qemu/target/hppa/cpu.h
<<
>>
Prefs
   1/*
   2 * PA-RISC emulation cpu definitions for qemu.
   3 *
   4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef HPPA_CPU_H
  21#define HPPA_CPU_H
  22
  23#include "cpu-qom.h"
  24#include "exec/cpu-defs.h"
  25
  26
  27/* PA-RISC 1.x processors have a strong memory model.  */
  28/* ??? While we do not yet implement PA-RISC 2.0, those processors have
  29   a weak memory model, but with TLB bits that force ordering on a per-page
  30   basis.  It's probably easier to fall back to a strong memory model.  */
  31#define TCG_GUEST_DEFAULT_MO        TCG_MO_ALL
  32
  33#define ALIGNED_ONLY
  34#define MMU_KERNEL_IDX   0
  35#define MMU_USER_IDX     3
  36#define MMU_PHYS_IDX     4
  37#define TARGET_INSN_START_EXTRA_WORDS 1
  38
  39/* Hardware exceptions, interupts, faults, and traps.  */
  40#define EXCP_HPMC                1  /* high priority machine check */
  41#define EXCP_POWER_FAIL          2
  42#define EXCP_RC                  3  /* recovery counter */
  43#define EXCP_EXT_INTERRUPT       4  /* external interrupt */
  44#define EXCP_LPMC                5  /* low priority machine check */
  45#define EXCP_ITLB_MISS           6  /* itlb miss / instruction page fault */
  46#define EXCP_IMP                 7  /* instruction memory protection trap */
  47#define EXCP_ILL                 8  /* illegal instruction trap */
  48#define EXCP_BREAK               9  /* break instruction */
  49#define EXCP_PRIV_OPR            10 /* privileged operation trap */
  50#define EXCP_PRIV_REG            11 /* privileged register trap */
  51#define EXCP_OVERFLOW            12 /* signed overflow trap */
  52#define EXCP_COND                13 /* trap-on-condition */
  53#define EXCP_ASSIST              14 /* assist exception trap */
  54#define EXCP_DTLB_MISS           15 /* dtlb miss / data page fault */
  55#define EXCP_NA_ITLB_MISS        16 /* non-access itlb miss */
  56#define EXCP_NA_DTLB_MISS        17 /* non-access dtlb miss */
  57#define EXCP_DMP                 18 /* data memory protection trap */
  58#define EXCP_DMB                 19 /* data memory break trap */
  59#define EXCP_TLB_DIRTY           20 /* tlb dirty bit trap */
  60#define EXCP_PAGE_REF            21 /* page reference trap */
  61#define EXCP_ASSIST_EMU          22 /* assist emulation trap */
  62#define EXCP_HPT                 23 /* high-privilege transfer trap */
  63#define EXCP_LPT                 24 /* low-privilege transfer trap */
  64#define EXCP_TB                  25 /* taken branch trap */
  65#define EXCP_DMAR                26 /* data memory access rights trap */
  66#define EXCP_DMPI                27 /* data memory protection id trap */
  67#define EXCP_UNALIGN             28 /* unaligned data reference trap */
  68#define EXCP_PER_INTERRUPT       29 /* performance monitor interrupt */
  69
  70/* Exceptions for linux-user emulation.  */
  71#define EXCP_SYSCALL             30
  72#define EXCP_SYSCALL_LWS         31
  73
  74/* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
  75#define PSW_I            0x00000001
  76#define PSW_D            0x00000002
  77#define PSW_P            0x00000004
  78#define PSW_Q            0x00000008
  79#define PSW_R            0x00000010
  80#define PSW_F            0x00000020
  81#define PSW_G            0x00000040 /* PA1.x only */
  82#define PSW_O            0x00000080 /* PA2.0 only */
  83#define PSW_CB           0x0000ff00
  84#define PSW_M            0x00010000
  85#define PSW_V            0x00020000
  86#define PSW_C            0x00040000
  87#define PSW_B            0x00080000
  88#define PSW_X            0x00100000
  89#define PSW_N            0x00200000
  90#define PSW_L            0x00400000
  91#define PSW_H            0x00800000
  92#define PSW_T            0x01000000
  93#define PSW_S            0x02000000
  94#define PSW_E            0x04000000
  95#ifdef TARGET_HPPA64
  96#define PSW_W            0x08000000 /* PA2.0 only */
  97#else
