 144
 145/* Unary operators.  */
 146#define NEON_VOP1(name, vtype, n) \
 147uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
 148{ \
 149    vtype vsrc1; \
 150    vtype vdest; \
 151    NEON_UNPACK(vtype, vsrc1, arg); \
 152    NEON_DO##n; \
 153    NEON_PACK(vtype, arg, vdest); \
 154    return arg; \
 155}
 156
 157
 158#define NEON_USAT(dest, src1, src2, type) do { \
 159    uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
 160    if (tmp != (type)tmp) { \
 161        SET_QC(); \
 162        dest = ~0; \
 163    } else { \
 164        dest = tmp; \
 165    }} while(0)
 166#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
 167NEON_VOP_ENV(qadd_u8, neon_u8, 4)
 168#undef NEON_FN
 169#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
 170NEON_VOP_ENV(qadd_u16, neon_u16, 2)
 171#undef NEON_FN
 172#undef NEON_USAT
 173
 174uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
 175{
 176    uint32_t res = a + b;
 177    if (res < a) {
 178        SET_QC();
 179        res = ~0;
 180    }
 181    return res;
 182}
 183
 184uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
 185{
 186    uint64_t res;
 187
 188    res = src1 + src2;
 189    if (res < src1) {
 190        SET_QC();
 191        res = ~(uint64_t)0;
 192    }
 193    return res;
 194}
 195
 196#define NEON_SSAT(dest, src1, src2, type) do { \
 197    int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
 198    if (tmp != (type)tmp) { \
 199        SET_QC(); \
 200        if (src2 > 0) { \
 201            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
 202        } else { \
 203            tmp = 1 << (sizeof(type) * 8 - 1); \
 204        } \
 205    } \
 206    dest = tmp; \
 207    } while(0)
 208#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
 209NEON_VOP_ENV(qadd_s8, neon_s8, 4)
 210#undef NEON_FN
 211#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
 212NEON_VOP_ENV(qadd_s16, neon_s16, 2)
 213#undef NEON_FN
 214#undef NEON_SSAT
 215
 216uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
 217{
 218    uint32_t res = a + b;
 219    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
 220        SET_QC();
 221        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 222    }
 223    return res;
 224}
 225
 226uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
 227{
 228    uint64_t res;
 229
 230    res = src1 + src2;
 231    if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
 232        SET_QC();
 233        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
 234    }
 235    return res;
 236}
 237
 238/* Unsigned saturating accumulate of signed value
 239 *
 240 * Op1/Rn is treated as signed
 241 * Op2/Rd is treated as unsigned
 242 *
 243 * Explicit casting is used to ensure the correct sign extension of
 244 * inputs. The result is treated as a unsigned value and saturated as such.
 245 *
 246 * We use a macro for the 8/16 bit cases which expects signed integers of va,
 247 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
 248 */
 249
 250#define USATACC(bits, shift) \
 251    do { \
 252        va = sextract32(a, shift, bits);                                \
 253        vb = extract32(b, shift, bits);                                 \
 254        vr = va + vb;                                                   \
 255        if (vr > UINT##bits##_MAX) {                                    \
 256            SET_QC();                                                   \
 257            vr = UINT##bits##_MAX;                                      \
 258        } else if (vr < 0) {                                            \
 259            SET_QC();                                                   \
 260            vr = 0;                                                     \
 261        }                                                               \
 262        r = deposit32(r, shift, bits, vr);                              \
 263   } while (0)
 264
 265uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
 266{
 267    int16_t va, vb, vr;
 268    uint32_t r = 0;
 269
 270    USATACC(8, 0);
 271    USATACC(8, 8);
 272    USATACC(8, 16);
 273    USATACC(8, 24);
 274    return r;
 275}
 276
 277uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
 278{
 279    int32_t va, vb, vr;
 280    uint64_t r = 0;
 281
 282    USATACC(16, 0);
 283    USATACC(16, 16);
 284    return r;
 285}
 286
 287#undef USATACC
 288
 289uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
 290{
 291    int64_t va = (int32_t)a;
 292    int64_t vb = (uint32_t)b;
 293    int64_t vr = va + vb;
 294    if (vr > UINT32_MAX) {
 295        SET_QC();
 296        vr = UINT32_MAX;
 297    } else if (vr < 0) {
 298        SET_QC();
 299        vr = 0;
 300    }
 301    return vr;
 302}
 303
 304uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
 305{
 306    uint64_t res;
 307    res = a + b;
 308    /* We only need to look at the pattern of SIGN bits to detect
 309     * +ve/-ve saturation
 310     */
 311    if (~a & b & ~res & SIGNBIT64) {
 312        SET_QC();
 313        res = UINT64_MAX;
 314    } else if (a & ~b & res & SIGNBIT64) {
 315        SET_QC();
 316        res = 0;
 317    }
 318    return res;
 319}
 320
 321/* Signed saturating accumulate of unsigned value
 322 *
 323 * Op1/Rn is treated as unsigned
 324 * Op2/Rd is treated as signed
 325 *
 326 * The result is treated as a signed value and saturated as such
 327 *
 328 * We use a macro for the 8/16 bit cases which expects signed integers of va,
 329 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
 330 */
 331
 332#define SSATACC(bits, shift) \
 333    do { \
 334        va = extract32(a, shift, bits);                                 \
 335        vb = sextract32(b, shift, bits);                                \
 336        vr = va + vb;                                                   \
 337        if (vr > INT##bits##_MAX) {                                     \
 338            SET_QC();                                                   \
 339            vr = INT##bits##_MAX;                                       \
 340        } else if (vr < INT##bits##_MIN) {                              \
 341            SET_QC();                                                   \
 342            vr = INT##bits##_MIN;                                       \
 343        }                                                               \
 344        r = deposit32(r, shift, bits, vr);                              \
 345    } while (0)
 346
 347uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
 348{
 349    int16_t va, vb, vr;
 350    uint32_t r = 0;
 351
 352    SSATACC(8, 0);
 353    SSATACC(8, 8);
 354    SSATACC(8, 16);
 355    SSATACC(8, 24);
 356    return r;
 357}
 358
 359uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
 360{
 361    int32_t va, vb, vr;
 362    uint32_t r = 0;
 363
 364    SSATACC(16, 0);
 365    SSATACC(16, 16);
 366
 367    return r;
 368}
 369
 370#undef SSATACC
 371
 372uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
 373{
 374    int64_t res;
 375    int64_t op1 = (uint32_t)a;
 376    int64_t op2 = (int32_t)b;
 377    res = op1 + op2;
 378    if (res > INT32_MAX) {
 379        SET_QC();
 380        res = INT32_MAX;
 381    } else if (res < INT32_MIN) {
 382        SET_QC();
 383        res = INT32_MIN;
 384    }
 385    return res;
 386}
 387
