qemu/target/sh4/helper.c
<<
>>
Prefs
   1/*
   2 *  SH4 emulation
   3 *
   4 *  Copyright (c) 2005 Samuel Tardieu
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/log.h"
  24#include "sysemu/sysemu.h"
  25
  26#if !defined(CONFIG_USER_ONLY)
  27#include "hw/sh4/sh_intc.h"
  28#endif
  29
  30#define MMU_OK                   0
  31#define MMU_ITLB_MISS            (-1)
  32#define MMU_ITLB_MULTIPLE        (-2)
  33#define MMU_ITLB_VIOLATION       (-3)
  34#define MMU_DTLB_MISS_READ       (-4)
  35#define MMU_DTLB_MISS_WRITE      (-5)
  36#define MMU_DTLB_INITIAL_WRITE   (-6)
  37#define MMU_DTLB_VIOLATION_READ  (-7)
  38#define MMU_DTLB_VIOLATION_WRITE (-8)
  39#define MMU_DTLB_MULTIPLE        (-9)
  40#define MMU_DTLB_MISS            (-10)
  41#define MMU_IADDR_ERROR          (-11)
  42#define MMU_DADDR_ERROR_READ     (-12)
  43#define MMU_DADDR_ERROR_WRITE    (-13)
  44
  45#if defined(CONFIG_USER_ONLY)
  46
  47void superh_cpu_do_interrupt(CPUState *cs)
  48{
  49    cs->exception_index = -1;
  50}
  51
  52int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
  53{
  54    /* For user mode, only U0 area is cacheable. */
  55    return !(addr & 0x80000000);
  56}
  57
  58#else /* !CONFIG_USER_ONLY */
  59
  60void superh_cpu_do_interrupt(CPUState *cs)
  61{
  62    SuperHCPU *cpu = SUPERH_CPU(cs);
  63    CPUSH4State *env = &cpu->env;
  64    int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
  65    int do_exp, irq_vector = cs->exception_index;
  66
  67    /* prioritize exceptions over interrupts */
  68
  69    do_exp = cs->exception_index != -1;
  70    do_irq = do_irq && (cs->exception_index == -1);
  71
  72    if (env->sr & (1u << SR_BL)) {
  73        if (do_exp && cs->exception_index != 0x1e0) {
  74            /* In theory a masked exception generates a reset exception,
  75               which in turn jumps to the reset vector. However this only
  76               works when using a bootloader. When using a kernel and an
  77               initrd, they need to be reloaded and the program counter
  78               should be loaded with the kernel entry point.
  79               qemu_system_reset_request takes care of that.  */
  80            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  81            return;
  82        }
  83        if (do_irq && !env->in_sleep) {
  84            return; /* masked */
  85        }
  86    }
  87    env->in_sleep = 0;
  88
  89    if (do_irq) {
  90        irq_vector = sh_intc_get_pending_vector(env->intc_handle,
  91                                                (env->sr >> 4) & 0xf);
  92        if (irq_vector == -1) {
  93            return; /* masked */
  94        }
  95    }
  96
  97    if (qemu_loglevel_mask(CPU_LOG_INT)) {
  98        const char *expname;
  99        switch (cs->exception_index) {
 100        case 0x0e0:
 101            expname = "addr_error";
 102            break;
 103        case 0x040:
 104            expname = "tlb_miss";
 105            break;
 106        case 0x0a0:
 107            expname = "tlb_violation";
 108            break;
 109        case 0x180:
 110            expname = "illegal_instruction";
 111            break;
 112        case 0x1a0:
 113            expname = "slot_illegal_instruction";
 114            break;
 115        case 0x800:
 116            expname = "fpu_disable";
 117            break;
 118        case 0x820:
 119            expname = "slot_fpu";
 120            break;
 121        case 0x100:
 122            expname = "data_write";
 123            break;
 124        case 0x060:
 125            expname = "dtlb_miss_write";
 126            break;
 127        case 0x0c0:
 128            expname = "dtlb_violation_write";
 129            break;
 130        case 0x120:
 131            expname = "fpu_exception";
 132            break;
 133        case 0x080:
 134            expname = "initial_page_write";
 135            break;
 136        case 0x160:
 137            expname = "trapa";
 138            break;
 139        default:
 140            expname = do_irq ? "interrupt" : "???";
 141            break;
 142        }
 143        qemu_log("exception 0x%03x [%s] raised\n",
