qemu/target/riscv/cpu_helper.c
<<
>>
Prefs
   1/*
   2 * RISC-V CPU helpers for qemu.
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "tcg-op.h"
  25#include "trace.h"
  26
  27int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
  28{
  29#ifdef CONFIG_USER_ONLY
  30    return 0;
  31#else
  32    return env->priv;
  33#endif
  34}
  35
  36#ifndef CONFIG_USER_ONLY
  37static int riscv_cpu_local_irq_pending(CPURISCVState *env)
  38{
  39    target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
  40    target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
  41    target_ulong pending = atomic_read(&env->mip) & env->mie;
  42    target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
  43    target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
  44    target_ulong irqs = (pending & ~env->mideleg & -mie) |
  45                        (pending &  env->mideleg & -sie);
  46
  47    if (irqs) {
  48        return ctz64(irqs); /* since non-zero */
  49    } else {
  50        return EXCP_NONE; /* indicates no pending interrupt */
  51    }
  52}
  53#endif
  54
  55bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  56{
  57#if !defined(CONFIG_USER_ONLY)
  58    if (interrupt_request & CPU_INTERRUPT_HARD) {
  59        RISCVCPU *cpu = RISCV_CPU(cs);
  60        CPURISCVState *env = &cpu->env;
  61        int interruptno = riscv_cpu_local_irq_pending(env);
  62        if (interruptno >= 0) {
  63            cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
  64            riscv_cpu_do_interrupt(cs);
  65            return true;
  66        }
  67    }
  68#endif
  69    return false;
  70}
  71
  72#if !defined(CONFIG_USER_ONLY)
  73
  74int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
  75{
  76    CPURISCVState *env = &cpu->env;
  77    if (env->miclaim & interrupts) {
  78        return -1;
  79    } else {
  80        env->miclaim |= interrupts;
  81        return 0;
  82    }
  83}
  84
  85struct CpuAsyncInfo {
  86    uint32_t new_mip;
  87};
  88
  89static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
  90                                            run_on_cpu_data data)
  91{
  92    struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
  93
  94    if (info->new_mip) {
  95        cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
  96    } else {
  97        cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
  98    }
  99
 100    g_free(info);
 101}
 102
 103uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
 104{
 105    CPURISCVState *env = &cpu->env;
 106    CPUState *cs = CPU(cpu);
 107    struct CpuAsyncInfo *info;
 108    uint32_t old, new, cmp = atomic_read(&env->mip);
 109
 110    do {
 111        old = cmp;
 112        new = (old & ~mask) | (value & mask);
 113        cmp = atomic_cmpxchg(&env->mip, old, new);
 114    } while (old != cmp);
 115
 116    info = g_new(struct CpuAsyncInfo, 1);
 117    info->new_mip = new;
 118
 119    async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
 120                     RUN_ON_CPU_HOST_PTR(info));
 121
 122    return old;
 123}
 124
 125void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
 126{
 127    if (newpriv > PRV_M) {
 128        g_assert_not_reached();
 129    }
 130    if (newpriv == PRV_H) {
 131        newpriv = PRV_U;
 132    }
 133    /* tlb_flush is unnecessary as mode is contained in mmu_idx */
 134    env->priv = newpriv;
 135
 136    /*
 137     * Clear the load reservation - otherwise a reservation placed in one
 138     * context/process can be used by another, resulting in an SC succeeding
 139     * incorrectly. Version 2.2 of the ISA specification explicitly requires
 140     * this behaviour, while later revisions say that the kernel "should" use
 141     * an SC instruction to force the yielding of a load reservation on a
 142     * preemptive context switch. As a result, do both.
