qemu/target/i386/monitor.c
<<
>>
Prefs
   1/*
   2 * QEMU monitor
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "cpu.h"
  27#include "monitor/monitor.h"
  28#include "monitor/hmp-target.h"
  29#include "monitor/hmp.h"
  30#include "qapi/qmp/qdict.h"
  31#include "hw/i386/pc.h"
  32#include "sysemu/kvm.h"
  33#include "sysemu/sev.h"
  34#include "qapi/error.h"
  35#include "sev_i386.h"
  36#include "qapi/qapi-commands-misc.h"
  37
  38/* Perform linear address sign extension */
  39static hwaddr addr_canonical(CPUArchState *env, hwaddr addr)
  40{
  41#ifdef TARGET_X86_64
  42    if (env->cr[4] & CR4_LA57_MASK) {
  43        if (addr & (1ULL << 56)) {
  44            addr |= (hwaddr)-(1LL << 57);
  45        }
  46    } else {
  47        if (addr & (1ULL << 47)) {
  48            addr |= (hwaddr)-(1LL << 48);
  49        }
  50    }
  51#endif
  52    return addr;
  53}
  54
  55static void print_pte(Monitor *mon, CPUArchState *env, hwaddr addr,
  56                      hwaddr pte, hwaddr mask)
  57{
  58    addr = addr_canonical(env, addr);
  59
  60    monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
  61                   " %c%c%c%c%c%c%c%c%c\n",
  62                   addr,
  63                   pte & mask,
  64                   pte & PG_NX_MASK ? 'X' : '-',
  65                   pte & PG_GLOBAL_MASK ? 'G' : '-',
  66                   pte & PG_PSE_MASK ? 'P' : '-',
  67                   pte & PG_DIRTY_MASK ? 'D' : '-',
  68                   pte & PG_ACCESSED_MASK ? 'A' : '-',
  69                   pte & PG_PCD_MASK ? 'C' : '-',
  70                   pte & PG_PWT_MASK ? 'T' : '-',
  71                   pte & PG_USER_MASK ? 'U' : '-',
  72                   pte & PG_RW_MASK ? 'W' : '-');
  73}
  74
  75static void tlb_info_32(Monitor *mon, CPUArchState *env)
  76{
  77    unsigned int l1, l2;
  78    uint32_t pgd, pde, pte;
  79
  80    pgd = env->cr[3] & ~0xfff;
  81    for(l1 = 0; l1 < 1024; l1++) {
  82        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
  83        pde = le32_to_cpu(pde);
  84        if (pde & PG_PRESENT_MASK) {
  85            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
  86                /* 4M pages */
  87                print_pte(mon, env, (l1 << 22), pde, ~((1 << 21) - 1));
  88            } else {
  89                for(l2 = 0; l2 < 1024; l2++) {
  90                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
  91                    pte = le32_to_cpu(pte);
  92                    if (pte & PG_PRESENT_MASK) {
  93                        print_pte(mon, env, (l1 << 22) + (l2 << 12),
  94                                  pte & ~PG_PSE_MASK,
  95                                  ~0xfff);
  96                    }
  97                }
  98            }
  99        }
 100    }
 101}
 102
 103static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
 104{
 105    unsigned int l1, l2, l3;
 106    uint64_t pdpe, pde, pte;
 107    uint64_t pdp_addr, pd_addr, pt_addr;
 108
 109    pdp_addr = env->cr[3] & ~0x1f;
 110    for (l1 = 0; l1 < 4; l1++) {
 111        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
 112        pdpe = le64_to_cpu(pdpe);
 113        if (pdpe & PG_PRESENT_MASK) {
 114            pd_addr = pdpe & 0x3fffffffff000ULL;
 115            for (l2 = 0; l2 < 512; l2++) {
 116                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
 117                pde = le64_to_cpu(pde);
 118                if (pde & PG_PRESENT_MASK) {
 119                    if (pde & PG_PSE_MASK) {
 120                        /* 2M pages with PAE, CR4.PSE is ignored */
 121                        print_pte(mon, env, (l1 << 30) + (l2 << 21), pde,
 122                                  ~((hwaddr)(1 << 20) - 1));
 123                    } else {
 124                        pt_addr = pde & 0x3fffffffff000ULL;
 125                        for (l3 = 0; l3 < 512; l3++) {