 388uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
 389{
 390    uint64_t res;
 391    res = a + b;
 392    /* We only need to look at the pattern of SIGN bits to detect an overflow */
 393    if (((a & res)
 394         | (~b & res)
 395         | (a & ~b)) & SIGNBIT64) {
 396        SET_QC();
 397        res = INT64_MAX;
 398    }
 399    return res;
 400}
 401
 402
 403#define NEON_USAT(dest, src1, src2, type) do { \
 404    uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
 405    if (tmp != (type)tmp) { \
 406        SET_QC(); \
 407        dest = 0; \
 408    } else { \
 409        dest = tmp; \
 410    }} while(0)
 411#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
 412NEON_VOP_ENV(qsub_u8, neon_u8, 4)
 413#undef NEON_FN
 414#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
 415NEON_VOP_ENV(qsub_u16, neon_u16, 2)
 416#undef NEON_FN
 417#undef NEON_USAT
 418
 419uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
 420{
 421    uint32_t res = a - b;
 422    if (res > a) {
 423        SET_QC();
 424        res = 0;
 425    }
 426    return res;
 427}
 428
 429uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
 430{
 431    uint64_t res;
 432
 433    if (src1 < src2) {
 434        SET_QC();
 435        res = 0;
 436    } else {
 437        res = src1 - src2;
 438    }
 439    return res;
 440}
 441
 442#define NEON_SSAT(dest, src1, src2, type) do { \
 443    int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
 444    if (tmp != (type)tmp) { \
 445        SET_QC(); \
 446        if (src2 < 0) { \
 447            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
 448        } else { \
 449            tmp = 1 << (sizeof(type) * 8 - 1); \
 450        } \
 451    } \
 452    dest = tmp; \
 453    } while(0)
 454#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
 455NEON_VOP_ENV(qsub_s8, neon_s8, 4)
 456#undef NEON_FN
 457#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
 458NEON_VOP_ENV(qsub_s16, neon_s16, 2)
 459#undef NEON_FN
 460#undef NEON_SSAT
 461
 462uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
 463{
 464    uint32_t res = a - b;
 465    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
 466        SET_QC();
 467        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 468    }
 469    return res;
 470}
 471
 472uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
 473{
 474    uint64_t res;
 475
 476    res = src1 - src2;
 477    if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
 478        SET_QC();
 479        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
 480    }
 481    return res;
 482}
 483
 484#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
 485NEON_VOP(hadd_s8, neon_s8, 4)
 486NEON_VOP(hadd_u8, neon_u8, 4)
 487NEON_VOP(hadd_s16, neon_s16, 2)
 488NEON_VOP(hadd_u16, neon_u16, 2)
 489#undef NEON_FN
 490
 491int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
 492{
 493    int32_t dest;
 494
 495    dest = (src1 >> 1) + (src2 >> 1);
 496    if (src1 & src2 & 1)
 497        dest++;
 498    return dest;
 499}
 500
 501uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
 502{
 503    uint32_t dest;
 504
 505    dest = (src1 >> 1) + (src2 >> 1);
 506    if (src1 & src2 & 1)
 507        dest++;
 508    return dest;
 509}
 510
 511#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
 512NEON_VOP(rhadd_s8, neon_s8, 4)
 513NEON_VOP(rhadd_u8, neon_u8, 4)
 514NEON_VOP(rhadd_s16, neon_s16, 2)
 515NEON_VOP(rhadd_u16, neon_u16, 2)
 516#undef NEON_FN
 517
 518int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
 519{
 520    int32_t dest;
 521
 522    dest = (src1 >> 1) + (src2 >> 1);
 523    if ((src1 | src2) & 1)
 524        dest++;
 525    return dest;
 526}
 527
 528uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
 529{
 530    uint32_t dest;
 531
 532    dest = (src1 >> 1) + (src2 >> 1);
 533    if ((src1 | src2) & 1)
 534        dest++;
 535    return dest;
 536}
 537
 538#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
 539NEON_VOP(hsub_s8, neon_s8, 4)
 540NEON_VOP(hsub_u8, neon_u8, 4)
 541NEON_VOP(hsub_s16, neon_s16, 2)
 542NEON_VOP(hsub_u16, neon_u16, 2)
 543#undef NEON_FN
 544
 545int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
 546{
 547    int32_t dest;
 548
 549    dest = (src1 >> 1) - (src2 >> 1);
 550    if ((~src1) & src2 & 1)
 551        dest--;
 552    return dest;
 553}
 554
 555uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
 556{
 557    uint32_t dest;
 558
 559    dest = (src1 >> 1) - (src2 >> 1);
 560    if ((~src1) & src2 & 1)
 561        dest--;
 562    return dest;
 563}
 564
 565#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
 566NEON_VOP(cgt_s8, neon_s8, 4)
 567NEON_VOP(cgt_u8, neon_u8, 4)
 568NEON_VOP(cgt_s16, neon_s16, 2)
 569NEON_VOP(cgt_u16, neon_u16, 2)
 570NEON_VOP(cgt_s32, neon_s32, 1)
 571NEON_VOP(cgt_u32, neon_u32, 1)
 572#undef NEON_FN
 573
 574#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
 575NEON_VOP(cge_s8, neon_s8, 4)
 576NEON_VOP(cge_u8, neon_u8, 4)
 577NEON_VOP(cge_s16, neon_s16, 2)
 578NEON_VOP(cge_u16, neon_u16, 2)
 579NEON_VOP(cge_s32, neon_s32, 1)
 580NEON_VOP(cge_u32, neon_u32, 1)
 581#undef NEON_FN
 582
 583#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
 584NEON_POP(pmin_s8, neon_s8, 4)
 585NEON_POP(pmin_u8, neon_u8, 4)
 586NEON_POP(pmin_s16, neon_s16, 2)
 587NEON_POP(pmin_u16, neon_u16, 2)
 588#undef NEON_FN
 589
 590#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
 591NEON_POP(pmax_s8, neon_s8, 4)
 592NEON_POP(pmax_u8, neon_u8, 4)
 593NEON_POP(pmax_s16, neon_s16, 2)
 594NEON_POP(pmax_u16, neon_u16, 2)
 595#undef NEON_FN
 596
 597#define NEON_FN(dest, src1, src2) \
 598    dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
 599NEON_VOP(abd_s8, neon_s8, 4)
 600NEON_VOP(abd_u8, neon_u8, 4)
 601NEON_VOP(abd_s16, neon_s16, 2)
 602NEON_VOP(abd_u16, neon_u16, 2)
 603NEON_VOP(abd_s32, neon_s32, 1)
 604NEON_VOP(abd_u32, neon_u32, 1)
 605#undef NEON_FN
 606
 607#define NEON_FN(dest, src1, src2) do { \
 608    int8_t tmp; \
 609    tmp = (int8_t)src2; \
 610    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
 611        tmp <= -(ssize_t)sizeof(src1) * 8) { \
 612        dest = 0; \
 613    } else if (tmp < 0) { \
 614        dest = src1 >> -tmp; \
 615    } else { \
 616        dest = src1 << tmp; \
 617    }} while (0)
 618NEON_VOP(shl_u8, neon_u8, 4)
 619NEON_VOP(shl_u16, neon_u16, 2)
 620NEON_VOP(shl_u32, neon_u32, 1)
 621#undef NEON_FN
 622
 623uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
 624{
 625    int8_t shift = (int8_t)shiftop;
 626    if (shift >= 64 || shift <= -64) {
 627        val = 0;
 628    } else if (shift < 0) {
 629        val >>= -shift;
 630    } else {
 631        val <<= shift;
 632    }
 633    return val;
 634}
 635
 636#define NEON_FN(dest, src1, src2) do { \
 637    int8_t tmp; \
 638    tmp = (int8_t)src2; \
 639    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
 640        dest = 0; \
 641    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
 642        dest = src1 >> (sizeof(src1) * 8 - 1); \
 643    } else if (tmp < 0) { \
 644        dest = src1 >> -tmp; \
 645    } else { \
 646        dest = src1 << tmp; \
 647    }} while (0)
 648NEON_VOP(shl_s8, neon_s8, 4)
 649NEON_VOP(shl_s16, neon_s16, 2)
 650NEON_VOP(shl_s32, neon_s32, 1)
 651#undef NEON_FN
 652
 653uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
 654{