 143     */
 144    env->load_res = -1;
 145}
 146
 147/* get_physical_address - get the physical address for this virtual address
 148 *
 149 * Do a page table walk to obtain the physical address corresponding to a
 150 * virtual address. Returns 0 if the translation was successful
 151 *
 152 * Adapted from Spike's mmu_t::translate and mmu_t::walk
 153 *
 154 */
 155static int get_physical_address(CPURISCVState *env, hwaddr *physical,
 156                                int *prot, target_ulong addr,
 157                                int access_type, int mmu_idx)
 158{
 159    /* NOTE: the env->pc value visible here will not be
 160     * correct, but the value visible to the exception handler
 161     * (riscv_cpu_do_interrupt) is correct */
 162
 163    int mode = mmu_idx;
 164
 165    if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 166        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 167            mode = get_field(env->mstatus, MSTATUS_MPP);
 168        }
 169    }
 170
 171    if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
 172        *physical = addr;
 173        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 174        return TRANSLATE_SUCCESS;
 175    }
 176
 177    *prot = 0;
 178
 179    target_ulong base;
 180    int levels, ptidxbits, ptesize, vm, sum;
 181    int mxr = get_field(env->mstatus, MSTATUS_MXR);
 182
 183    if (env->priv_ver >= PRIV_VERSION_1_10_0) {
 184        base = get_field(env->satp, SATP_PPN) << PGSHIFT;
 185        sum = get_field(env->mstatus, MSTATUS_SUM);
 186        vm = get_field(env->satp, SATP_MODE);
 187        switch (vm) {
 188        case VM_1_10_SV32:
 189          levels = 2; ptidxbits = 10; ptesize = 4; break;
 190        case VM_1_10_SV39:
 191          levels = 3; ptidxbits = 9; ptesize = 8; break;
 192        case VM_1_10_SV48:
 193          levels = 4; ptidxbits = 9; ptesize = 8; break;
 194        case VM_1_10_SV57:
 195          levels = 5; ptidxbits = 9; ptesize = 8; break;
 196        case VM_1_10_MBARE:
 197            *physical = addr;
 198            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 199            return TRANSLATE_SUCCESS;
 200        default:
 201          g_assert_not_reached();
 202        }
 203    } else {
 204        base = env->sptbr << PGSHIFT;
 205        sum = !get_field(env->mstatus, MSTATUS_PUM);
 206        vm = get_field(env->mstatus, MSTATUS_VM);
 207        switch (vm) {
 208        case VM_1_09_SV32:
 209          levels = 2; ptidxbits = 10; ptesize = 4; break;
 210        case VM_1_09_SV39:
 211          levels = 3; ptidxbits = 9; ptesize = 8; break;
 212        case VM_1_09_SV48:
 213          levels = 4; ptidxbits = 9; ptesize = 8; break;
 214        case VM_1_09_MBARE:
 215            *physical = addr;
 216            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 217            return TRANSLATE_SUCCESS;
 218        default:
 219          g_assert_not_reached();
 220        }
 221    }
 222
 223    CPUState *cs = env_cpu(env);
 224    int va_bits = PGSHIFT + levels * ptidxbits;
 225    target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
 226    target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
 227    if (masked_msbs != 0 && masked_msbs != mask) {
 228        return TRANSLATE_FAIL;
 229    }
 230
 231    int ptshift = (levels - 1) * ptidxbits;
 232    int i;
 233
 234#if !TCG_OVERSIZED_GUEST
 235restart:
 236#endif
 237    for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
 238        target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
 239                           ((1 << ptidxbits) - 1);
 240
 241        /* check that physical address of PTE is legal */
 242        target_ulong pte_addr = base + idx * ptesize;
 243
 244        if (riscv_feature(env, RISCV_FEATURE_PMP) &&
 245            !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
 246            1 << MMU_DATA_LOAD, PRV_S)) {
 247            return TRANSLATE_PMP_FAIL;
 248        }
 249#if defined(TARGET_RISCV32)
 250        target_ulong pte = ldl_phys(cs->as, pte_addr);
 251#elif defined(TARGET_RISCV64)
 252        target_ulong pte = ldq_phys(cs->as, pte_addr);
 253#endif
 254        target_ulong ppn = pte >> PTE_PPN_SHIFT;
 255
 256        if (!(pte & PTE_V)) {
 257            /* Invalid PTE */
 258            return TRANSLATE_FAIL;
 259        } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
 260            /* Inner PTE, continue walking */
 261            base = ppn << PGSHIFT;
 262        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
 263            /* Reserved leaf PTE flags: PTE_W */
 264            return TRANSLATE_FAIL;
 265        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