 126                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 127                            pte = le64_to_cpu(pte);
 128                            if (pte & PG_PRESENT_MASK) {
 129                                print_pte(mon, env, (l1 << 30) + (l2 << 21)
 130                                          + (l3 << 12),
 131                                          pte & ~PG_PSE_MASK,
 132                                          ~(hwaddr)0xfff);
 133                            }
 134                        }
 135                    }
 136                }
 137            }
 138        }
 139    }
 140}
 141
 142#ifdef TARGET_X86_64
 143static void tlb_info_la48(Monitor *mon, CPUArchState *env,
 144        uint64_t l0, uint64_t pml4_addr)
 145{
 146    uint64_t l1, l2, l3, l4;
 147    uint64_t pml4e, pdpe, pde, pte;
 148    uint64_t pdp_addr, pd_addr, pt_addr;
 149
 150    for (l1 = 0; l1 < 512; l1++) {
 151        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 152        pml4e = le64_to_cpu(pml4e);
 153        if (!(pml4e & PG_PRESENT_MASK)) {
 154            continue;
 155        }
 156
 157        pdp_addr = pml4e & 0x3fffffffff000ULL;
 158        for (l2 = 0; l2 < 512; l2++) {
 159            cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 160            pdpe = le64_to_cpu(pdpe);
 161            if (!(pdpe & PG_PRESENT_MASK)) {
 162                continue;
 163            }
 164
 165            if (pdpe & PG_PSE_MASK) {
 166                /* 1G pages, CR4.PSE is ignored */
 167                print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30),
 168                        pdpe, 0x3ffffc0000000ULL);
 169                continue;
 170            }
 171
 172            pd_addr = pdpe & 0x3fffffffff000ULL;
 173            for (l3 = 0; l3 < 512; l3++) {
 174                cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 175                pde = le64_to_cpu(pde);
 176                if (!(pde & PG_PRESENT_MASK)) {
 177                    continue;
 178                }
 179
 180                if (pde & PG_PSE_MASK) {
 181                    /* 2M pages, CR4.PSE is ignored */
 182                    print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) +
 183                            (l3 << 21), pde, 0x3ffffffe00000ULL);
 184                    continue;
 185                }
 186
 187                pt_addr = pde & 0x3fffffffff000ULL;
 188                for (l4 = 0; l4 < 512; l4++) {
 189                    cpu_physical_memory_read(pt_addr
 190                            + l4 * 8,
 191                            &pte, 8);
 192                    pte = le64_to_cpu(pte);
 193                    if (pte & PG_PRESENT_MASK) {
 194                        print_pte(mon, env, (l0 << 48) + (l1 << 39) +
 195                                (l2 << 30) + (l3 << 21) + (l4 << 12),
 196                                pte & ~PG_PSE_MASK, 0x3fffffffff000ULL);
 197                    }
 198                }
 199            }
 200        }
 201    }
 202}
 203
 204static void tlb_info_la57(Monitor *mon, CPUArchState *env)
 205{
 206    uint64_t l0;
 207    uint64_t pml5e;
 208    uint64_t pml5_addr;
 209
 210    pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
 211    for (l0 = 0; l0 < 512; l0++) {
 212        cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
 213        pml5e = le64_to_cpu(pml5e);
 214        if (pml5e & PG_PRESENT_MASK) {
 215            tlb_info_la48(mon, env, l0, pml5e & 0x3fffffffff000ULL);
 216        }
 217    }
 218}
 219#endif /* TARGET_X86_64 */
 220
 221void hmp_info_tlb(Monitor *mon, const QDict *qdict)
 222{
 223    CPUArchState *env;
 224
 225    env = mon_get_cpu_env();
 226    if (!env) {
 227        monitor_printf(mon, "No CPU available\n");
 228        return;
 229    }
 230
 231    if (!(env->cr[0] & CR0_PG_MASK)) {
 232        monitor_printf(mon, "PG disabled\n");
