qemu/target/sparc/ldst_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for loads and stores
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "tcg.h"
  23#include "exec/helper-proto.h"
  24#include "exec/exec-all.h"
  25#include "exec/cpu_ldst.h"
  26#include "asi.h"
  27
  28//#define DEBUG_MMU
  29//#define DEBUG_MXCC
  30//#define DEBUG_UNALIGNED
  31//#define DEBUG_UNASSIGNED
  32//#define DEBUG_ASI
  33//#define DEBUG_CACHE_CONTROL
  34
  35#ifdef DEBUG_MMU
  36#define DPRINTF_MMU(fmt, ...)                                   \
  37    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
  38#else
  39#define DPRINTF_MMU(fmt, ...) do {} while (0)
  40#endif
  41
  42#ifdef DEBUG_MXCC
  43#define DPRINTF_MXCC(fmt, ...)                                  \
  44    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
  45#else
  46#define DPRINTF_MXCC(fmt, ...) do {} while (0)
  47#endif
  48
  49#ifdef DEBUG_ASI
  50#define DPRINTF_ASI(fmt, ...)                                   \
  51    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
  52#endif
  53
  54#ifdef DEBUG_CACHE_CONTROL
  55#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
  56    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
  57#else
  58#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
  59#endif
  60
  61#ifdef TARGET_SPARC64
  62#ifndef TARGET_ABI32
  63#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
  64#else
  65#define AM_CHECK(env1) (1)
  66#endif
  67#endif
  68
  69#define QT0 (env->qt0)
  70#define QT1 (env->qt1)
  71
  72#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
  73/* Calculates TSB pointer value for fault page size
  74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
  75 * UA2005 holds the page size configuration in mmu_ctx registers */
  76static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
  77                                       const SparcV9MMU *mmu, const int idx)
  78{
  79    uint64_t tsb_register;
  80    int page_size;
  81    if (cpu_has_hypervisor(env)) {
  82        int tsb_index = 0;
  83        int ctx = mmu->tag_access & 0x1fffULL;
  84        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
  85        tsb_index = idx;
  86        tsb_index |= ctx ? 2 : 0;
  87        page_size = idx ? ctx_register >> 8 : ctx_register;
  88        page_size &= 7;
  89        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
  90    } else {
  91        page_size = idx;
  92        tsb_register = mmu->tsb;
  93    }
  94    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
  95    int tsb_size  = tsb_register & 0xf;
  96
  97    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
  98
  99    /* move va bits to correct position,
 100     * the context bits will be masked out later */
 101    uint64_t va = mmu->tag_access >> (3 * page_size + 9);
 102
 103    /* calculate tsb_base mask and adjust va if split is in use */
 104    if (tsb_split) {
 105        if (idx == 0) {
 106            va &= ~(1ULL << (13 + tsb_size));
 107        } else {
 108            va |= (1ULL << (13 + tsb_size));
 109        }
 110        tsb_base_mask <<= 1;
 111    }
 112
 113    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
 114}
 115
 116/* Calculates tag target register value by reordering bits
 117   in tag access register */
 118static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
 119{
 120    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
 121}
 122
 123static void replace_tlb_entry(SparcTLBEntry *tlb,
 124                              uint64_t tlb_tag, uint64_t tlb_tte,
 125                              CPUSPARCState *env)
 126{
 127    target_ulong mask, size, va, offset;
 128
 129    /* flush page range if translation is valid */
 130    if (TTE_IS_VALID(tlb->tte)) {
 131        CPUState *cs = env_cpu(env);
 132
 133        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
 134        mask = 1ULL + ~size;
 135
 136        va = tlb->tag & mask;
 137
 138        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
 139            tlb_flush_page(cs, va + offset);
 140        }
 141    }
 142
 143    tlb->tag = tlb_tag;
 144    tlb->tte = tlb_tte;
 145}
 146
 147static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
 148                      const char *strmmu, CPUSPARCState *env1)
 149{
 150    unsigned int i;
 151    target_ulong mask;
 152    uint64_t context;
 153
 154    int is_demap_context = (demap_addr >> 6) & 1;
 155
 156    /* demap context */
 157    switch ((demap_addr >> 4) & 3) {
 158    case 0: /* primary */
 159        context = env1->dmmu.mmu_primary_context;
 160        break;
 161    case 1: /* secondary */
 162        context = env1->dmmu.mmu_secondary_context;
 163        break;
 164    case 2: /* nucleus */
 165        context = 0;
 166        break;
 167    case 3: /* reserved */
 168    default:
 169        return;
 170    }
 171
 172    for (i = 0; i < 64; i++) {
 173        if (TTE_IS_VALID(tlb[i].tte)) {
 174
 175            if (is_demap_context) {
 176                /* will remove non-global entries matching context value */
 177                if (TTE_IS_GLOBAL(tlb[i].tte) ||
 178                    !tlb_compare_context(&tlb[i], context)) {
 179                    continue;
 180                }
 181            } else {
 182                /* demap page
 183                   will remove any entry matching VA */
 184                mask = 0xffffffffffffe000ULL;
 185                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
 186
 187                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
 188                    continue;
 189                }
 190