 144                  irq_vector, expname);
 145        log_cpu_state(cs, 0);
 146    }
 147
 148    env->ssr = cpu_read_sr(env);
 149    env->spc = env->pc;
 150    env->sgr = env->gregs[15];
 151    env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
 152    env->lock_addr = -1;
 153
 154    if (env->flags & DELAY_SLOT_MASK) {
 155        /* Branch instruction should be executed again before delay slot. */
 156        env->spc -= 2;
 157        /* Clear flags for exception/interrupt routine. */
 158        env->flags &= ~DELAY_SLOT_MASK;
 159    }
 160
 161    if (do_exp) {
 162        env->expevt = cs->exception_index;
 163        switch (cs->exception_index) {
 164        case 0x000:
 165        case 0x020:
 166        case 0x140:
 167            env->sr &= ~(1u << SR_FD);
 168            env->sr |= 0xf << 4; /* IMASK */
 169            env->pc = 0xa0000000;
 170            break;
 171        case 0x040:
 172        case 0x060:
 173            env->pc = env->vbr + 0x400;
 174            break;
 175        case 0x160:
 176            env->spc += 2; /* special case for TRAPA */
 177            /* fall through */
 178        default:
 179            env->pc = env->vbr + 0x100;
 180            break;
 181        }
 182        return;
 183    }
 184
 185    if (do_irq) {
 186        env->intevt = irq_vector;
 187        env->pc = env->vbr + 0x600;
 188        return;
 189    }
 190}
 191
 192static void update_itlb_use(CPUSH4State * env, int itlbnb)
 193{
 194    uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
 195
 196    switch (itlbnb) {
 197    case 0:
 198        and_mask = 0x1f;
 199        break;
 200    case 1:
 201        and_mask = 0xe7;
 202        or_mask = 0x80;
 203        break;
 204    case 2:
 205        and_mask = 0xfb;
 206        or_mask = 0x50;
 207        break;
 208    case 3:
 209        or_mask = 0x2c;
 210        break;
 211    }
 212
 213    env->mmucr &= (and_mask << 24) | 0x00ffffff;
 214    env->mmucr |= (or_mask << 24);
 215}
 216
 217static int itlb_replacement(CPUSH4State * env)
 218{
 219    if ((env->mmucr & 0xe0000000) == 0xe0000000) {
 220        return 0;
 221    }
 222    if ((env->mmucr & 0x98000000) == 0x18000000) {
 223        return 1;
 224    }
 225    if ((env->mmucr & 0x54000000) == 0x04000000) {
 226        return 2;
 227    }
 228    if ((env->mmucr & 0x2c000000) == 0x00000000) {
 229        return 3;
 230    }
 231    cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
 232}
 233
 234/* Find the corresponding entry in the right TLB
 235   Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
 236*/
 237static int find_tlb_entry(CPUSH4State * env, target_ulong address,
 238                          tlb_t * entries, uint8_t nbtlb, int use_asid)
 239{
 240    int match = MMU_DTLB_MISS;
 241    uint32_t start, end;
 242    uint8_t asid;
 243    int i;
 244
 245    asid = env->pteh & 0xff;
 246
 247    for (i = 0; i < nbtlb; i++) {
 248        if (!entries[i].v)
 249            continue;           /* Invalid entry */
 250        if (!entries[i].sh && use_asid && entries[i].asid != asid)
 251            continue;           /* Bad ASID */
 252        start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
 253        end = start + entries[i].size - 1;
 254        if (address >= start && address <= end) {       /* Match */
 255            if (match != MMU_DTLB_MISS)
 256                return MMU_DTLB_MULTIPLE;       /* Multiple match */
 257            match = i;
 258        }
 259    }
 260    return match;
 261}
 262
 263static void increment_urc(CPUSH4State * env)
 264{
 265    uint8_t urb, urc;
 266
 267    /* Increment URC */
 268    urb = ((env->mmucr) >> 18) & 0x3f;
 269    urc = ((env->mmucr) >> 10) & 0x3f;
 270    urc++;
 271    if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
 272        urc = 0;
 273    env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
 274}
 275
 276/* Copy and utlb entry into itlb
 277   Return entry
 278*/
 279static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
 280{
 281    int itlb;
 282
 283    tlb_t * ientry;
 284    itlb = itlb_replacement(env);
 285    ientry = &env->itlb[itlb];