 233        return;
 234    }
 235    if (env->cr[4] & CR4_PAE_MASK) {
 236#ifdef TARGET_X86_64
 237        if (env->hflags & HF_LMA_MASK) {
 238            if (env->cr[4] & CR4_LA57_MASK) {
 239                tlb_info_la57(mon, env);
 240            } else {
 241                tlb_info_la48(mon, env, 0, env->cr[3] & 0x3fffffffff000ULL);
 242            }
 243        } else
 244#endif
 245        {
 246            tlb_info_pae32(mon, env);
 247        }
 248    } else {
 249        tlb_info_32(mon, env);
 250    }
 251}
 252
 253static void mem_print(Monitor *mon, CPUArchState *env,
 254                      hwaddr *pstart, int *plast_prot,
 255                      hwaddr end, int prot)
 256{
 257    int prot1;
 258    prot1 = *plast_prot;
 259    if (prot != prot1) {
 260        if (*pstart != -1) {
 261            monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
 262                           TARGET_FMT_plx " %c%c%c\n",
 263                           addr_canonical(env, *pstart),
 264                           addr_canonical(env, end),
 265                           addr_canonical(env, end - *pstart),
 266                           prot1 & PG_USER_MASK ? 'u' : '-',
 267                           'r',
 268                           prot1 & PG_RW_MASK ? 'w' : '-');
 269        }
 270        if (prot != 0)
 271            *pstart = end;
 272        else
 273            *pstart = -1;
 274        *plast_prot = prot;
 275    }
 276}
 277
 278static void mem_info_32(Monitor *mon, CPUArchState *env)
 279{
 280    unsigned int l1, l2;
 281    int prot, last_prot;
 282    uint32_t pgd, pde, pte;
 283    hwaddr start, end;
 284
 285    pgd = env->cr[3] & ~0xfff;
 286    last_prot = 0;
 287    start = -1;
 288    for(l1 = 0; l1 < 1024; l1++) {
 289        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
 290        pde = le32_to_cpu(pde);
 291        end = l1 << 22;
 292        if (pde & PG_PRESENT_MASK) {
 293            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
 294                prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 295                mem_print(mon, env, &start, &last_prot, end, prot);
 296            } else {
 297                for(l2 = 0; l2 < 1024; l2++) {
 298                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
 299                    pte = le32_to_cpu(pte);
 300                    end = (l1 << 22) + (l2 << 12);
 301                    if (pte & PG_PRESENT_MASK) {
 302                        prot = pte & pde &
 303                            (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 304                    } else {
 305                        prot = 0;
 306                    }
 307                    mem_print(mon, env, &start, &last_prot, end, prot);
 308                }
 309            }
 310        } else {
 311            prot = 0;
 312            mem_print(mon, env, &start, &last_prot, end, prot);
 313        }
 314    }
 315    /* Flush last range */
 316    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
 317}
 318
 319static void mem_info_pae32(Monitor *mon, CPUArchState *env)
 320{
 321    unsigned int l1, l2, l3;
 322    int prot, last_prot;
 323    uint64_t pdpe, pde, pte;
 324    uint64_t pdp_addr, pd_addr, pt_addr;
 325    hwaddr start, end;
 326
 327    pdp_addr = env->cr[3] & ~0x1f;
 328    last_prot = 0;
 329    start = -1;
 330    for (l1 = 0; l1 < 4; l1++) {
 331        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
 332        pdpe = le64_to_cpu(pdpe);
 333        end = l1 << 30;
 334        if (pdpe & PG_PRESENT_MASK) {
 335            pd_addr = pdpe & 0x3fffffffff000ULL;
 336            for (l2 = 0; l2 < 512; l2++) {
 337                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
 338                pde = le64_to_cpu(pde);
 339                end = (l1 << 30) + (l2 << 21);
 340                if (pde & PG_PRESENT_MASK) {