 655    int8_t shift = (int8_t)shiftop;
 656    int64_t val = valop;
 657    if (shift >= 64) {
 658        val = 0;
 659    } else if (shift <= -64) {
 660        val >>= 63;
 661    } else if (shift < 0) {
 662        val >>= -shift;
 663    } else {
 664        val <<= shift;
 665    }
 666    return val;
 667}
 668
 669#define NEON_FN(dest, src1, src2) do { \
 670    int8_t tmp; \
 671    tmp = (int8_t)src2; \
 672    if ((tmp >= (ssize_t)sizeof(src1) * 8) \
 673        || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
 674        dest = 0; \
 675    } else if (tmp < 0) { \
 676        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
 677    } else { \
 678        dest = src1 << tmp; \
 679    }} while (0)
 680NEON_VOP(rshl_s8, neon_s8, 4)
 681NEON_VOP(rshl_s16, neon_s16, 2)
 682#undef NEON_FN
 683
 684/* The addition of the rounding constant may overflow, so we use an
 685 * intermediate 64 bit accumulator.  */
 686uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
 687{
 688    int32_t dest;
 689    int32_t val = (int32_t)valop;
 690    int8_t shift = (int8_t)shiftop;
 691    if ((shift >= 32) || (shift <= -32)) {
 692        dest = 0;
 693    } else if (shift < 0) {
 694        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
 695        dest = big_dest >> -shift;
 696    } else {
 697        dest = val << shift;
 698    }
 699    return dest;
 700}
 701
 702/* Handling addition overflow with 64 bit input values is more
 703 * tricky than with 32 bit values.  */
 704uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
 705{
 706    int8_t shift = (int8_t)shiftop;
 707    int64_t val = valop;
 708    if ((shift >= 64) || (shift <= -64)) {
 709        val = 0;
 710    } else if (shift < 0) {
 711        val >>= (-shift - 1);
 712        if (val == INT64_MAX) {
 713            /* In this case, it means that the rounding constant is 1,
 714             * and the addition would overflow. Return the actual
 715             * result directly.  */
 716            val = 0x4000000000000000LL;
 717        } else {
 718            val++;
 719            val >>= 1;
 720        }
 721    } else {
 722        val <<= shift;
 723    }
 724    return val;
 725}
 726
 727#define NEON_FN(dest, src1, src2) do { \
 728    int8_t tmp; \
 729    tmp = (int8_t)src2; \
 730    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
 731        tmp < -(ssize_t)sizeof(src1) * 8) { \
 732        dest = 0; \
 733    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
 734        dest = src1 >> (-tmp - 1); \
 735    } else if (tmp < 0) { \
 736        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
 737    } else { \
 738        dest = src1 << tmp; \
 739    }} while (0)
 740NEON_VOP(rshl_u8, neon_u8, 4)
 741NEON_VOP(rshl_u16, neon_u16, 2)
 742#undef NEON_FN
 743
 744/* The addition of the rounding constant may overflow, so we use an
 745 * intermediate 64 bit accumulator.  */
 746uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
 747{
 748    uint32_t dest;
 749    int8_t shift = (int8_t)shiftop;
 750    if (shift >= 32 || shift < -32) {
 751        dest = 0;
 752    } else if (shift == -32) {
 753        dest = val >> 31;
 754    } else if (shift < 0) {
 755        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
 756        dest = big_dest >> -shift;
 757    } else {
 758        dest = val << shift;
 759    }
 760    return dest;
 761}
 762
 763/* Handling addition overflow with 64 bit input values is more
 764 * tricky than with 32 bit values.  */
 765uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
 766{
 767    int8_t shift = (uint8_t)shiftop;
 768    if (shift >= 64 || shift < -64) {
 769        val = 0;
 770    } else if (shift == -64) {
 771        /* Rounding a 1-bit result just preserves that bit.  */
 772        val >>= 63;
 773    } else if (shift < 0) {
 774        val >>= (-shift - 1);
 775        if (val == UINT64_MAX) {
 776            /* In this case, it means that the rounding constant is 1,
 777             * and the addition would overflow. Return the actual
 778             * result directly.  */
 779            val = 0x8000000000000000ULL;
 780        } else {
 781            val++;
 782            val >>= 1;
 783        }
 784    } else {
 785        val <<= shift;
 786    }
 787    return val;
 788}
 789
 790#define NEON_FN(dest, src1, src2) do { \
 791    int8_t tmp; \
 792    tmp = (int8_t)src2; \
 793    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
 794        if (src1) { \
 795            SET_QC(); \
 796            dest = ~0; \
 797        } else { \
 798            dest = 0; \
 799        } \
 800    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
 801        dest = 0; \
 802    } else if (tmp < 0) { \
 803        dest = src1 >> -tmp; \
 804    } else { \
 805        dest = src1 << tmp; \
 806        if ((dest >> tmp) != src1) { \
 807            SET_QC(); \
 808            dest = ~0; \
 809        } \
 810    }} while (0)
 811NEON_VOP_ENV(qshl_u8, neon_u8, 4)
 812NEON_VOP_ENV(qshl_u16, neon_u16, 2)
 813NEON_VOP_ENV(qshl_u32, neon_u32, 1)
 814#undef NEON_FN
 815
 816uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
 817{
 818    int8_t shift = (int8_t)shiftop;
 819    if (shift >= 64) {
 820        if (val) {
 821            val = ~(uint64_t)0;
 822            SET_QC();
 823        }
 824    } else if (shift <= -64) {
 825        val = 0;
 826    } else if (shift < 0) {
 827        val >>= -shift;
 828    } else {
 829        uint64_t tmp = val;
 830        val <<= shift;
 831        if ((val >> shift) != tmp) {
 832            SET_QC();
 833            val = ~(uint64_t)0;
 834        }
 835    }
 836    return val;
 837}
 838
 839#define NEON_FN(dest, src1, src2) do { \
 840    int8_t tmp; \
 841    tmp = (int8_t)src2; \
 842    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
 843        if (src1) { \
 844            SET_QC(); \
 845            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
 846            if (src1 > 0) { \
 847                dest--; \
 848            } \
 849        } else { \
 850            dest = src1; \
 851        } \
 852    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
 853        dest = src1 >> 31; \
 854    } else if (tmp < 0) { \
 855        dest = src1 >> -tmp; \
 856    } else { \
 857        dest = src1 << tmp; \
 858        if ((dest >> tmp) != src1) { \
 859            SET_QC(); \
 860            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
 861            if (src1 > 0) { \
 862                dest--; \
 863            } \
 864        } \
 865    }} while (0)
 866NEON_VOP_ENV(qshl_s8, neon_s8, 4)
 867NEON_VOP_ENV(qshl_s16, neon_s16, 2)
 868NEON_VOP_ENV(qshl_s32, neon_s32, 1)
 869#undef NEON_FN
 870
 871uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
 872{
 873    int8_t shift = (uint8_t)shiftop;
 874    int64_t val = valop;
 875    if (shift >= 64) {
 876        if (val) {
 877            SET_QC();
 878            val = (val >> 63) ^ ~SIGNBIT64;
 879        }
 880    } else if (shift <= -64) {
 881        val >>= 63;
 882    } else if (shift < 0) {
 883        val >>= -shift;
 884    } else {
 885        int64_t tmp = val;
 886        val <<= shift;
 887        if ((val >> shift) != tmp) {
 888            SET_QC();
 889            val = (tmp >> 63) ^ ~SIGNBIT64;
 890        }
 891    }
 892    return val;
 893}
 894