 286    if (ientry->v) {
 287        tlb_flush_page(env_cpu(env), ientry->vpn << 10);
 288    }
 289    *ientry = env->utlb[utlb];
 290    update_itlb_use(env, itlb);
 291    return itlb;
 292}
 293
 294/* Find itlb entry
 295   Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
 296*/
 297static int find_itlb_entry(CPUSH4State * env, target_ulong address,
 298                           int use_asid)
 299{
 300    int e;
 301
 302    e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
 303    if (e == MMU_DTLB_MULTIPLE) {
 304        e = MMU_ITLB_MULTIPLE;
 305    } else if (e == MMU_DTLB_MISS) {
 306        e = MMU_ITLB_MISS;
 307    } else if (e >= 0) {
 308        update_itlb_use(env, e);
 309    }
 310    return e;
 311}
 312
 313/* Find utlb entry
 314   Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
 315static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
 316{
 317    /* per utlb access */
 318    increment_urc(env);
 319
 320    /* Return entry */
 321    return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
 322}
 323
 324/* Match address against MMU
 325   Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
 326   MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
 327   MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
 328   MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
 329   MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
 330*/
 331static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
 332                           int *prot, target_ulong address,
 333                           int rw, int access_type)
 334{
 335    int use_asid, n;
 336    tlb_t *matching = NULL;
 337
 338    use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
 339
 340    if (rw == 2) {
 341        n = find_itlb_entry(env, address, use_asid);
 342        if (n >= 0) {
 343            matching = &env->itlb[n];
 344            if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
 345                n = MMU_ITLB_VIOLATION;
 346            } else {
 347                *prot = PAGE_EXEC;
 348            }
 349        } else {
 350            n = find_utlb_entry(env, address, use_asid);
 351            if (n >= 0) {
 352                n = copy_utlb_entry_itlb(env, n);
 353                matching = &env->itlb[n];
 354                if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
 355                    n = MMU_ITLB_VIOLATION;
 356                } else {
 357                    *prot = PAGE_READ | PAGE_EXEC;
 358                    if ((matching->pr & 1) && matching->d) {
 359                        *prot |= PAGE_WRITE;
 360                    }
 361                }
 362            } else if (n == MMU_DTLB_MULTIPLE) {
 363                n = MMU_ITLB_MULTIPLE;
 364            } else if (n == MMU_DTLB_MISS) {
 365                n = MMU_ITLB_MISS;
 366            }
 367        }
 368    } else {
 369        n = find_utlb_entry(env, address, use_asid);
 370        if (n >= 0) {
 371            matching = &env->utlb[n];
 372            if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
 373                n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
 374                    MMU_DTLB_VIOLATION_READ;
 375            } else if ((rw == 1) && !(matching->pr & 1)) {
 376                n = MMU_DTLB_VIOLATION_WRITE;
 377            } else if ((rw == 1) && !matching->d) {
 378                n = MMU_DTLB_INITIAL_WRITE;
 379            } else {
 380                *prot = PAGE_READ;
 381                if ((matching->pr & 1) && matching->d) {
 382                    *prot |= PAGE_WRITE;
 383                }
 384            }
 385        } else if (n == MMU_DTLB_MISS) {
 386            n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
 387                MMU_DTLB_MISS_READ;
 388        }
 389    }
 390    if (n >= 0) {
 391        n = MMU_OK;
 392        *physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
 393            (address & (matching->size - 1));
 394    }
 395    return n;
 396}
 397
 398static int get_physical_address(CPUSH4State * env, target_ulong * physical,
 399                                int *prot, target_ulong address,