 341                    if (pde & PG_PSE_MASK) {
 342                        prot = pde & (PG_USER_MASK | PG_RW_MASK |
 343                                      PG_PRESENT_MASK);
 344                        mem_print(mon, env, &start, &last_prot, end, prot);
 345                    } else {
 346                        pt_addr = pde & 0x3fffffffff000ULL;
 347                        for (l3 = 0; l3 < 512; l3++) {
 348                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 349                            pte = le64_to_cpu(pte);
 350                            end = (l1 << 30) + (l2 << 21) + (l3 << 12);
 351                            if (pte & PG_PRESENT_MASK) {
 352                                prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
 353                                                    PG_PRESENT_MASK);
 354                            } else {
 355                                prot = 0;
 356                            }
 357                            mem_print(mon, env, &start, &last_prot, end, prot);
 358                        }
 359                    }
 360                } else {
 361                    prot = 0;
 362                    mem_print(mon, env, &start, &last_prot, end, prot);
 363                }
 364            }
 365        } else {
 366            prot = 0;
 367            mem_print(mon, env, &start, &last_prot, end, prot);
 368        }
 369    }
 370    /* Flush last range */
 371    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
 372}
 373
 374
 375#ifdef TARGET_X86_64
 376static void mem_info_la48(Monitor *mon, CPUArchState *env)
 377{
 378    int prot, last_prot;
 379    uint64_t l1, l2, l3, l4;
 380    uint64_t pml4e, pdpe, pde, pte;
 381    uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
 382
 383    pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
 384    last_prot = 0;
 385    start = -1;
 386    for (l1 = 0; l1 < 512; l1++) {
 387        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 388        pml4e = le64_to_cpu(pml4e);
 389        end = l1 << 39;
 390        if (pml4e & PG_PRESENT_MASK) {
 391            pdp_addr = pml4e & 0x3fffffffff000ULL;
 392            for (l2 = 0; l2 < 512; l2++) {
 393                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 394                pdpe = le64_to_cpu(pdpe);
 395                end = (l1 << 39) + (l2 << 30);
 396                if (pdpe & PG_PRESENT_MASK) {
 397                    if (pdpe & PG_PSE_MASK) {
 398                        prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
 399                                       PG_PRESENT_MASK);
 400                        prot &= pml4e;
 401                        mem_print(mon, env, &start, &last_prot, end, prot);
 402                    } else {
 403                        pd_addr = pdpe & 0x3fffffffff000ULL;
 404                        for (l3 = 0; l3 < 512; l3++) {
 405                            cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 406                            pde = le64_to_cpu(pde);
 407                            end = (l1 << 39) + (l2 << 30) + (l3 << 21);
 408                            if (pde & PG_PRESENT_MASK) {
 409                                if (pde & PG_PSE_MASK) {
 410                                    prot = pde & (PG_USER_MASK | PG_RW_MASK |
 411                                                  PG_PRESENT_MASK);
 412                                    prot &= pml4e & pdpe;
 413                                    mem_print(mon, env, &start,
 414                                              &last_prot, end, prot);
 415                                } else {
 416                                    pt_addr = pde & 0x3fffffffff000ULL;
 417                                    for (l4 = 0; l4 < 512; l4++) {
 418                                        cpu_physical_memory_read(pt_addr