 895#define NEON_FN(dest, src1, src2) do { \
 896    if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
 897        SET_QC(); \
 898        dest = 0; \
 899    } else { \
 900        int8_t tmp; \
 901        tmp = (int8_t)src2; \
 902        if (tmp >= (ssize_t)sizeof(src1) * 8) { \
 903            if (src1) { \
 904                SET_QC(); \
 905                dest = ~0; \
 906            } else { \
 907                dest = 0; \
 908            } \
 909        } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
 910            dest = 0; \
 911        } else if (tmp < 0) { \
 912            dest = src1 >> -tmp; \
 913        } else { \
 914            dest = src1 << tmp; \
 915            if ((dest >> tmp) != src1) { \
 916                SET_QC(); \
 917                dest = ~0; \
 918            } \
 919        } \
 920    }} while (0)
 921NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
 922NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
 923#undef NEON_FN
 924
 925uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
 926{
 927    if ((int32_t)valop < 0) {
 928        SET_QC();
 929        return 0;
 930    }
 931    return helper_neon_qshl_u32(env, valop, shiftop);
 932}
 933
 934uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
 935{
 936    if ((int64_t)valop < 0) {
 937        SET_QC();
 938        return 0;
 939    }
 940    return helper_neon_qshl_u64(env, valop, shiftop);
 941}
 942
 943#define NEON_FN(dest, src1, src2) do { \
 944    int8_t tmp; \
 945    tmp = (int8_t)src2; \
 946    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
 947        if (src1) { \
 948            SET_QC(); \
 949            dest = ~0; \
 950        } else { \
 951            dest = 0; \
 952        } \
 953    } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
 954        dest = 0; \
 955    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
 956        dest = src1 >> (sizeof(src1) * 8 - 1); \
 957    } else if (tmp < 0) { \
 958        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
 959    } else { \
 960        dest = src1 << tmp; \
 961        if ((dest >> tmp) != src1) { \
 962            SET_QC(); \
 963            dest = ~0; \
 964        } \
 965    }} while (0)
 966NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
 967NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
 968#undef NEON_FN
 969
 970/* The addition of the rounding constant may overflow, so we use an
 971 * intermediate 64 bit accumulator.  */
 972uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
 973{
 974    uint32_t dest;
 975    int8_t shift = (int8_t)shiftop;
 976    if (shift >= 32) {
 977        if (val) {
 978            SET_QC();
 979            dest = ~0;
 980        } else {
 981            dest = 0;
 982        }
 983    } else if (shift < -32) {
 984        dest = 0;
 985    } else if (shift == -32) {
 986        dest = val >> 31;
 987    } else if (shift < 0) {
 988        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
 989        dest = big_dest >> -shift;
 990    } else {
 991        dest = val << shift;
 992        if ((dest >> shift) != val) {
 993            SET_QC();
 994            dest = ~0;
 995        }
 996    }
 997    return dest;
 998}
 999
1000/* Handling addition overflow with 64 bit input values is more
1001 * tricky than with 32 bit values.  */
1002uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
1003{
1004    int8_t shift = (int8_t)shiftop;
1005    if (shift >= 64) {
1006        if (val) {
1007            SET_QC();
1008            val = ~0;
1009        }
1010    } else if (shift < -64) {
1011        val = 0;
1012    } else if (shift == -64) {
1013        val >>= 63;
1014    } else if (shift < 0) {
1015        val >>= (-shift - 1);
1016        if (val == UINT64_MAX) {
1017            /* In this case, it means that the rounding constant is 1,
1018             * and the addition would overflow. Return the actual
1019             * result directly.  */
1020            val = 0x8000000000000000ULL;
1021        } else {
1022            val++;
1023            val >>= 1;
1024        }
1025    } else { \
1026        uint64_t tmp = val;
1027        val <<= shift;
1028        if ((val >> shift) != tmp) {
1029            SET_QC();
1030            val = ~0;
1031        }
1032    }
1033    return val;
1034}
1035
1036#define NEON_FN(dest, src1, src2) do { \
1037    int8_t tmp; \
1038    tmp = (int8_t)src2; \
1039    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
1040        if (src1) { \
1041            SET_QC(); \
1042            dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
1043            if (src1 > 0) { \
1044                dest--; \
1045            } \
1046        } else { \
1047            dest = 0; \
1048        } \
1049    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
1050        dest = 0; \
1051    } else if (tmp < 0) { \
1052        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1053    } else { \
1054        dest = src1 << tmp; \
1055        if ((dest >> tmp) != src1) { \
1056            SET_QC(); \
1057            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1058            if (src1 > 0) { \
1059                dest--; \
1060            } \
1061        } \
1062    }} while (0)
1063NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1064NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1065#undef NEON_FN
1066
1067/* The addition of the rounding constant may overflow, so we use an
1068 * intermediate 64 bit accumulator.  */
1069uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1070{
1071    int32_t dest;
1072    int32_t val = (int32_t)valop;
1073    int8_t shift = (int8_t)shiftop;
1074    if (shift >= 32) {
1075        if (val) {
1076            SET_QC();
1077            dest = (val >> 31) ^ ~SIGNBIT;
1078        } else {
1079            dest = 0;
1080        }
1081    } else if (shift <= -32) {
1082        dest = 0;
1083    } else if (shift < 0) {
1084        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1085        dest = big_dest >> -shift;
1086    } else {
1087        dest = val << shift;
1088        if ((dest >> shift) != val) {
1089            SET_QC();
1090            dest = (val >> 31) ^ ~SIGNBIT;
1091        }
1092    }
1093    return dest;
1094}
1095
1096/* Handling addition overflow with 64 bit input values is more
1097 * tricky than with 32 bit values.  */
1098uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1099{
1100    int8_t shift = (uint8_t)shiftop;
1101    int64_t val = valop;
1102
1103    if (shift >= 64) {
1104        if (val) {
1105            SET_QC();
1106            val = (val >> 63) ^ ~SIGNBIT64;
1107        }
1108    } else if (shift <= -64) {
1109        val = 0;
1110    } else if (shift < 0) {
1111        val >>= (-shift - 1);
1112        if (val == INT64_MAX) {
1113            /* In this case, it means that the rounding constant is 1,
1114             * and the addition would overflow. Return the actual
1115             * result directly.  */
1116            val = 0x4000000000000000ULL;
1117        } else {
1118            val++;
1119            val >>= 1;
1120        }
1121    } else {
1122        int64_t tmp = val;
1123        val <<= shift;
1124        if ((val >> shift) != tmp) {
1125            SET_QC();
1126            val = (tmp >> 63) ^ ~SIGNBIT64;
1127        }
1128    }
1129    return val;
1130}
1131