 400                                int rw, int access_type)
 401{
 402    /* P1, P2 and P4 areas do not use translation */
 403    if ((address >= 0x80000000 && address < 0xc0000000) ||
 404        address >= 0xe0000000) {
 405        if (!(env->sr & (1u << SR_MD))
 406            && (address < 0xe0000000 || address >= 0xe4000000)) {
 407            /* Unauthorized access in user mode (only store queues are available) */
 408            qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
 409            if (rw == 0)
 410                return MMU_DADDR_ERROR_READ;
 411            else if (rw == 1)
 412                return MMU_DADDR_ERROR_WRITE;
 413            else
 414                return MMU_IADDR_ERROR;
 415        }
 416        if (address >= 0x80000000 && address < 0xc0000000) {
 417            /* Mask upper 3 bits for P1 and P2 areas */
 418            *physical = address & 0x1fffffff;
 419        } else {
 420            *physical = address;
 421        }
 422        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 423        return MMU_OK;
 424    }
 425
 426    /* If MMU is disabled, return the corresponding physical page */
 427    if (!(env->mmucr & MMUCR_AT)) {
 428        *physical = address & 0x1FFFFFFF;
 429        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 430        return MMU_OK;
 431    }
 432
 433    /* We need to resort to the MMU */
 434    return get_mmu_address(env, physical, prot, address, rw, access_type);
 435}
 436
 437hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 438{
 439    SuperHCPU *cpu = SUPERH_CPU(cs);
 440    target_ulong physical;
 441    int prot;
 442
 443    get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
 444    return physical;
 445}
 446
 447void cpu_load_tlb(CPUSH4State * env)
 448{
 449    CPUState *cs = env_cpu(env);
 450    int n = cpu_mmucr_urc(env->mmucr);
 451    tlb_t * entry = &env->utlb[n];
 452
 453    if (entry->v) {
 454        /* Overwriting valid entry in utlb. */
 455        target_ulong address = entry->vpn << 10;
 456        tlb_flush_page(cs, address);
 457    }
 458
 459    /* Take values into cpu status from registers. */
 460    entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
 461    entry->vpn  = cpu_pteh_vpn(env->pteh);
 462    entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
 463    entry->ppn  = cpu_ptel_ppn(env->ptel);
 464    entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
 465    switch (entry->sz) {
 466    case 0: /* 00 */
 467        entry->size = 1024; /* 1K */
 468        break;
 469    case 1: /* 01 */
 470        entry->size = 1024 * 4; /* 4K */
 471        break;
 472    case 2: /* 10 */
 473        entry->size = 1024 * 64; /* 64K */
 474        break;
 475    case 3: /* 11 */
 476        entry->size = 1024 * 1024; /* 1M */
 477        break;
 478    default:
 479        cpu_abort(cs, "Unhandled load_tlb");
 480        break;
 481    }
 482    entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
 483    entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
 484    entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
 485    entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
 486    entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
 487    entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
 488    entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
 489}
 490
 491 void cpu_sh4_invalidate_tlb(CPUSH4State *s)
 492{
 493    int i;
 494
 495    /* UTLB */
 496    for (i = 0; i < UTLB_SIZE; i++) {
 497        tlb_t * entry = &s->utlb[i];
 498        entry->v = 0;
 499    }
 500    /* ITLB */
 501    for (i = 0; i < ITLB_SIZE; i++) {
 502        tlb_t * entry = &s->itlb[i];
 503        entry->v = 0;
 504    }
 505
 506    tlb_flush(env_cpu(s));
 507}
 508
 509uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
 510                                       hwaddr addr)
 511{
 512    int index = (addr & 0x00000300) >> 8;
 513    tlb_t * entry = &s->itlb[index];
 514
 515    return (entry->vpn  << 10) |
 516           (entry->v    <<  8) |
 517           (entry->asid);
 518}
 519