 191                /* entry should be global or matching context value */
 192                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
 193                    !tlb_compare_context(&tlb[i], context)) {
 194                    continue;
 195                }
 196            }
 197
 198            replace_tlb_entry(&tlb[i], 0, 0, env1);
 199#ifdef DEBUG_MMU
 200            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
 201            dump_mmu(env1);
 202#endif
 203        }
 204    }
 205}
 206
 207static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
 208                                   uint64_t sun4v_tte)
 209{
 210    uint64_t sun4u_tte;
 211    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
 212        /* is already in the sun4u format */
 213        return sun4v_tte;
 214    }
 215    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
 216    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
 217    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
 218    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
 219    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
 220    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
 221                             TTE_SIDEEFFECT_BIT);
 222    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
 223    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
 224    return sun4u_tte;
 225}
 226
 227static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
 228                                 uint64_t tlb_tag, uint64_t tlb_tte,
 229                                 const char *strmmu, CPUSPARCState *env1,
 230                                 uint64_t addr)
 231{
 232    unsigned int i, replace_used;
 233
 234    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
 235    if (cpu_has_hypervisor(env1)) {
 236        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
 237        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
 238        uint32_t new_ctx = tlb_tag & 0x1fffU;
 239        for (i = 0; i < 64; i++) {
 240            uint32_t ctx = tlb[i].tag & 0x1fffU;
 241            /* check if new mapping overlaps an existing one */
 242            if (new_ctx == ctx) {
 243                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
 244                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
 245                if (new_vaddr == vaddr
 246                    || (new_vaddr < vaddr + size
 247                        && vaddr < new_vaddr + new_size)) {
 248                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
 249                                new_vaddr);
 250                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 251                    return;
 252                }
 253            }
 254
 255        }
 256    }
 257    /* Try replacing invalid entry */
 258    for (i = 0; i < 64; i++) {
 259        if (!TTE_IS_VALID(tlb[i].tte)) {
 260            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 261#ifdef DEBUG_MMU
 262            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
 263            dump_mmu(env1);
 264#endif
 265            return;
 266        }
 267    }
 268
 269    /* All entries are valid, try replacing unlocked entry */
 270
 271    for (replace_used = 0; replace_used < 2; ++replace_used) {
 272
 273        /* Used entries are not replaced on first pass */
 274
 275        for (i = 0; i < 64; i++) {
 276            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
 277
 278                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 279#ifdef DEBUG_MMU
 280                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
 281                            strmmu, (replace_used ? "used" : "unused"), i);
 282                dump_mmu(env1);
 283#endif
 284                return;
 285            }
 286        }
 287
 288        /* Now reset used bit and search for unused entries again */
 289
 290        for (i = 0; i < 64; i++) {
 291            TTE_SET_UNUSED(tlb[i].tte);
 292        }
 293    }
 294
 295#ifdef DEBUG_MMU
 296    DPRINTF_MMU("%s lru replacement: no free entries available, "
 297                "replacing the last one\n", strmmu);
 298#endif
 299    /* corner case: the last entry is replaced anyway */
 300    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
 301}
 302
 303#endif
 304
 305#ifdef TARGET_SPARC64
 306/* returns true if access using this ASI is to have address translated by MMU
 307   otherwise access is to raw physical address */
 308/* TODO: check sparc32 bits */
 309static inline int is_translating_asi(int asi)
 310{
 311    /* Ultrasparc IIi translating asi
 312       - note this list is defined by cpu implementation
 313    */
 314    switch (asi) {
 315    case 0x04 ... 0x11:
 316    case 0x16 ... 0x19:
 317    case 0x1E ... 0x1F:
 318    case 0x24 ... 0x2C:
 319    case 0x70 ... 0x73:
 320    case 0x78 ... 0x79:
 321    case 0x80 ... 0xFF:
 322        return 1;
 323
 324    default:
 325        return 0;
 326    }
 327}
 328
 329static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
 330{
 331    if (AM_CHECK(env1)) {
 332        addr &= 0xffffffffULL;
 333    }
 334    return addr;
 335}
 336
 337static inline target_ulong asi_address_mask(CPUSPARCState *env,
 338                                            int asi, target_ulong addr)
 339{
 340    if (is_translating_asi(asi)) {
 341        addr = address_mask(env, addr);
 342    }
 343    return addr;
 344}
 345
 346#ifndef CONFIG_USER_ONLY
 347static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
 348{
 349    /* ASIs >= 0x80 are user mode.
 350     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
 351     * ASIs <= 0x2f are super mode.