1132uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1133{
1134    uint32_t mask;
1135    mask = (a ^ b) & 0x80808080u;
1136    a &= ~0x80808080u;
1137    b &= ~0x80808080u;
1138    return (a + b) ^ mask;
1139}
1140
1141uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1142{
1143    uint32_t mask;
1144    mask = (a ^ b) & 0x80008000u;
1145    a &= ~0x80008000u;
1146    b &= ~0x80008000u;
1147    return (a + b) ^ mask;
1148}
1149
1150#define NEON_FN(dest, src1, src2) dest = src1 + src2
1151NEON_POP(padd_u8, neon_u8, 4)
1152NEON_POP(padd_u16, neon_u16, 2)
1153#undef NEON_FN
1154
1155#define NEON_FN(dest, src1, src2) dest = src1 - src2
1156NEON_VOP(sub_u8, neon_u8, 4)
1157NEON_VOP(sub_u16, neon_u16, 2)
1158#undef NEON_FN
1159
1160#define NEON_FN(dest, src1, src2) dest = src1 * src2
1161NEON_VOP(mul_u8, neon_u8, 4)
1162NEON_VOP(mul_u16, neon_u16, 2)
1163#undef NEON_FN
1164
1165/* Polynomial multiplication is like integer multiplication except the
1166   partial products are XORed, not added.  */
1167uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1168{
1169    uint32_t mask;
1170    uint32_t result;
1171    result = 0;
1172    while (op1) {
1173        mask = 0;
1174        if (op1 & 1)
1175            mask |= 0xff;
1176        if (op1 & (1 << 8))
1177            mask |= (0xff << 8);
1178        if (op1 & (1 << 16))
1179            mask |= (0xff << 16);
1180        if (op1 & (1 << 24))
1181            mask |= (0xff << 24);
1182        result ^= op2 & mask;
1183        op1 = (op1 >> 1) & 0x7f7f7f7f;
1184        op2 = (op2 << 1) & 0xfefefefe;
1185    }
1186    return result;
1187}
1188
1189uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1190{
1191    uint64_t result = 0;
1192    uint64_t mask;
1193    uint64_t op2ex = op2;
1194    op2ex = (op2ex & 0xff) |
1195        ((op2ex & 0xff00) << 8) |
1196        ((op2ex & 0xff0000) << 16) |
1197        ((op2ex & 0xff000000) << 24);
1198    while (op1) {
1199        mask = 0;
1200        if (op1 & 1) {
1201            mask |= 0xffff;
1202        }
1203        if (op1 & (1 << 8)) {
1204            mask |= (0xffffU << 16);
1205        }
1206        if (op1 & (1 << 16)) {
1207            mask |= (0xffffULL << 32);
1208        }
1209        if (op1 & (1 << 24)) {
1210            mask |= (0xffffULL << 48);
1211        }
1212        result ^= op2ex & mask;
1213        op1 = (op1 >> 1) & 0x7f7f7f7f;
1214        op2ex <<= 1;
1215    }
1216    return result;
1217}
1218
1219#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1220NEON_VOP(tst_u8, neon_u8, 4)
1221NEON_VOP(tst_u16, neon_u16, 2)
1222NEON_VOP(tst_u32, neon_u32, 1)
1223#undef NEON_FN
1224
1225#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1226NEON_VOP(ceq_u8, neon_u8, 4)
1227NEON_VOP(ceq_u16, neon_u16, 2)
1228NEON_VOP(ceq_u32, neon_u32, 1)
1229#undef NEON_FN
1230
1231/* Count Leading Sign/Zero Bits.  */
1232static inline int do_clz8(uint8_t x)
1233{
1234    int n;
1235    for (n = 8; x; n--)
1236        x >>= 1;
1237    return n;
1238}
1239
1240static inline int do_clz16(uint16_t x)
1241{
1242    int n;
1243    for (n = 16; x; n--)
1244        x >>= 1;
1245    return n;
1246}
1247
1248#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1249NEON_VOP1(clz_u8, neon_u8, 4)
1250#undef NEON_FN
1251
1252#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1253NEON_VOP1(clz_u16, neon_u16, 2)
1254#undef NEON_FN
1255
1256#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1257NEON_VOP1(cls_s8, neon_s8, 4)
1258#undef NEON_FN
1259
1260#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1261NEON_VOP1(cls_s16, neon_s16, 2)
1262#undef NEON_FN
1263
1264uint32_t HELPER(neon_cls_s32)(uint32_t x)
1265{
1266    int count;
1267    if ((int32_t)x < 0)
1268        x = ~x;
1269    for (count = 32; x; count--)
1270        x = x >> 1;
1271    return count - 1;
1272}
1273
1274/* Bit count.  */
1275uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1276{
1277    x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1278    x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1279    x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1280    return x;
1281}
1282
1283/* Reverse bits in each 8 bit word */
1284uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1285{
1286    x =  ((x & 0xf0f0f0f0) >> 4)
1287       | ((x & 0x0f0f0f0f) << 4);
1288    x =  ((x & 0x88888888) >> 3)
1289       | ((x & 0x44444444) >> 1)
1290       | ((x & 0x22222222) << 1)
1291       | ((x & 0x11111111) << 3);
1292    return x;
1293}
1294
1295#define NEON_QDMULH16(dest, src1, src2, round) do { \
1296    uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1297    if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1298        SET_QC(); \
1299        tmp = (tmp >> 31) ^ ~SIGNBIT; \
1300    } else { \
1301        tmp <<= 1; \
1302    } \
1303    if (round) { \
1304        int32_t old = tmp; \
1305        tmp += 1 << 15; \
1306        if ((int32_t)tmp < old) { \
1307            SET_QC(); \
1308            tmp = SIGNBIT - 1; \
1309        } \
1310    } \
1311    dest = tmp >> 16; \
1312    } while(0)
1313#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1314NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1315#undef NEON_FN
1316#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1317NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1318#undef NEON_FN
1319#undef NEON_QDMULH16
1320
1321#define NEON_QDMULH32(dest, src1, src2, round) do { \
1322    uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1323    if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1324        SET_QC(); \
1325        tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1326    } else { \
1327        tmp <<= 1; \
1328    } \
1329    if (round) { \
1330        int64_t old = tmp; \
1331        tmp += (int64_t)1 << 31; \
1332        if ((int64_t)tmp < old) { \
1333            SET_QC(); \
1334            tmp = SIGNBIT64 - 1; \
1335        } \
1336    } \
1337    dest = tmp >> 32; \
1338    } while(0)
1339#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1340NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1341#undef NEON_FN
1342#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1343NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1344#undef NEON_FN
1345#undef NEON_QDMULH32
1346
1347uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1348{
1349    return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1350           | ((x >> 24) & 0xff000000u);
1351}
1352
1353uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1354{
1355    return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1356}
1357
1358uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1359{
1360    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1361            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1362}
1363
1364uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1365{
1366    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1367}
1368
1369uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1370{
1371    x &= 0xff80ff80ff80ff80ull;
1372    x += 0x0080008000800080ull;
1373    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1374            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1375}
1376
1377uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1378{
1379    x &= 0xffff8000ffff8000ull;
1380    x += 0x0000800000008000ull;
1381    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1382}