 520void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
 521                                    uint32_t mem_value)
 522{
 523    uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
 524    uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
 525    uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
 526
 527    int index = (addr & 0x00000300) >> 8;
 528    tlb_t * entry = &s->itlb[index];
 529    if (entry->v) {
 530        /* Overwriting valid entry in itlb. */
 531        target_ulong address = entry->vpn << 10;
 532        tlb_flush_page(env_cpu(s), address);
 533    }
 534    entry->asid = asid;
 535    entry->vpn = vpn;
 536    entry->v = v;
 537}
 538
 539uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
 540                                       hwaddr addr)
 541{
 542    int array = (addr & 0x00800000) >> 23;
 543    int index = (addr & 0x00000300) >> 8;
 544    tlb_t * entry = &s->itlb[index];
 545
 546    if (array == 0) {
 547        /* ITLB Data Array 1 */
 548        return (entry->ppn << 10) |
 549               (entry->v   <<  8) |
 550               (entry->pr  <<  5) |
 551               ((entry->sz & 1) <<  6) |
 552               ((entry->sz & 2) <<  4) |
 553               (entry->c   <<  3) |
 554               (entry->sh  <<  1);
 555    } else {
 556        /* ITLB Data Array 2 */
 557        return (entry->tc << 1) |
 558               (entry->sa);
 559    }
 560}
 561
 562void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
 563                                    uint32_t mem_value)
 564{
 565    int array = (addr & 0x00800000) >> 23;
 566    int index = (addr & 0x00000300) >> 8;
 567    tlb_t * entry = &s->itlb[index];
 568
 569    if (array == 0) {
 570        /* ITLB Data Array 1 */
 571        if (entry->v) {
 572            /* Overwriting valid entry in utlb. */
 573            target_ulong address = entry->vpn << 10;
 574            tlb_flush_page(env_cpu(s), address);
 575        }
 576        entry->ppn = (mem_value & 0x1ffffc00) >> 10;
 577        entry->v   = (mem_value & 0x00000100) >> 8;
 578        entry->sz  = (mem_value & 0x00000080) >> 6 |
 579                     (mem_value & 0x00000010) >> 4;
 580        entry->pr  = (mem_value & 0x00000040) >> 5;
 581        entry->c   = (mem_value & 0x00000008) >> 3;
 582        entry->sh  = (mem_value & 0x00000002) >> 1;
 583    } else {
 584        /* ITLB Data Array 2 */
 585        entry->tc  = (mem_value & 0x00000008) >> 3;
 586        entry->sa  = (mem_value & 0x00000007);
 587    }
 588}
 589
 590uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
 591                                       hwaddr addr)
 592{
 593    int index = (addr & 0x00003f00) >> 8;
 594    tlb_t * entry = &s->utlb[index];
 595
 596    increment_urc(s); /* per utlb access */
 597
 598    return (entry->vpn  << 10) |
 599           (entry->v    <<  8) |
 600           (entry->asid);
 601}
 602
 603void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
 604                                    uint32_t mem_value)
 605{
 606    int associate = addr & 0x0000080;
 607    uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
 608    uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
 609    uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
 610    uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
 611    int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
 612
 613    if (associate) {
 614        int i;
 615        tlb_t * utlb_match_entry = NULL;
 616        int needs_tlb_flush = 0;
 617
 618        /* search UTLB */
 619        for (i = 0; i < UTLB_SIZE; i++) {
 620            tlb_t * entry = &s->utlb[i];
 621            if (!entry->v)
 622                continue;
 623
 624            if (entry->vpn == vpn
 625                && (!use_asid || entry->asid == asid || entry->sh)) {
 626                if (utlb_match_entry) {
 627                    CPUState *cs = env_cpu(s);
 628
 629                    /* Multiple TLB Exception */
 630                    cs->exception_index = 0x140;
 631                    s->tea = addr;
 632                    break;
 633                }
 634                if (entry->v && !v)