 266            /* Reserved leaf PTE flags: PTE_W + PTE_X */
 267            return TRANSLATE_FAIL;
 268        } else if ((pte & PTE_U) && ((mode != PRV_U) &&
 269                   (!sum || access_type == MMU_INST_FETCH))) {
 270            /* User PTE flags when not U mode and mstatus.SUM is not set,
 271               or the access type is an instruction fetch */
 272            return TRANSLATE_FAIL;
 273        } else if (!(pte & PTE_U) && (mode != PRV_S)) {
 274            /* Supervisor PTE flags when not S mode */
 275            return TRANSLATE_FAIL;
 276        } else if (ppn & ((1ULL << ptshift) - 1)) {
 277            /* Misaligned PPN */
 278            return TRANSLATE_FAIL;
 279        } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
 280                   ((pte & PTE_X) && mxr))) {
 281            /* Read access check failed */
 282            return TRANSLATE_FAIL;
 283        } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
 284            /* Write access check failed */
 285            return TRANSLATE_FAIL;
 286        } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
 287            /* Fetch access check failed */
 288            return TRANSLATE_FAIL;
 289        } else {
 290            /* if necessary, set accessed and dirty bits. */
 291            target_ulong updated_pte = pte | PTE_A |
 292                (access_type == MMU_DATA_STORE ? PTE_D : 0);
 293
 294            /* Page table updates need to be atomic with MTTCG enabled */
 295            if (updated_pte != pte) {
 296                /*
 297                 * - if accessed or dirty bits need updating, and the PTE is
 298                 *   in RAM, then we do so atomically with a compare and swap.
 299                 * - if the PTE is in IO space or ROM, then it can't be updated
 300                 *   and we return TRANSLATE_FAIL.
 301                 * - if the PTE changed by the time we went to update it, then
 302                 *   it is no longer valid and we must re-walk the page table.
 303                 */
 304                MemoryRegion *mr;
 305                hwaddr l = sizeof(target_ulong), addr1;
 306                mr = address_space_translate(cs->as, pte_addr,
 307                    &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
 308                if (memory_region_is_ram(mr)) {
 309                    target_ulong *pte_pa =
 310                        qemu_map_ram_ptr(mr->ram_block, addr1);
 311#if TCG_OVERSIZED_GUEST
 312                    /* MTTCG is not enabled on oversized TCG guests so
 313                     * page table updates do not need to be atomic */
 314                    *pte_pa = pte = updated_pte;
 315#else
 316                    target_ulong old_pte =
 317                        atomic_cmpxchg(pte_pa, pte, updated_pte);
 318                    if (old_pte != pte) {
 319                        goto restart;
 320                    } else {
 321                        pte = updated_pte;
 322                    }
 323#endif
 324                } else {
 325                    /* misconfigured PTE in ROM (AD bits are not preset) or
 326                     * PTE is in IO space and can't be updated atomically */
 327                    return TRANSLATE_FAIL;
 328                }
 329            }
 330
 331            /* for superpage mappings, make a fake leaf PTE for the TLB's
 332               benefit. */
 333            target_ulong vpn = addr >> PGSHIFT;
 334            *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
 335
 336            /* set permissions on the TLB entry */
 337            if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
 338                *prot |= PAGE_READ;
 339            }
 340            if ((pte & PTE_X)) {
 341                *prot |= PAGE_EXEC;
 342            }
 343            /* add write permission on stores or if the page is already dirty,
 344               so that we TLB miss on later writes to update the dirty bit */
 345            if ((pte & PTE_W) &&
 346                    (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
 347                *prot |= PAGE_WRITE;
 348            }
 349            return TRANSLATE_SUCCESS;
 350        }
 351    }
 352    return TRANSLATE_FAIL;
 353}
 354
 355static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
 356                                MMUAccessType access_type, bool pmp_violation)
 357{
 358    CPUState *cs = env_cpu(env);
 359    int page_fault_exceptions =
 360        (env->priv_ver >= PRIV_VERSION_1_10_0) &&
 361        get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
 362        !pmp_violation;
 363    switch (access_type) {
 364    case MMU_INST_FETCH:
 365        cs->exception_index = page_fault_exceptions ?