1383
1384uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1385{
1386    uint16_t s;
1387    uint8_t d;
1388    uint32_t res = 0;
1389#define SAT8(n) \
1390    s = x >> n; \
1391    if (s & 0x8000) { \
1392        SET_QC(); \
1393    } else { \
1394        if (s > 0xff) { \
1395            d = 0xff; \
1396            SET_QC(); \
1397        } else  { \
1398            d = s; \
1399        } \
1400        res |= (uint32_t)d << (n / 2); \
1401    }
1402
1403    SAT8(0);
1404    SAT8(16);
1405    SAT8(32);
1406    SAT8(48);
1407#undef SAT8
1408    return res;
1409}
1410
1411uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1412{
1413    uint16_t s;
1414    uint8_t d;
1415    uint32_t res = 0;
1416#define SAT8(n) \
1417    s = x >> n; \
1418    if (s > 0xff) { \
1419        d = 0xff; \
1420        SET_QC(); \
1421    } else  { \
1422        d = s; \
1423    } \
1424    res |= (uint32_t)d << (n / 2);
1425
1426    SAT8(0);
1427    SAT8(16);
1428    SAT8(32);
1429    SAT8(48);
1430#undef SAT8
1431    return res;
1432}
1433
1434uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1435{
1436    int16_t s;
1437    uint8_t d;
1438    uint32_t res = 0;
1439#define SAT8(n) \
1440    s = x >> n; \
1441    if (s != (int8_t)s) { \
1442        d = (s >> 15) ^ 0x7f; \
1443        SET_QC(); \
1444    } else  { \
1445        d = s; \
1446    } \
1447    res |= (uint32_t)d << (n / 2);
1448
1449    SAT8(0);
1450    SAT8(16);
1451    SAT8(32);
1452    SAT8(48);
1453#undef SAT8
1454    return res;
1455}
1456
1457uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1458{
1459    uint32_t high;
1460    uint32_t low;
1461    low = x;
1462    if (low & 0x80000000) {
1463        low = 0;
1464        SET_QC();
1465    } else if (low > 0xffff) {
1466        low = 0xffff;
1467        SET_QC();
1468    }
1469    high = x >> 32;
1470    if (high & 0x80000000) {
1471        high = 0;
1472        SET_QC();
1473    } else if (high > 0xffff) {
1474        high = 0xffff;
1475        SET_QC();
1476    }
1477    return low | (high << 16);
1478}
1479
1480uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1481{
1482    uint32_t high;
1483    uint32_t low;
1484    low = x;
1485    if (low > 0xffff) {
1486        low = 0xffff;
1487        SET_QC();
1488    }
1489    high = x >> 32;
1490    if (high > 0xffff) {
1491        high = 0xffff;
1492        SET_QC();
1493    }
1494    return low | (high << 16);
1495}
1496
1497uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1498{
1499    int32_t low;
1500    int32_t high;
1501    low = x;
1502    if (low != (int16_t)low) {
1503        low = (low >> 31) ^ 0x7fff;
1504        SET_QC();
1505    }
1506    high = x >> 32;
1507    if (high != (int16_t)high) {
1508        high = (high >> 31) ^ 0x7fff;
1509        SET_QC();
1510    }
1511    return (uint16_t)low | (high << 16);
1512}
1513
1514uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1515{
1516    if (x & 0x8000000000000000ull) {
1517        SET_QC();
1518        return 0;
1519    }
1520    if (x > 0xffffffffu) {
1521        SET_QC();
1522        return 0xffffffffu;
1523    }
1524    return x;
1525}
1526
1527uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1528{
1529    if (x > 0xffffffffu) {
1530        SET_QC();
1531        return 0xffffffffu;
1532    }
1533    return x;
1534}
1535
1536uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1537{
1538    if ((int64_t)x != (int32_t)x) {
1539        SET_QC();
1540        return ((int64_t)x >> 63) ^ 0x7fffffff;
1541    }
1542    return x;
1543}
1544
1545uint64_t HELPER(neon_widen_u8)(uint32_t x)
1546{
1547    uint64_t tmp;
1548    uint64_t ret;
1549    ret = (uint8_t)x;
1550    tmp = (uint8_t)(x >> 8);
1551    ret |= tmp << 16;
1552    tmp = (uint8_t)(x >> 16);
1553    ret |= tmp << 32;
1554    tmp = (uint8_t)(x >> 24);
1555    ret |= tmp << 48;
1556    return ret;
1557}
1558
1559uint64_t HELPER(neon_widen_s8)(uint32_t x)
1560{
1561    uint64_t tmp;
1562    uint64_t ret;
1563    ret = (uint16_t)(int8_t)x;
1564    tmp = (uint16_t)(int8_t)(x >> 8);
1565    ret |= tmp << 16;
1566    tmp = (uint16_t)(int8_t)(x >> 16);
1567    ret |= tmp << 32;
1568    tmp = (uint16_t)(int8_t)(x >> 24);
1569    ret |= tmp << 48;
1570    return ret;
1571}
1572
1573uint64_t HELPER(neon_widen_u16)(uint32_t x)
1574{
1575    uint64_t high = (uint16_t)(x >> 16);
1576    return ((uint16_t)x) | (high << 32);
1577}
1578
1579uint64_t HELPER(neon_widen_s16)(uint32_t x)
1580{
1581    uint64_t high = (int16_t)(x >> 16);
1582    return ((uint32_t)(int16_t)x) | (high << 32);
1583}
1584
1585uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1586{
1587    uint64_t mask;
1588    mask = (a ^ b) & 0x8000800080008000ull;
1589    a &= ~0x8000800080008000ull;
1590    b &= ~0x8000800080008000ull;
1591    return (a + b) ^ mask;
1592}
1593
1594uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1595{
1596    uint64_t mask;
1597    mask = (a ^ b) & 0x8000000080000000ull;
1598    a &= ~0x8000000080000000ull;
1599    b &= ~0x8000000080000000ull;
1600    return (a + b) ^ mask;
1601}
1602
1603uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1604{
1605    uint64_t tmp;
1606    uint64_t tmp2;
1607
1608    tmp = a & 0x0000ffff0000ffffull;
1609    tmp += (a >> 16) & 0x0000ffff0000ffffull;
1610    tmp2 = b & 0xffff0000ffff0000ull;
1611    tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1612    return    ( tmp         & 0xffff)
1613            | ((tmp  >> 16) & 0xffff0000ull)
1614            | ((tmp2 << 16) & 0xffff00000000ull)
1615            | ( tmp2        & 0xffff000000000000ull);
1616}
1617
1618uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1619{
1620    uint32_t low = a + (a >> 32);
1621    uint32_t high = b + (b >> 32);
1622    return low + ((uint64_t)high << 32);
1623}
1624
1625uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1626{
1627    uint64_t mask;
1628    mask = (a ^ ~b) & 0x8000800080008000ull;
1629    a |= 0x8000800080008000ull;
1630    b &= ~0x8000800080008000ull;
1631    return (a - b) ^ mask;
1632}
1633
1634uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1635{
1636    uint64_t mask;
1637    mask = (a ^ ~b) & 0x8000000080000000ull;
1638    a |= 0x8000000080000000ull;
1639    b &= ~0x8000000080000000ull;
1640    return (a - b) ^ mask;
1641}
1642
1643uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1644{
1645    uint32_t x, y;
1646    uint32_t low, high;
1647
1648    x = a;
1649    y = b;
1650    low = x + y;
1651    if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1652        SET_QC();
1653        low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1654    }
1655    x = a >> 32;
1656    y = b >> 32;
1657    high = x + y;
1658    if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1659        SET_QC();
1660        high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1661    }
1662    return low | ((uint64_t)high << 32);
1663}
1664
1665uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1666{
1667    uint64_t result;
1668
1669    result = a + b;
1670    if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1671        SET_QC();
1672        result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1673    }
1674    return result;
1675}
1676
1677/* We have to do the arithmetic in a larger type than
1678 * the input type, because for example with a signed 32 bit
1679 * op the absolute difference can overflow a signed 32 bit value.