  98#define PSW_W            0
  99#endif
 100#define PSW_Z            0x40000000 /* PA1.x only */
 101#define PSW_Y            0x80000000 /* PA1.x only */
 102
 103#define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
 104               | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
 105
 106/* ssm/rsm instructions number PSW_W and PSW_E differently */
 107#define PSW_SM_I         PSW_I      /* Enable External Interrupts */
 108#define PSW_SM_D         PSW_D
 109#define PSW_SM_P         PSW_P
 110#define PSW_SM_Q         PSW_Q      /* Enable Interrupt State Collection */
 111#define PSW_SM_R         PSW_R      /* Enable Recover Counter Trap */
 112#ifdef TARGET_HPPA64
 113#define PSW_SM_E         0x100
 114#define PSW_SM_W         0x200      /* PA2.0 only : Enable Wide Mode */
 115#else
 116#define PSW_SM_E         0
 117#define PSW_SM_W         0
 118#endif
 119
 120#define CR_RC            0
 121#define CR_PID1          8
 122#define CR_PID2          9
 123#define CR_PID3          12
 124#define CR_PID4          13
 125#define CR_SCRCCR        10
 126#define CR_SAR           11
 127#define CR_IVA           14
 128#define CR_EIEM          15
 129#define CR_IT            16
 130#define CR_IIASQ         17
 131#define CR_IIAOQ         18
 132#define CR_IIR           19
 133#define CR_ISR           20
 134#define CR_IOR           21
 135#define CR_IPSW          22
 136#define CR_EIRR          23
 137
 138typedef struct CPUHPPAState CPUHPPAState;
 139
 140#if TARGET_REGISTER_BITS == 32
 141typedef uint32_t target_ureg;
 142typedef int32_t  target_sreg;
 143#define TREG_FMT_lx   "%08"PRIx32
 144#define TREG_FMT_ld   "%"PRId32
 145#else
 146typedef uint64_t target_ureg;
 147typedef int64_t  target_sreg;
 148#define TREG_FMT_lx   "%016"PRIx64
 149#define TREG_FMT_ld   "%"PRId64
 150#endif
 151
 152typedef struct {
 153    uint64_t va_b;
 154    uint64_t va_e;
 155    target_ureg pa;
 156    unsigned u : 1;
 157    unsigned t : 1;
 158    unsigned d : 1;
 159    unsigned b : 1;
 160    unsigned page_size : 4;
 161    unsigned ar_type : 3;
 162    unsigned ar_pl1 : 2;
 163    unsigned ar_pl2 : 2;
 164    unsigned entry_valid : 1;
 165    unsigned access_id : 16;
 166} hppa_tlb_entry;
 167
 168struct CPUHPPAState {
 169    target_ureg gr[32];
 170    uint64_t fr[32];
 171    uint64_t sr[8];          /* stored shifted into place for gva */
 172
 173    target_ureg psw;         /* All psw bits except the following:  */
 174    target_ureg psw_n;       /* boolean */
 175    target_sreg psw_v;       /* in most significant bit */
 176
 177    /* Splitting the carry-borrow field into the MSB and "the rest", allows
 178     * for "the rest" to be deleted when it is unused, but the MSB is in use.
 179     * In addition, it's easier to compute carry-in for bit B+1 than it is to
 180     * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
 181     * host has the appropriate add-with-carry insn to compute the msb).
 182     * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
 183     */
 184    target_ureg psw_cb;      /* in least significant bit of next nibble */
 185    target_ureg psw_cb_msb;  /* boolean */
 186
 187    target_ureg iaoq_f;      /* front */
 188    target_ureg iaoq_b;      /* back, aka next instruction */
 189    uint64_t iasq_f;
 190    uint64_t iasq_b;
 191
 192    uint32_t fr0_shadow;     /* flags, c, ca/cq, rm, d, enables */
 193    float_status fp_status;
 194
 195    target_ureg cr[32];      /* control registers */
 196    target_ureg cr_back[2];  /* back of cr17/cr18 */
 197    target_ureg shadow[7];   /* shadow registers */
 198
 199    /* ??? The number of entries isn't specified by the architecture.  */
 200    /* ??? Implement a unified itlb/dtlb for the moment.  */
 201    /* ??? We should use a more intelligent data structure.  */
 202    hppa_tlb_entry tlb[256];
 203    uint32_t tlb_last;
 204};
 205
 206/**
 207 * HPPACPU:
 208 * @env: #CPUHPPAState
 209 *
 210 * An HPPA CPU.