 366            RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
 367        break;
 368    case MMU_DATA_LOAD:
 369        cs->exception_index = page_fault_exceptions ?
 370            RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
 371        break;
 372    case MMU_DATA_STORE:
 373        cs->exception_index = page_fault_exceptions ?
 374            RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 375        break;
 376    default:
 377        g_assert_not_reached();
 378    }
 379    env->badaddr = address;
 380}
 381
 382hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 383{
 384    RISCVCPU *cpu = RISCV_CPU(cs);
 385    hwaddr phys_addr;
 386    int prot;
 387    int mmu_idx = cpu_mmu_index(&cpu->env, false);
 388
 389    if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
 390        return -1;
 391    }
 392    return phys_addr;
 393}
 394
 395void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
 396                                 bool is_exec, int unused, unsigned size)
 397{
 398    RISCVCPU *cpu = RISCV_CPU(cs);
 399    CPURISCVState *env = &cpu->env;
 400
 401    if (is_write) {
 402        cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 403    } else {
 404        cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
 405    }
 406
 407    env->badaddr = addr;
 408    riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
 409}
 410
 411void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 412                                   MMUAccessType access_type, int mmu_idx,
 413                                   uintptr_t retaddr)
 414{
 415    RISCVCPU *cpu = RISCV_CPU(cs);
 416    CPURISCVState *env = &cpu->env;
 417    switch (access_type) {
 418    case MMU_INST_FETCH:
 419        cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
 420        break;
 421    case MMU_DATA_LOAD:
 422        cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
 423        break;
 424    case MMU_DATA_STORE:
 425        cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
 426        break;
 427    default:
 428        g_assert_not_reached();
 429    }
 430    env->badaddr = addr;
 431    riscv_raise_exception(env, cs->exception_index, retaddr);
 432}
 433#endif
 434
 435bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 436                        MMUAccessType access_type, int mmu_idx,
 437                        bool probe, uintptr_t retaddr)
 438{
 439#ifndef CONFIG_USER_ONLY
 440    RISCVCPU *cpu = RISCV_CPU(cs);
 441    CPURISCVState *env = &cpu->env;
 442    hwaddr pa = 0;
 443    int prot;
 444    bool pmp_violation = false;
 445    int ret = TRANSLATE_FAIL;
 446    int mode = mmu_idx;
 447
 448    qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
 449                  __func__, address, access_type, mmu_idx);
 450
 451    ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
 452
 453    if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 454        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 455            mode = get_field(env->mstatus, MSTATUS_MPP);
 456        }
 457    }
 458
 459    qemu_log_mask(CPU_LOG_MMU,
 460                  "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
 461                  " prot %d\n", __func__, address, ret, pa, prot);
 462
 463    if (riscv_feature(env, RISCV_FEATURE_PMP) &&
 464        (ret == TRANSLATE_SUCCESS) &&
 465        !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
 466        ret = TRANSLATE_PMP_FAIL;
 467    }
 468    if (ret == TRANSLATE_PMP_FAIL) {
 469        pmp_violation = true;
 470    }
 471    if (ret == TRANSLATE_SUCCESS) {
 472        tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
 473                     prot, mmu_idx, TARGET_PAGE_SIZE);
 474        return true;
 475    } else if (probe) {
 476        return false;
 477    } else {
 478        raise_mmu_exception(env, address, access_type, pmp_violation);
 479        riscv_raise_exception(env, cs->exception_index, retaddr);
 480    }
 481#else
 482    switch (access_type) {
 483    case MMU_INST_FETCH:
 484        cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
 485        break;
 486    case MMU_DATA_LOAD:
 487        cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
 488        break;
 489    case MMU_DATA_STORE:
 490        cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
 491        break;
 492    }
 493    cpu_loop_exit_restore(cs, retaddr);
 494#endif
 495}
 496
 497/*
 498 * Handle Traps
 499 *
 500 * Adapted from Spike's processor_t::take_trap.
