qemu/target/i386/hvf/x86hvf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2008 Fabrice Bellard
   3 * Copyright (C) 2016 Veertu Inc,
   4 * Copyright (C) 2017 Google Inc,
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21
  22#include "qemu-common.h"
  23#include "x86hvf.h"
  24#include "vmx.h"
  25#include "vmcs.h"
  26#include "cpu.h"
  27#include "x86_descr.h"
  28#include "x86_decode.h"
  29
  30#include "hw/i386/apic_internal.h"
  31
  32#include <Hypervisor/hv.h>
  33#include <Hypervisor/hv_vmx.h>
  34
  35void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
  36                     SegmentCache *qseg, bool is_tr)
  37{
  38    vmx_seg->sel = qseg->selector;
  39    vmx_seg->base = qseg->base;
  40    vmx_seg->limit = qseg->limit;
  41
  42    if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
  43        /* the TR register is usable after processor reset despite
  44         * having a null selector */
  45        vmx_seg->ar = 1 << 16;
  46        return;
  47    }
  48    vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
  49    vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
  50    vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
  51    vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
  52    vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
  53    vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
  54    vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
  55    vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
  56}
  57
  58void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
  59{
  60    qseg->limit = vmx_seg->limit;
  61    qseg->base = vmx_seg->base;
  62    qseg->selector = vmx_seg->sel;
  63    qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
  64                  (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
  65                  (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
  66                  (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
  67                  (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
  68                  (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
  69                  (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
  70                  (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
  71}
  72
  73void hvf_put_xsave(CPUState *cpu_state)
  74{
  75
  76    struct X86XSaveArea *xsave;
  77
  78    xsave = X86_CPU(cpu_state)->env.xsave_buf;
  79
  80    x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
  81
  82    if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
  83        abort();
  84    }
  85}
  86
  87void hvf_put_segments(CPUState *cpu_state)
  88{
  89    CPUX86State *env = &X86_CPU(cpu_state)->env;
  90    struct vmx_segment seg;
  91    
  92    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
  93    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
  94
  95    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
  96    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
  97
  98    /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
  99    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
 100    vmx_update_tpr(cpu_state);
 101    wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
 102
 103    macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
 104    macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
 105
 106    hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
 107    vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
 108    
 109    hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
 110    vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
 111
 112    hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
 113    vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
 114
 115    hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
 116    vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
 117
 118    hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
 119    vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
 120
 121    hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
 122    vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
 123
 124    hvf_set_segment(cpu_state, &seg, &env->tr, true);
 125    vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
 126
 127    hvf_set_segment(cpu_state, &seg, &env->ldt, false);
 128    vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
 129    
 130    hv_vcpu_flush(cpu_state->hvf_fd);
 131}
 132    
 133void hvf_put_msrs(CPUState *cpu_state)
 134{
 135    CPUX86State *env = &X86_CPU(cpu_state)->env;
 136
 137    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
 138                      env->sysenter_cs);
 139    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
 140                      env->sysenter_esp);
 141    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
 142                      env->sysenter_eip);
 143
 144    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
 145
 146#ifdef TARGET_X86_64
 147    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
 148    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
 149    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
 150    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
 151#endif
 152
 153    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
 154    hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
 155
 156    /* if (!osx_is_sierra())
 157         wvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET, env->tsc - rdtscp());*/
 158    hv_vm_sync_tsc(env->tsc);
 159}
 160
 161
 162void hvf_get_xsave(CPUState *cpu_state)
 163{
 164    struct X86XSaveArea *xsave;
 165
 166    xsave = X86_CPU(cpu_state)->env.xsave_buf;
 167
 168    if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
 169        abort();
 170    }
 171
 172    x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
 173}
 174
 175void hvf_get_segments(CPUState *cpu_state)
 176{
 177    CPUX86State *env = &X86_CPU(cpu_state)->env;
 178
 179    struct vmx_segment seg;
 180
 181    env->interrupt_injected = -1;
 182
 183    vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
 184    hvf_get_segment(&env->segs[R_CS], &seg);
 185    
 186    vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
 187    hvf_get_segment(&env->segs[R_DS], &seg);
 188
 189    vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
 190    hvf_get_segment(&env->segs[R_ES], &seg);
 191
 192    vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
 193    hvf_get_segment(&env->segs[R_FS], &seg);
 194
 195    vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
 196    hvf_get_segment(&env->segs[R_GS], &seg);
 197
 198    vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
 199    hvf_get_segment(&env->segs[R_SS], &seg);
 200
 201    vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
 202    hvf_get_segment(&env->tr, &seg);
 203
 204    vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
 205    hvf_get_segment(&env->ldt, &seg);
 206
 207    env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
 208    env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
 209    env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
 210    env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
 211
 212    env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
 213    env->cr[2] = 0;
 214    env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
 215    env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
 216    
 217    env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
 218}
 219
 220void hvf_get_msrs(CPUState *cpu_state)
 221{
 222    CPUX86State *env = &X86_CPU(cpu_state)->env;
 223    uint64_t tmp;
 224    
 225    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
 226    env->sysenter_cs = tmp;
 227    
 228    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
 229    env->sysenter_esp = tmp;
 230
 231    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
 232    env->sysenter_eip = tmp;
 233
 234    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
 235
 236#ifdef TARGET_X86_64
 237    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
 238    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
 239    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
 240    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
 241#endif
 242
 243    hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
 244    
 245    env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
 246}
 247
 248int hvf_put_registers(CPUState *cpu_state)
 249{
 250    X86CPU *x86cpu = X86_CPU(cpu_state);
 251    CPUX86State *env = &x86cpu->env;
 252
 253    wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
 254    wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