 419                                                                 + l4 * 8,
 420                                                                 &pte, 8);
 421                                        pte = le64_to_cpu(pte);
 422                                        end = (l1 << 39) + (l2 << 30) +
 423                                            (l3 << 21) + (l4 << 12);
 424                                        if (pte & PG_PRESENT_MASK) {
 425                                            prot = pte & (PG_USER_MASK | PG_RW_MASK |
 426                                                          PG_PRESENT_MASK);
 427                                            prot &= pml4e & pdpe & pde;
 428                                        } else {
 429                                            prot = 0;
 430                                        }
 431                                        mem_print(mon, env, &start,
 432                                                  &last_prot, end, prot);
 433                                    }
 434                                }
 435                            } else {
 436                                prot = 0;
 437                                mem_print(mon, env, &start,
 438                                          &last_prot, end, prot);
 439                            }
 440                        }
 441                    }
 442                } else {
 443                    prot = 0;
 444                    mem_print(mon, env, &start, &last_prot, end, prot);
 445                }
 446            }
 447        } else {
 448            prot = 0;
 449            mem_print(mon, env, &start, &last_prot, end, prot);
 450        }
 451    }
 452    /* Flush last range */
 453    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 48, 0);
 454}
 455
 456static void mem_info_la57(Monitor *mon, CPUArchState *env)
 457{
 458    int prot, last_prot;
 459    uint64_t l0, l1, l2, l3, l4;
 460    uint64_t pml5e, pml4e, pdpe, pde, pte;
 461    uint64_t pml5_addr, pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
 462
 463    pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
 464    last_prot = 0;
 465    start = -1;
 466    for (l0 = 0; l0 < 512; l0++) {
 467        cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
 468        pml5e = le64_to_cpu(pml5e);
 469        end = l0 << 48;
 470        if (!(pml5e & PG_PRESENT_MASK)) {
 471            prot = 0;
 472            mem_print(mon, env, &start, &last_prot, end, prot);
 473            continue;
 474        }
 475
 476        pml4_addr = pml5e & 0x3fffffffff000ULL;
 477        for (l1 = 0; l1 < 512; l1++) {
 478            cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 479            pml4e = le64_to_cpu(pml4e);
 480            end = (l0 << 48) + (l1 << 39);
 481            if (!(pml4e & PG_PRESENT_MASK)) {
 482                prot = 0;
 483                mem_print(mon, env, &start, &last_prot, end, prot);
 484                continue;
 485            }
 486
 487            pdp_addr = pml4e & 0x3fffffffff000ULL;
 488            for (l2 = 0; l2 < 512; l2++) {
 489                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 490                pdpe = le64_to_cpu(pdpe);
 491                end = (l0 << 48) + (l1 << 39) + (l2 << 30);
 492                if (pdpe & PG_PRESENT_MASK) {
 493                    prot = 0;
 494                    mem_print(mon, env, &start, &last_prot, end, prot);
 495                    continue;
 496                }
 497
 498                if (pdpe & PG_PSE_MASK) {
 499                    prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
 500                            PG_PRESENT_MASK);
 501                    prot &= pml5e & pml4e;
 502                    mem_print(mon, env, &start, &last_prot, end, prot);
 503                    continue;
 504                }
 505
 506                pd_addr = pdpe & 0x3fffffffff000ULL;