 211 */
 212struct HPPACPU {
 213    /*< private >*/
 214    CPUState parent_obj;
 215    /*< public >*/
 216
 217    CPUNegativeOffsetState neg;
 218    CPUHPPAState env;
 219    QEMUTimer *alarm_timer;
 220};
 221
 222
 223typedef CPUHPPAState CPUArchState;
 224typedef HPPACPU ArchCPU;
 225
 226#include "exec/cpu-all.h"
 227
 228static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
 229{
 230#ifdef CONFIG_USER_ONLY
 231    return MMU_USER_IDX;
 232#else
 233    if (env->psw & (ifetch ? PSW_C : PSW_D)) {
 234        return env->iaoq_f & 3;
 235    }
 236    return MMU_PHYS_IDX;  /* mmu disabled */
 237#endif
 238}
 239
 240void hppa_translate_init(void);
 241
 242#define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
 243
 244static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
 245                                             target_ureg off)
 246{
 247#ifdef CONFIG_USER_ONLY
 248    return off;
 249#else
 250    off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
 251    return spc | off;
 252#endif
 253}
 254
 255static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
 256                                         target_ureg off)
 257{
 258    return hppa_form_gva_psw(env->psw, spc, off);
 259}
 260
 261/* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
 262 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
 263 * same value.
 264 */
 265#define TB_FLAG_SR_SAME     PSW_I
 266#define TB_FLAG_PRIV_SHIFT  8
 267
 268static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, target_ulong *pc,
 269                                        target_ulong *cs_base,
 270                                        uint32_t *pflags)
 271{
 272    uint32_t flags = env->psw_n * PSW_N;
 273
 274    /* TB lookup assumes that PC contains the complete virtual address.
 275       If we leave space+offset separate, we'll get ITLB misses to an
 276       incomplete virtual address.  This also means that we must separate
 277       out current cpu priviledge from the low bits of IAOQ_F.  */
 278#ifdef CONFIG_USER_ONLY
 279    *pc = env->iaoq_f & -4;
 280    *cs_base = env->iaoq_b & -4;
 281#else
 282    /* ??? E, T, H, L, B, P bits need to be here, when implemented.  */
 283    flags |= env->psw & (PSW_W | PSW_C | PSW_D);
 284    flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
 285
 286    *pc = (env->psw & PSW_C
 287           ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
 288           : env->iaoq_f & -4);
 289    *cs_base = env->iasq_f;
 290
 291    /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
 292       low 32-bits of CS_BASE.  This will succeed for all direct branches,
 293       which is the primary case we care about -- using goto_tb within a page.
 294       Failure is indicated by a zero difference.  */
 295    if (env->iasq_f == env->iasq_b) {
 296        target_sreg diff = env->iaoq_b - env->iaoq_f;
 297        if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
 298            *cs_base |= (uint32_t)diff;
 299        }
 300    }
 301    if ((env->sr[4] == env->sr[5])
 302        & (env->sr[4] == env->sr[6])
 303        & (env->sr[4] == env->sr[7])) {
 304        flags |= TB_FLAG_SR_SAME;
 305    }
 306#endif
 307
 308    *pflags = flags;
 309}
 310
 311target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
 312void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
 313void cpu_hppa_loaded_fr0(CPUHPPAState *env);
 314
 315#ifdef CONFIG_USER_ONLY
 316static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
 317#else
 318void cpu_hppa_change_prot_id(CPUHPPAState *env);
 319#endif
 320
 321#define cpu_signal_handler cpu_hppa_signal_handler
 322
 323int cpu_hppa_signal_handler(int host_signum, void *pinfo, void *puc);
 324hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
 325int hppa_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 326int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 327void hppa_cpu_do_interrupt(CPUState *cpu);
 328bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
 329void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
 330bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 331                       MMUAccessType access_type, int mmu_idx,
 332                       bool probe, uintptr_t retaddr);
 333#ifndef CONFIG_USER_ONLY
 334int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
 335                              int type, hwaddr *pphys, int *pprot);
 336extern const MemoryRegionOps hppa_io_eir_ops;
 337extern const struct VMStateDescription vmstate_hppa_cpu;
 338void hppa_cpu_alarm_timer(void *);
 339int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
 340#endif
 341void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
 342
 343#endif /* HPPA_CPU_H */
 344