 255    wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
 256    wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
 257    wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
 258    wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
 259    wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
 260    wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
 261    wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
 262    wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
 263    wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
 264    wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
 265    wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
 266    wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
 267    wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
 268    wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
 269    wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
 270    wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
 271   
 272    wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
 273    
 274    hvf_put_xsave(cpu_state);
 275    
 276    hvf_put_segments(cpu_state);
 277    
 278    hvf_put_msrs(cpu_state);
 279    
 280    wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
 281    wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
 282    wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
 283    wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
 284    wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
 285    wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
 286    wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
 287    wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
 288    
 289    return 0;
 290}
 291
 292int hvf_get_registers(CPUState *cpu_state)
 293{
 294    X86CPU *x86cpu = X86_CPU(cpu_state);
 295    CPUX86State *env = &x86cpu->env;
 296
 297    env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
 298    env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
 299    env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
 300    env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
 301    env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
 302    env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
 303    env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
 304    env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
 305    env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
 306    env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
 307    env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
 308    env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
 309    env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
 310    env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
 311    env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
 312    env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
 313    
 314    env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
 315    env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
 316   
 317    hvf_get_xsave(cpu_state);
 318    env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
 319    
 320    hvf_get_segments(cpu_state);
 321    hvf_get_msrs(cpu_state);
 322    
 323    env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
 324    env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
 325    env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
 326    env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
 327    env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
 328    env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
 329    env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
 330    env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
 331    
 332    x86_update_hflags(env);
 333    return 0;
 334}
 335
 336static void vmx_set_int_window_exiting(CPUState *cpu)
 337{
 338     uint64_t val;
 339     val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
 340     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
 341             VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
 342}
 343
 344void vmx_clear_int_window_exiting(CPUState *cpu)
 345{
 346     uint64_t val;
 347     val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
 348     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
 349             ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
 350}
 351
 352#define NMI_VEC 2
 353
 354bool hvf_inject_interrupts(CPUState *cpu_state)
 355{
 356    X86CPU *x86cpu = X86_CPU(cpu_state);
 357    CPUX86State *env = &x86cpu->env;
 358
 359    uint8_t vector;
 360    uint64_t intr_type;
 361    bool have_event = true;
 362    if (env->interrupt_injected != -1) {
 363        vector = env->interrupt_injected;
 364        intr_type = VMCS_INTR_T_SWINTR;
 365    } else if (env->exception_nr != -1) {
 366        vector = env->exception_nr;
 367        if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
 368            intr_type = VMCS_INTR_T_SWEXCEPTION;
 369        } else {
 370            intr_type = VMCS_INTR_T_HWEXCEPTION;
 371        }
 372    } else if (env->nmi_injected) {
 373        vector = NMI_VEC;
 374        intr_type = VMCS_INTR_T_NMI;
 375    } else {
 376        have_event = false;
 377    }
 378
 379    uint64_t info = 0;
 380    if (have_event) {
 381        info = vector | intr_type | VMCS_INTR_VALID;
 382        uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
 383        if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
 384            vmx_clear_nmi_blocking(cpu_state);
 385        }
 386
 387        if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
 388            info &= ~(1 << 12); /* clear undefined bit */
 389            if (intr_type == VMCS_INTR_T_SWINTR ||
 390                intr_type == VMCS_INTR_T_SWEXCEPTION) {
 391                wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
 392            }
 393            
 394            if (env->has_error_code) {
 395                wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
 396                      env->error_code);
 397            }
 398            /*printf("reinject  %lx err %d\n", info, err);*/
 399            wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
 400        };
 401    }
 402
 403    if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
 404        if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
 405            cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
 406            info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | NMI_VEC;
 407            wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
 408        } else {
 409            vmx_set_nmi_window_exiting(cpu_state);
 410        }
 411    }
 412
 413    if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
 414        (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
 415        (EFLAGS(env) & IF_MASK) && !(info & VMCS_INTR_VALID)) {
 416        int line = cpu_get_pic_interrupt(&x86cpu->env);
 417        cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
 418        if (line >= 0) {
 419            wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
 420                  VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
 421        }
 422    }
 423    if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
 424        vmx_set_int_window_exiting(cpu_state);
 425    }
 426    return (cpu_state->interrupt_request
 427            & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
 428}
 429
 430int hvf_process_events(CPUState *cpu_state)
 431{
 432    X86CPU *cpu = X86_CPU(cpu_state);
 433    CPUX86State *env = &cpu->env;
 434
 435    EFLAGS(env) = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
 436
 437    if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
 438        hvf_cpu_synchronize_state(cpu_state);
 439        do_cpu_init(cpu);
 440    }
 441
 442    if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
 443        cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
 444        apic_poll_irq(cpu->apic_state);
 445    }
 446    if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
 447        (EFLAGS(env) & IF_MASK)) ||
 448        (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
 449        cpu_state->halted = 0;
 450    }
 451    if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
 452        hvf_cpu_synchronize_state(cpu_state);
 453        do_cpu_sipi(cpu);
 454    }
 455    if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
 456        cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
 457        hvf_cpu_synchronize_state(cpu_state);
 458        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
 459                                      env->tpr_access_type);
 460    }
 461    return cpu_state->halted;
 462}
 463