1680 */
1681#define DO_ABD(dest, x, y, intype, arithtype) do {            \
1682    arithtype tmp_x = (intype)(x);                            \
1683    arithtype tmp_y = (intype)(y);                            \
1684    dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1685    } while(0)
1686
1687uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1688{
1689    uint64_t tmp;
1690    uint64_t result;
1691    DO_ABD(result, a, b, uint8_t, uint32_t);
1692    DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1693    result |= tmp << 16;
1694    DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1695    result |= tmp << 32;
1696    DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1697    result |= tmp << 48;
1698    return result;
1699}
1700
1701uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1702{
1703    uint64_t tmp;
1704    uint64_t result;
1705    DO_ABD(result, a, b, int8_t, int32_t);
1706    DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1707    result |= tmp << 16;
1708    DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1709    result |= tmp << 32;
1710    DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1711    result |= tmp << 48;
1712    return result;
1713}
1714
1715uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1716{
1717    uint64_t tmp;
1718    uint64_t result;
1719    DO_ABD(result, a, b, uint16_t, uint32_t);
1720    DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1721    return result | (tmp << 32);
1722}
1723
1724uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1725{
1726    uint64_t tmp;
1727    uint64_t result;
1728    DO_ABD(result, a, b, int16_t, int32_t);
1729    DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1730    return result | (tmp << 32);
1731}
1732
1733uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1734{
1735    uint64_t result;
1736    DO_ABD(result, a, b, uint32_t, uint64_t);
1737    return result;
1738}
1739
1740uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1741{
1742    uint64_t result;
1743    DO_ABD(result, a, b, int32_t, int64_t);
1744    return result;
1745}
1746#undef DO_ABD
1747
1748/* Widening multiply. Named type is the source type.  */
1749#define DO_MULL(dest, x, y, type1, type2) do { \
1750    type1 tmp_x = x; \
1751    type1 tmp_y = y; \
1752    dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1753    } while(0)
1754
1755uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1756{
1757    uint64_t tmp;
1758    uint64_t result;
1759
1760    DO_MULL(result, a, b, uint8_t, uint16_t);
1761    DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1762    result |= tmp << 16;
1763    DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1764    result |= tmp << 32;
1765    DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1766    result |= tmp << 48;
1767    return result;
1768}
1769
1770uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1771{
1772    uint64_t tmp;
1773    uint64_t result;
1774
1775    DO_MULL(result, a, b, int8_t, uint16_t);
1776    DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1777    result |= tmp << 16;
1778    DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1779    result |= tmp << 32;
1780    DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1781    result |= tmp << 48;
1782    return result;
1783}
1784
1785uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1786{
1787    uint64_t tmp;
1788    uint64_t result;
1789
1790    DO_MULL(result, a, b, uint16_t, uint32_t);
1791    DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1792    return result | (tmp << 32);
1793}
1794
1795uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1796{
1797    uint64_t tmp;
1798    uint64_t result;
1799
1800    DO_MULL(result, a, b, int16_t, uint32_t);
1801    DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1802    return result | (tmp << 32);
1803}
1804
1805uint64_t HELPER(neon_negl_u16)(uint64_t x)
1806{
1807    uint16_t tmp;
1808    uint64_t result;
1809    result = (uint16_t)-x;
1810    tmp = -(x >> 16);
1811    result |= (uint64_t)tmp << 16;
1812    tmp = -(x >> 32);
1813    result |= (uint64_t)tmp << 32;
1814    tmp = -(x >> 48);
1815    result |= (uint64_t)tmp << 48;
1816    return result;
1817}
1818
1819uint64_t HELPER(neon_negl_u32)(uint64_t x)
1820{
1821    uint32_t low = -x;
1822    uint32_t high = -(x >> 32);
1823    return low | ((uint64_t)high << 32);
1824}
1825
1826/* Saturating sign manipulation.  */
1827/* ??? Make these use NEON_VOP1 */
1828#define DO_QABS8(x) do { \
1829    if (x == (int8_t)0x80) { \
1830        x = 0x7f; \
1831        SET_QC(); \
1832    } else if (x < 0) { \
1833        x = -x; \
1834    }} while (0)
1835uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1836{
1837    neon_s8 vec;
1838    NEON_UNPACK(neon_s8, vec, x);
1839    DO_QABS8(vec.v1);
1840    DO_QABS8(vec.v2);
1841    DO_QABS8(vec.v3);
1842    DO_QABS8(vec.v4);
1843    NEON_PACK(neon_s8, x, vec);
1844    return x;
1845}
1846#undef DO_QABS8
1847
1848#define DO_QNEG8(x) do { \
1849    if (x == (int8_t)0x80) { \
1850        x = 0x7f; \
1851        SET_QC(); \
1852    } else { \
1853        x = -x; \
1854    }} while (0)
1855uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1856{
1857    neon_s8 vec;
1858    NEON_UNPACK(neon_s8, vec, x);
1859    DO_QNEG8(vec.v1);
1860    DO_QNEG8(vec.v2);
1861    DO_QNEG8(vec.v3);
1862    DO_QNEG8(vec.v4);
1863    NEON_PACK(neon_s8, x, vec);
1864    return x;
1865}
1866#undef DO_QNEG8
1867
1868#define DO_QABS16(x) do { \
1869    if (x == (int16_t)0x8000) { \
1870        x = 0x7fff; \
1871        SET_QC(); \
1872    } else if (x < 0) { \
1873        x = -x; \
1874    }} while (0)
1875uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1876{
1877    neon_s16 vec;
1878    NEON_UNPACK(neon_s16, vec, x);
1879    DO_QABS16(vec.v1);
1880    DO_QABS16(vec.v2);
1881    NEON_PACK(neon_s16, x, vec);
1882    return x;
1883}
1884#undef DO_QABS16
1885
1886#define DO_QNEG16(x) do { \
1887    if (x == (int16_t)0x8000) { \
1888        x = 0x7fff; \
1889        SET_QC(); \
1890    } else { \
1891        x = -x; \
1892    }} while (0)
1893uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1894{
1895    neon_s16 vec;
1896    NEON_UNPACK(neon_s16, vec, x);
1897    DO_QNEG16(vec.v1);
1898    DO_QNEG16(vec.v2);
1899    NEON_PACK(neon_s16, x, vec);
1900    return x;
1901}
1902#undef DO_QNEG16
1903
1904uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1905{
1906    if (x == SIGNBIT) {
1907        SET_QC();
1908        x = ~SIGNBIT;
1909    } else if ((int32_t)x < 0) {
1910        x = -x;
1911    }
1912    return x;
1913}
1914
1915uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1916{
1917    if (x == SIGNBIT) {
1918        SET_QC();
1919        x = ~SIGNBIT;
1920    } else {
1921        x = -x;
1922    }
1923    return x;
1924}
1925
1926uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1927{
1928    if (x == SIGNBIT64) {
1929        SET_QC();
1930        x = ~SIGNBIT64;
1931    } else if ((int64_t)x < 0) {
1932        x = -x;
1933    }
1934    return x;
1935}
1936
1937uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1938{
1939    if (x == SIGNBIT64) {
1940        SET_QC();
1941        x = ~SIGNBIT64;
1942    } else {
1943        x = -x;
1944    }
1945    return x;
1946}
1947
1948/* NEON Float helpers.  */
1949uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1950{
1951    float_status *fpst = fpstp;
1952    float32 f0 = make_float32(a);
1953    float32 f1 = make_float32(b);
1954    return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1955}
1956
1957/* Floating point comparisons produce an integer result.