 501 *
 502 */
 503void riscv_cpu_do_interrupt(CPUState *cs)
 504{
 505#if !defined(CONFIG_USER_ONLY)
 506
 507    RISCVCPU *cpu = RISCV_CPU(cs);
 508    CPURISCVState *env = &cpu->env;
 509
 510    /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
 511     * so we mask off the MSB and separate into trap type and cause.
 512     */
 513    bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
 514    target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
 515    target_ulong deleg = async ? env->mideleg : env->medeleg;
 516    target_ulong tval = 0;
 517
 518    static const int ecall_cause_map[] = {
 519        [PRV_U] = RISCV_EXCP_U_ECALL,
 520        [PRV_S] = RISCV_EXCP_S_ECALL,
 521        [PRV_H] = RISCV_EXCP_H_ECALL,
 522        [PRV_M] = RISCV_EXCP_M_ECALL
 523    };
 524
 525    if (!async) {
 526        /* set tval to badaddr for traps with address information */
 527        switch (cause) {
 528        case RISCV_EXCP_INST_ADDR_MIS:
 529        case RISCV_EXCP_INST_ACCESS_FAULT:
 530        case RISCV_EXCP_LOAD_ADDR_MIS:
 531        case RISCV_EXCP_STORE_AMO_ADDR_MIS:
 532        case RISCV_EXCP_LOAD_ACCESS_FAULT:
 533        case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
 534        case RISCV_EXCP_INST_PAGE_FAULT:
 535        case RISCV_EXCP_LOAD_PAGE_FAULT:
 536        case RISCV_EXCP_STORE_PAGE_FAULT:
 537            tval = env->badaddr;
 538            break;
 539        default:
 540            break;
 541        }
 542        /* ecall is dispatched as one cause so translate based on mode */
 543        if (cause == RISCV_EXCP_U_ECALL) {
 544            assert(env->priv <= 3);
 545            cause = ecall_cause_map[env->priv];
 546        }
 547    }
 548
 549    trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
 550        (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
 551
 552    if (env->priv <= PRV_S &&
 553            cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
 554        /* handle the trap in S-mode */
 555        target_ulong s = env->mstatus;
 556        s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 557            get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
 558        s = set_field(s, MSTATUS_SPP, env->priv);
 559        s = set_field(s, MSTATUS_SIE, 0);
 560        env->mstatus = s;
 561        env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
 562        env->sepc = env->pc;
 563        env->sbadaddr = tval;
 564        env->pc = (env->stvec >> 2 << 2) +
 565            ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
 566        riscv_cpu_set_mode(env, PRV_S);
 567    } else {
 568        /* handle the trap in M-mode */
 569        target_ulong s = env->mstatus;
 570        s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 571            get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
 572        s = set_field(s, MSTATUS_MPP, env->priv);
 573        s = set_field(s, MSTATUS_MIE, 0);
 574        env->mstatus = s;
 575        env->mcause = cause | ~(((target_ulong)-1) >> async);
 576        env->mepc = env->pc;
 577        env->mbadaddr = tval;
 578        env->pc = (env->mtvec >> 2 << 2) +
 579            ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
 580        riscv_cpu_set_mode(env, PRV_M);
 581    }
 582
 583    /* NOTE: it is not necessary to yield load reservations here. It is only
 584     * necessary for an SC from "another hart" to cause a load reservation
 585     * to be yielded. Refer to the memory consistency model section of the
 586     * RISC-V ISA Specification.
 587     */
 588
 589#endif
 590    cs->exception_index = EXCP_NONE; /* mark handled to qemu */
 591}
 592