 635                    needs_tlb_flush = 1;
 636                entry->v = v;
 637                entry->d = d;
 638                utlb_match_entry = entry;
 639            }
 640            increment_urc(s); /* per utlb access */
 641        }
 642
 643        /* search ITLB */
 644        for (i = 0; i < ITLB_SIZE; i++) {
 645            tlb_t * entry = &s->itlb[i];
 646            if (entry->vpn == vpn
 647                && (!use_asid || entry->asid == asid || entry->sh)) {
 648                if (entry->v && !v)
 649                    needs_tlb_flush = 1;
 650                if (utlb_match_entry)
 651                    *entry = *utlb_match_entry;
 652                else
 653                    entry->v = v;
 654                break;
 655            }
 656        }
 657
 658        if (needs_tlb_flush) {
 659            tlb_flush_page(env_cpu(s), vpn << 10);
 660        }
 661    } else {
 662        int index = (addr & 0x00003f00) >> 8;
 663        tlb_t * entry = &s->utlb[index];
 664        if (entry->v) {
 665            CPUState *cs = env_cpu(s);
 666
 667            /* Overwriting valid entry in utlb. */
 668            target_ulong address = entry->vpn << 10;
 669            tlb_flush_page(cs, address);
 670        }
 671        entry->asid = asid;
 672        entry->vpn = vpn;
 673        entry->d = d;
 674        entry->v = v;
 675        increment_urc(s);
 676    }
 677}
 678
 679uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
 680                                       hwaddr addr)
 681{
 682    int array = (addr & 0x00800000) >> 23;
 683    int index = (addr & 0x00003f00) >> 8;
 684    tlb_t * entry = &s->utlb[index];
 685
 686    increment_urc(s); /* per utlb access */
 687
 688    if (array == 0) {
 689        /* ITLB Data Array 1 */
 690        return (entry->ppn << 10) |
 691               (entry->v   <<  8) |
 692               (entry->pr  <<  5) |
 693               ((entry->sz & 1) <<  6) |
 694               ((entry->sz & 2) <<  4) |
 695               (entry->c   <<  3) |
 696               (entry->d   <<  2) |
 697               (entry->sh  <<  1) |
 698               (entry->wt);
 699    } else {
 700        /* ITLB Data Array 2 */
 701        return (entry->tc << 1) |
 702               (entry->sa);
 703    }
 704}
 705
 706void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
 707                                    uint32_t mem_value)
 708{
 709    int array = (addr & 0x00800000) >> 23;
 710    int index = (addr & 0x00003f00) >> 8;
 711    tlb_t * entry = &s->utlb[index];
 712
 713    increment_urc(s); /* per utlb access */
 714
 715    if (array == 0) {
 716        /* UTLB Data Array 1 */
 717        if (entry->v) {
 718            /* Overwriting valid entry in utlb. */
 719            target_ulong address = entry->vpn << 10;
 720            tlb_flush_page(env_cpu(s), address);
 721        }
 722        entry->ppn = (mem_value & 0x1ffffc00) >> 10;
 723        entry->v   = (mem_value & 0x00000100) >> 8;
 724        entry->sz  = (mem_value & 0x00000080) >> 6 |
 725                     (mem_value & 0x00000010) >> 4;
 726        entry->pr  = (mem_value & 0x00000060) >> 5;
 727        entry->c   = (mem_value & 0x00000008) >> 3;
 728        entry->d   = (mem_value & 0x00000004) >> 2;
 729        entry->sh  = (mem_value & 0x00000002) >> 1;
 730        entry->wt  = (mem_value & 0x00000001);
 731    } else {
 732        /* UTLB Data Array 2 */
 733        entry->tc = (mem_value & 0x00000008) >> 3;
 734        entry->sa = (mem_value & 0x00000007);
 735    }
 736}
 737
 738int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
 739{
 740    int n;
 741    int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
 742
 743    /* check area */
 744    if (env->sr & (1u << SR_MD)) {
 745        /* For privileged mode, P2 and P4 area is not cacheable. */
 746        if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
 747            return 0;
 748    } else {
 749        /* For user mode, only U0 area is cacheable. */
 750        if (0x80000000 <= addr)
 751            return 0;
 752    }
 753
 754    /*
 755     * TODO : Evaluate CCR and check if the cache is on or off.