1958 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1959 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1960 */
1961uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1962{
1963    float_status *fpst = fpstp;
1964    return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1965}
1966
1967uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1968{
1969    float_status *fpst = fpstp;
1970    return -float32_le(make_float32(b), make_float32(a), fpst);
1971}
1972
1973uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1974{
1975    float_status *fpst = fpstp;
1976    return -float32_lt(make_float32(b), make_float32(a), fpst);
1977}
1978
1979uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1980{
1981    float_status *fpst = fpstp;
1982    float32 f0 = float32_abs(make_float32(a));
1983    float32 f1 = float32_abs(make_float32(b));
1984    return -float32_le(f1, f0, fpst);
1985}
1986
1987uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1988{
1989    float_status *fpst = fpstp;
1990    float32 f0 = float32_abs(make_float32(a));
1991    float32 f1 = float32_abs(make_float32(b));
1992    return -float32_lt(f1, f0, fpst);
1993}
1994
1995uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
1996{
1997    float_status *fpst = fpstp;
1998    float64 f0 = float64_abs(make_float64(a));
1999    float64 f1 = float64_abs(make_float64(b));
2000    return -float64_le(f1, f0, fpst);
2001}
2002
2003uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
2004{
2005    float_status *fpst = fpstp;
2006    float64 f0 = float64_abs(make_float64(a));
2007    float64 f1 = float64_abs(make_float64(b));
2008    return -float64_lt(f1, f0, fpst);
2009}
2010
2011#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
2012
2013void HELPER(neon_qunzip8)(void *vd, void *vm)
2014{
2015    uint64_t *rd = vd, *rm = vm;
2016    uint64_t zd0 = rd[0], zd1 = rd[1];
2017    uint64_t zm0 = rm[0], zm1 = rm[1];
2018
2019    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
2020        | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
2021        | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
2022        | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
2023    uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
2024        | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
2025        | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2026        | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
2027    uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
2028        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
2029        | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
2030        | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
2031    uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
2032        | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
2033        | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
2034        | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2035
2036    rm[0] = m0;
2037    rm[1] = m1;
2038    rd[0] = d0;
2039    rd[1] = d1;
2040}
2041
2042void HELPER(neon_qunzip16)(void *vd, void *vm)
2043{
2044    uint64_t *rd = vd, *rm = vm;
2045    uint64_t zd0 = rd[0], zd1 = rd[1];
2046    uint64_t zm0 = rm[0], zm1 = rm[1];
2047
2048    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
2049        | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
2050    uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
2051        | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
2052    uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
2053        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
2054    uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
2055        | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2056
2057    rm[0] = m0;
2058    rm[1] = m1;
2059    rd[0] = d0;
2060    rd[1] = d1;
2061}
2062
2063void HELPER(neon_qunzip32)(void *vd, void *vm)
2064{
2065    uint64_t *rd = vd, *rm = vm;
2066    uint64_t zd0 = rd[0], zd1 = rd[1];
2067    uint64_t zm0 = rm[0], zm1 = rm[1];
2068
2069    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
2070    uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2071    uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
2072    uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2073
2074    rm[0] = m0;
2075    rm[1] = m1;
2076    rd[0] = d0;
2077    rd[1] = d1;
2078}
2079
2080void HELPER(neon_unzip8)(void *vd, void *vm)
2081{
2082    uint64_t *rd = vd, *rm = vm;
2083    uint64_t zd = rd[0], zm = rm[0];
2084
2085    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
2086        | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
2087        | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2088        | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
2089    uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
2090        | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
2091        | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
2092        | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2093
2094    rm[0] = m0;
2095    rd[0] = d0;
2096}
2097
2098void HELPER(neon_unzip16)(void *vd, void *vm)
2099{
2100    uint64_t *rd = vd, *rm = vm;
2101    uint64_t zd = rd[0], zm = rm[0];
2102
2103    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
2104        | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
2105    uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
2106        | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2107
2108    rm[0] = m0;
2109    rd[0] = d0;
2110}
2111
2112void HELPER(neon_qzip8)(void *vd, void *vm)
2113{
2114    uint64_t *rd = vd, *rm = vm;
2115    uint64_t zd0 = rd[0], zd1 = rd[1];
2116    uint64_t zm0 = rm[0], zm1 = rm[1];
2117
2118    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2119        | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2120        | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2121        | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2122    uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2123        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2124        | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2125        | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2126    uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2127        | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2128        | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2129        | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2130    uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2131        | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2132        | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2133        | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2134
2135    rm[0] = m0;
2136    rm[1] = m1;
2137    rd[0] = d0;
2138    rd[1] = d1;
2139}
2140
2141void HELPER(neon_qzip16)(void *vd, void *vm)
2142{
2143    uint64_t *rd = vd, *rm = vm;
2144    uint64_t zd0 = rd[0], zd1 = rd[1];
2145    uint64_t zm0 = rm[0], zm1 = rm[1];
2146
2147    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2148        | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2149    uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2150        | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2151    uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2152        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2153    uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2154        | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2155
2156    rm[0] = m0;
2157    rm[1] = m1;
2158    rd[0] = d0;
2159    rd[1] = d1;
2160}
2161
2162void HELPER(neon_qzip32)(void *vd, void *vm)
2163{
2164    uint64_t *rd = vd, *rm = vm;
2165    uint64_t zd0 = rd[0], zd1 = rd[1];
2166    uint64_t zm0 = rm[0], zm1 = rm[1];
2167
2168    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2169    uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2170    uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2171    uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2172
2173    rm[0] = m0;
2174    rm[1] = m1;
2175    rd[0] = d0;
2176    rd[1] = d1;
2177}
2178
2179void HELPER(neon_zip8)(void *vd, void *vm)
2180{
2181    uint64_t *rd = vd, *rm = vm;
2182    uint64_t zd = rd[0], zm = rm[0];
2183
2184    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2185        | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2186        | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2187        | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2188    uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2189        | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2190        | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2191        | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2192
2193    rm[0] = m0;
2194    rd[0] = d0;
2195}
2196
2197void HELPER(neon_zip16)(void *vd, void *vm)
2198{
2199    uint64_t *rd = vd, *rm = vm;
2200    uint64_t zd = rd[0], zm = rm[0];
2201
2202    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2203        | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2204    uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2205        | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2206
2207    rm[0] = m0;
2208    rd[0] = d0;
2209}
2210
2211/* Helper function for 64 bit polynomial multiply case:
2212 * perform PolynomialMult(op1, op2) and return either the top or
2213 * bottom half of the 128 bit result.
2214 */
2215uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
2216{
2217    int bitnum;
2218    uint64_t res = 0;
2219
2220    for (bitnum = 0; bitnum < 64; bitnum++) {
2221        if (op1 & (1ULL << bitnum)) {
2222            res ^= op2 << bitnum;
2223        }
2224    }
2225    return res;
2226}
2227uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
2228{
2229    int bitnum;
2230    uint64_t res = 0;
2231
2232    /* bit 0 of op1 can't influence the high 64 bits at all */
2233    for (bitnum = 1; bitnum < 64; bitnum++) {
2234        if (op1 & (1ULL << bitnum)) {
2235            res ^= op2 >> (64 - bitnum);
2236        }
2237    }
2238    return res;
2239}
2240