 507                for (l3 = 0; l3 < 512; l3++) {
 508                    cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 509                    pde = le64_to_cpu(pde);
 510                    end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21);
 511                    if (pde & PG_PRESENT_MASK) {
 512                        prot = 0;
 513                        mem_print(mon, env, &start, &last_prot, end, prot);
 514                        continue;
 515                    }
 516
 517                    if (pde & PG_PSE_MASK) {
 518                        prot = pde & (PG_USER_MASK | PG_RW_MASK |
 519                                PG_PRESENT_MASK);
 520                        prot &= pml5e & pml4e & pdpe;
 521                        mem_print(mon, env, &start, &last_prot, end, prot);
 522                        continue;
 523                    }
 524
 525                    pt_addr = pde & 0x3fffffffff000ULL;
 526                    for (l4 = 0; l4 < 512; l4++) {
 527                        cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8);
 528                        pte = le64_to_cpu(pte);
 529                        end = (l0 << 48) + (l1 << 39) + (l2 << 30) +
 530                            (l3 << 21) + (l4 << 12);
 531                        if (pte & PG_PRESENT_MASK) {
 532                            prot = pte & (PG_USER_MASK | PG_RW_MASK |
 533                                    PG_PRESENT_MASK);
 534                            prot &= pml5e & pml4e & pdpe & pde;
 535                        } else {
 536                            prot = 0;
 537                        }
 538                        mem_print(mon, env, &start, &last_prot, end, prot);
 539                    }
 540                }
 541            }
 542        }
 543    }
 544    /* Flush last range */
 545    mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 57, 0);
 546}
 547#endif /* TARGET_X86_64 */
 548
 549void hmp_info_mem(Monitor *mon, const QDict *qdict)
 550{
 551    CPUArchState *env;
 552
 553    env = mon_get_cpu_env();
 554    if (!env) {
 555        monitor_printf(mon, "No CPU available\n");
 556        return;
 557    }
 558
 559    if (!(env->cr[0] & CR0_PG_MASK)) {
 560        monitor_printf(mon, "PG disabled\n");
 561        return;
 562    }
 563    if (env->cr[4] & CR4_PAE_MASK) {
 564#ifdef TARGET_X86_64
 565        if (env->hflags & HF_LMA_MASK) {
 566            if (env->cr[4] & CR4_LA57_MASK) {
 567                mem_info_la57(mon, env);
 568            } else {
 569                mem_info_la48(mon, env);
 570            }
 571        } else
 572#endif
 573        {
 574            mem_info_pae32(mon, env);
 575        }
 576    } else {
 577        mem_info_32(mon, env);
 578    }
 579}
 580
 581void hmp_mce(Monitor *mon, const QDict *qdict)
 582{
 583    X86CPU *cpu;
 584    CPUState *cs;
 585    int cpu_index = qdict_get_int(qdict, "cpu_index");
 586    int bank = qdict_get_int(qdict, "bank");
 587    uint64_t status = qdict_get_int(qdict, "status");
 588    uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
 589    uint64_t addr = qdict_get_int(qdict, "addr");
 590    uint64_t misc = qdict_get_int(qdict, "misc");
 591    int flags = MCE_INJECT_UNCOND_AO;
 592
 593    if (qdict_get_try_bool(qdict, "broadcast", false)) {
 594        flags |= MCE_INJECT_BROADCAST;
 595    }
 596    cs = qemu_get_cpu(cpu_index);
 597    if (cs != NULL) {
 598        cpu = X86_CPU(cs);
 599        cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
 600                           flags);
 601    }
 602}
 603
 604static target_long monitor_get_pc(const struct MonitorDef *md, int val)
 605{
 606    CPUArchState *env = mon_get_cpu_env();
 607    return env->eip + env->segs[R_CS].base;
 608}
 609
 610const MonitorDef monitor_defs[] = {
 611#define SEG(name, seg) \
 612    { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