 756     *        Now CCR is not in CPUSH4State, but in SH7750State.
 757     *        When you move the ccr into CPUSH4State, the code will be
 758     *        as follows.
 759     */
 760#if 0
 761    /* check if operand cache is enabled or not. */
 762    if (!(env->ccr & 1))
 763        return 0;
 764#endif
 765
 766    /* if MMU is off, no check for TLB. */
 767    if (env->mmucr & MMUCR_AT)
 768        return 1;
 769
 770    /* check TLB */
 771    n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
 772    if (n >= 0)
 773        return env->itlb[n].c;
 774
 775    n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
 776    if (n >= 0)
 777        return env->utlb[n].c;
 778
 779    return 0;
 780}
 781
 782#endif
 783
 784bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 785{
 786    if (interrupt_request & CPU_INTERRUPT_HARD) {
 787        SuperHCPU *cpu = SUPERH_CPU(cs);
 788        CPUSH4State *env = &cpu->env;
 789
 790        /* Delay slots are indivisible, ignore interrupts */
 791        if (env->flags & DELAY_SLOT_MASK) {
 792            return false;
 793        } else {
 794            superh_cpu_do_interrupt(cs);
 795            return true;
 796        }
 797    }
 798    return false;
 799}
 800
 801bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 802                         MMUAccessType access_type, int mmu_idx,
 803                         bool probe, uintptr_t retaddr)
 804{
 805    SuperHCPU *cpu = SUPERH_CPU(cs);
 806    CPUSH4State *env = &cpu->env;
 807    int ret;
 808
 809#ifdef CONFIG_USER_ONLY
 810    ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE :
 811           access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION :
 812           MMU_DTLB_VIOLATION_READ);
 813#else
 814    target_ulong physical;
 815    int prot, sh_access_type;
 816
 817    sh_access_type = ACCESS_INT;
 818    ret = get_physical_address(env, &physical, &prot, address,
 819                               access_type, sh_access_type);
 820
 821    if (ret == MMU_OK) {
 822        address &= TARGET_PAGE_MASK;
 823        physical &= TARGET_PAGE_MASK;
 824        tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
 825        return true;
 826    }
 827    if (probe) {
 828        return false;
 829    }
 830
 831    if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
 832        env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
 833    }
 834#endif
 835
 836    env->tea = address;
 837    switch (ret) {
 838    case MMU_ITLB_MISS:
 839    case MMU_DTLB_MISS_READ:
 840        cs->exception_index = 0x040;
 841        break;
 842    case MMU_DTLB_MULTIPLE:
 843    case MMU_ITLB_MULTIPLE:
 844        cs->exception_index = 0x140;
 845        break;
 846    case MMU_ITLB_VIOLATION:
 847        cs->exception_index = 0x0a0;
 848        break;
 849    case MMU_DTLB_MISS_WRITE:
 850        cs->exception_index = 0x060;
 851        break;
 852    case MMU_DTLB_INITIAL_WRITE:
 853        cs->exception_index = 0x080;
 854        break;
 855    case MMU_DTLB_VIOLATION_READ:
 856        cs->exception_index = 0x0a0;
 857        break;
 858    case MMU_DTLB_VIOLATION_WRITE:
 859        cs->exception_index = 0x0c0;
 860        break;
 861    case MMU_IADDR_ERROR:
 862    case MMU_DADDR_ERROR_READ:
 863        cs->exception_index = 0x0e0;
 864        break;
 865    case MMU_DADDR_ERROR_WRITE:
 866        cs->exception_index = 0x100;
 867        break;
 868    default:
 869        cpu_abort(cs, "Unhandled MMU fault");
 870    }
 871    cpu_loop_exit_restore(cs, retaddr);
 872}
 873