qemu/target/i386/smm_helper.c
<<
>>
Prefs
   1/*
   2 *  x86 SMM helpers
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/main-loop.h"
  22#include "cpu.h"
  23#include "exec/helper-proto.h"
  24#include "exec/log.h"
  25
  26/* SMM support */
  27
  28#if defined(CONFIG_USER_ONLY)
  29
  30void do_smm_enter(X86CPU *cpu)
  31{
  32}
  33
  34void helper_rsm(CPUX86State *env)
  35{
  36}
  37
  38#else
  39
  40#ifdef TARGET_X86_64
  41#define SMM_REVISION_ID 0x00020064
  42#else
  43#define SMM_REVISION_ID 0x00020000
  44#endif
  45
  46void do_smm_enter(X86CPU *cpu)
  47{
  48    CPUX86State *env = &cpu->env;
  49    CPUState *cs = CPU(cpu);
  50    target_ulong sm_state;
  51    SegmentCache *dt;
  52    int i, offset;
  53
  54    qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
  55    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
  56
  57    env->msr_smi_count++;
  58    env->hflags |= HF_SMM_MASK;
  59    if (env->hflags2 & HF2_NMI_MASK) {
  60        env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
  61    } else {
  62        env->hflags2 |= HF2_NMI_MASK;
  63    }
  64
  65    sm_state = env->smbase + 0x8000;
  66
  67#ifdef TARGET_X86_64
  68    for (i = 0; i < 6; i++) {
  69        dt = &env->segs[i];
  70        offset = 0x7e00 + i * 16;
  71        x86_stw_phys(cs, sm_state + offset, dt->selector);
  72        x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
  73        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
  74        x86_stq_phys(cs, sm_state + offset + 8, dt->base);
  75    }
  76
  77    x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
  78    x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
  79
  80    x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
  81    x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
  82    x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
  83    x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
  84
  85    x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
  86    x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
  87
  88    x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
  89    x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
  90    x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
  91    x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
  92
  93    /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
  94       is saved at offset 7ED0.  Vol 3, 34.4.1.1, Table 32-2, has
  95       7EA0-7ED7 as "reserved".  What's this, and what's really
  96       supposed to happen?  */
  97    x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
  98
  99    x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
 100    x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
 101    x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
 102    x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
 103    x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
 104    x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
 105    x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
 106    x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
 107    for (i = 8; i < 16; i++) {
 108        x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
 109    }
 110    x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
 111    x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
 112    x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
 113    x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
 114
 115    x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
 116    x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
 117    x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
 118
 119    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
 120    x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
 121#else
 122    x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
 123    x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
 124    x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
 125    x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
 126    x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
 127    x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
 128    x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
 129    x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
 130    x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
 131    x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
 132    x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
 133    x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
 134    x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
 135    x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
 136
 137    x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
 138    x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
 139    x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
 140    x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
 141
 142    x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
 143    x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
 144    x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
 145    x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
 146
 147    x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
 148    x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
 149
 150    x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
 151    x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
 152
 153    for (i = 0; i < 6; i++) {
 154        dt = &env->segs[i];
 155        if (i < 3) {
 156            offset = 0x7f84 + i * 12;
 157        } else {
 158            offset = 0x7f2c + (i - 3) * 12;
 159        }
 160        x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
 161        x86_stl_phys(cs, sm_state + offset + 8, dt->base);
 162        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
 163        x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
 164    }
 165    x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
 166
 167    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
 168    x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
 169#endif
 170    /* init SMM cpu state */
 171
 172#ifdef TARGET_X86_64
 173    cpu_load_efer(env, 0);
 174#endif
 175    cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
 176                              DF_MASK));
 177    env->eip = 0x00008000;
 178    cpu_x86_update_cr0(env,
 179                       env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
 180                                      CR0_PG_MASK));
 181    cpu_x86_update_cr4(env, 0);
 182    env->dr[7] = 0x00000400;
 183
 184    cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
 185                           0xffffffff,
 186                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 187                           DESC_G_MASK | DESC_A_MASK);
 188    cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
 189                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 190                           DESC_G_MASK | DESC_A_MASK);
 191    cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
 192                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 193                           DESC_G_MASK | DESC_A_MASK);
 194    cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
 195                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 196                           DESC_G_MASK | DESC_A_MASK);
 197    cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
 198                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 199                           DESC_G_MASK | DESC_A_MASK);
 200    cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
 201                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 202                           DESC_G_MASK | DESC_A_MASK);
 203}
 204
 205void helper_rsm(CPUX86State *env)
 206{
 207    X86CPU *cpu = env_archcpu(env);
 208    CPUState *cs = env_cpu(env);
 209    target_ulong sm_state;
 210    int i, offset;
 211    uint32_t val;
 212
 213    sm_state = env->smbase + 0x8000;
 214#ifdef TARGET_X86_64
 215    cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
 216
 217    env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
 218    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
 219
 220    env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
 221    env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
 222    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
 223    env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
 224
 225    env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
 226    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
 227
 228    env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
 229    env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
 230    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
 231    env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
 232
 233    env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
 234    env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
 235    env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
 236    env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
 237    env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
 238    env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
 239    env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
 240    env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
 241    for (i = 8; i < 16; i++) {
 242        env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
 243    }
 244    env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
 245    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
 246                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
 247    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
 248    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
 249
 250    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
 251    cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
 252    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
 253
 254    for (i = 0; i < 6; i++) {
 255        offset = 0x7e00 + i * 16;
 256        cpu_x86_load_seg_cache(env, i,
 257                               x86_lduw_phys(cs, sm_state + offset),
 258                               x86_ldq_phys(cs, sm_state + offset + 8),
 259                               x86_ldl_phys(cs, sm_state + offset + 4),
 260                               (x86_lduw_phys(cs, sm_state + offset + 2) &
 261                                0xf0ff) << 8);
 262    }
 263
 264    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
 265    if (val & 0x20000) {
 266        env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
 267    }
 268#else
 269    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
 270    cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
 271    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
 272                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
 273    env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
 274    env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
 275    env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
 276    env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
 277    env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
 278    env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
 279    env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
 280    env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
 281    env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
 282    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
 283    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
 284
 285    env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
 286    env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
 287    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
 288    env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
 289
 290    env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
 291    env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
 292    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
 293    env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
 294
 295    env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
 296    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
 297
 298    env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
 299    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
 300
 301    for (i = 0; i < 6; i++) {
 302        if (i < 3) {
 303            offset = 0x7f84 + i * 12;
 304        } else {
 305            offset = 0x7f2c + (i - 3) * 12;
 306        }
 307        cpu_x86_load_seg_cache(env, i,
 308                               x86_ldl_phys(cs,
 309                                        sm_state + 0x7fa8 + i * 4) & 0xffff,
 310                               x86_ldl_phys(cs, sm_state + offset + 8),
 311                               x86_ldl_phys(cs, sm_state + offset + 4),
 312                               (x86_ldl_phys(cs,
 313                                         sm_state + offset) & 0xf0ff) << 8);
 314    }
 315    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
 316
 317    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
 318    if (val & 0x20000) {
 319        env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
 320    }
 321#endif
 322    if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
 323        env->hflags2 &= ~HF2_NMI_MASK;
 324    }
 325    env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
 326    env->hflags &= ~HF_SMM_MASK;
 327
 328    qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
 329    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
 330}
 331
 332#endif /* !CONFIG_USER_ONLY */
 333