 613    { name ".base", offsetof(CPUX86State, segs[seg].base) },\
 614    { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
 615
 616    { "eax", offsetof(CPUX86State, regs[0]) },
 617    { "ecx", offsetof(CPUX86State, regs[1]) },
 618    { "edx", offsetof(CPUX86State, regs[2]) },
 619    { "ebx", offsetof(CPUX86State, regs[3]) },
 620    { "esp|sp", offsetof(CPUX86State, regs[4]) },
 621    { "ebp|fp", offsetof(CPUX86State, regs[5]) },
 622    { "esi", offsetof(CPUX86State, regs[6]) },
 623    { "edi", offsetof(CPUX86State, regs[7]) },
 624#ifdef TARGET_X86_64
 625    { "r8", offsetof(CPUX86State, regs[8]) },
 626    { "r9", offsetof(CPUX86State, regs[9]) },
 627    { "r10", offsetof(CPUX86State, regs[10]) },
 628    { "r11", offsetof(CPUX86State, regs[11]) },
 629    { "r12", offsetof(CPUX86State, regs[12]) },
 630    { "r13", offsetof(CPUX86State, regs[13]) },
 631    { "r14", offsetof(CPUX86State, regs[14]) },
 632    { "r15", offsetof(CPUX86State, regs[15]) },
 633#endif
 634    { "eflags", offsetof(CPUX86State, eflags) },
 635    { "eip", offsetof(CPUX86State, eip) },
 636    SEG("cs", R_CS)
 637    SEG("ds", R_DS)
 638    SEG("es", R_ES)
 639    SEG("ss", R_SS)
 640    SEG("fs", R_FS)
 641    SEG("gs", R_GS)
 642    { "pc", 0, monitor_get_pc, },
 643    { NULL },
 644};
 645
 646const MonitorDef *target_monitor_defs(void)
 647{
 648    return monitor_defs;
 649}
 650
 651void hmp_info_local_apic(Monitor *mon, const QDict *qdict)
 652{
 653    CPUState *cs;
 654
 655    if (qdict_haskey(qdict, "apic-id")) {
 656        int id = qdict_get_try_int(qdict, "apic-id", 0);
 657        cs = cpu_by_arch_id(id);
 658    } else {
 659        cs = mon_get_cpu();
 660    }
 661
 662
 663    if (!cs) {
 664        monitor_printf(mon, "No CPU available\n");
 665        return;
 666    }
 667    x86_cpu_dump_local_apic_state(cs, CPU_DUMP_FPU);
 668}
 669
 670void hmp_info_io_apic(Monitor *mon, const QDict *qdict)
 671{
 672    monitor_printf(mon, "This command is obsolete and will be "
 673                   "removed soon. Please use 'info pic' instead.\n");
 674}
 675
 676SevInfo *qmp_query_sev(Error **errp)
 677{
 678    SevInfo *info;
 679
 680    info = sev_get_info();
 681    if (!info) {
 682        error_setg(errp, "SEV feature is not available");
 683        return NULL;
 684    }
 685
 686    return info;
 687}
 688
 689void hmp_info_sev(Monitor *mon, const QDict *qdict)
 690{
 691    SevInfo *info = sev_get_info();
 692
 693    if (info && info->enabled) {
 694        monitor_printf(mon, "handle: %d\n", info->handle);
 695        monitor_printf(mon, "state: %s\n", SevState_str(info->state));
 696        monitor_printf(mon, "build: %d\n", info->build_id);
 697        monitor_printf(mon, "api version: %d.%d\n",
 698                       info->api_major, info->api_minor);
 699        monitor_printf(mon, "debug: %s\n",
 700                       info->policy & SEV_POLICY_NODBG ? "off" : "on");
 701        monitor_printf(mon, "key-sharing: %s\n",
 702                       info->policy & SEV_POLICY_NOKS ? "off" : "on");
 703    } else {
 704        monitor_printf(mon, "SEV is not enabled\n");
 705    }
 706
 707    qapi_free_SevInfo(info);
 708}
 709
 710SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp)
 711{
 712    char *data;
 713    SevLaunchMeasureInfo *info;
 714
 715    data = sev_get_launch_measurement();
 716    if (!data) {
 717        error_setg(errp, "Measurement is not available");
 718        return NULL;
 719    }
 720
 721    info = g_malloc0(sizeof(*info));
 722    info->data = data;
 723
 724    return info;
 725}
 726
 727SevCapability *qmp_query_sev_capabilities(Error **errp)
 728{
 729    SevCapability *data;
 730
 731    data = sev_get_capabilities();
 732    if (!data) {
 733        error_setg(errp, "SEV feature is not available");
 734        return NULL;
 735    }
 736
 737    return data;
 738}
 739