 352     */
 353    if (asi < 0x80
 354        && !cpu_hypervisor_mode(env)
 355        && (!cpu_supervisor_mode(env)
 356            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
 357        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
 358    }
 359}
 360#endif /* !CONFIG_USER_ONLY */
 361#endif
 362
 363static void do_check_align(CPUSPARCState *env, target_ulong addr,
 364                           uint32_t align, uintptr_t ra)
 365{
 366    if (addr & align) {
 367#ifdef DEBUG_UNALIGNED
 368        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
 369               "\n", addr, env->pc);
 370#endif
 371        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
 372    }
 373}
 374
 375void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
 376{
 377    do_check_align(env, addr, align, GETPC());
 378}
 379
 380#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
 381    defined(DEBUG_MXCC)
 382static void dump_mxcc(CPUSPARCState *env)
 383{
 384    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 385           "\n",
 386           env->mxccdata[0], env->mxccdata[1],
 387           env->mxccdata[2], env->mxccdata[3]);
 388    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 389           "\n"
 390           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 391           "\n",
 392           env->mxccregs[0], env->mxccregs[1],
 393           env->mxccregs[2], env->mxccregs[3],
 394           env->mxccregs[4], env->mxccregs[5],
 395           env->mxccregs[6], env->mxccregs[7]);
 396}
 397#endif
 398
 399#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
 400    && defined(DEBUG_ASI)
 401static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 402                     uint64_t r1)
 403{
 404    switch (size) {
 405    case 1:
 406        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 407                    addr, asi, r1 & 0xff);
 408        break;
 409    case 2:
 410        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 411                    addr, asi, r1 & 0xffff);
 412        break;
 413    case 4:
 414        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 415                    addr, asi, r1 & 0xffffffff);
 416        break;
 417    case 8:
 418        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 419                    addr, asi, r1);
 420        break;
 421    }
 422}
 423#endif
 424
 425#ifndef TARGET_SPARC64
 426#ifndef CONFIG_USER_ONLY
 427
 428
 429/* Leon3 cache control */
 430
 431static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
 432                                   uint64_t val, int size)
 433{
 434    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
 435                          addr, val, size);
 436
 437    if (size != 4) {
 438        DPRINTF_CACHE_CONTROL("32bits only\n");
 439        return;
 440    }
 441
 442    switch (addr) {
 443    case 0x00:              /* Cache control */
 444
 445        /* These values must always be read as zeros */
 446        val &= ~CACHE_CTRL_FD;
 447        val &= ~CACHE_CTRL_FI;
 448        val &= ~CACHE_CTRL_IB;
 449        val &= ~CACHE_CTRL_IP;
 450        val &= ~CACHE_CTRL_DP;
 451
 452        env->cache_control = val;
 453        break;
 454    case 0x04:              /* Instruction cache configuration */
 455    case 0x08:              /* Data cache configuration */
 456        /* Read Only */
 457        break;
 458    default:
 459        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
 460        break;
 461    };
 462}
 463
 464static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
 465                                       int size)
 466{
 467    uint64_t ret = 0;
 468
 469    if (size != 4) {
 470        DPRINTF_CACHE_CONTROL("32bits only\n");
 471        return 0;
 472    }
 473
 474    switch (addr) {
 475    case 0x00:              /* Cache control */
 476        ret = env->cache_control;
 477        break;
 478
 479        /* Configuration registers are read and only always keep those
 480           predefined values */
 481
 482    case 0x04:              /* Instruction cache configuration */
 483        ret = 0x10220000;
 484        break;
 485    case 0x08:              /* Data cache configuration */
 486        ret = 0x18220000;
 487        break;
 488    default:
 489        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
 490        break;
 491    };
 492    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
 493                          addr, ret, size);
 494    return ret;
 495}
 496
 497uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
 498                       int asi, uint32_t memop)
 499{
 500    int size = 1 << (memop & MO_SIZE);
 501    int sign = memop & MO_SIGN;
 502    CPUState *cs = env_cpu(env);
 503    uint64_t ret = 0;
 504#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 505    uint32_t last_addr = addr;
 506#endif
 507
 508    do_check_align(env, addr, size - 1, GETPC());
 509    switch (asi) {
 510    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 511    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 512        switch (addr) {
 513        case 0x00:          /* Leon3 Cache Control */
 514        case 0x08:          /* Leon3 Instruction Cache config */
 515        case 0x0C:          /* Leon3 Date Cache config */
 516            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 517                ret = leon3_cache_control_ld(env, addr, size);
 518            }
 519            break;
 520        case 0x01c00a00: /* MXCC control register */
 521            if (size == 8) {
 522                ret = env->mxccregs[3];
 523            } else {
 524                qemu_log_mask(LOG_UNIMP,
 525                              "%08x: unimplemented access size: %d\n", addr,
 526                              size);
 527            }
 528            break;
 529        case 0x01c00a04: /* MXCC control register */
 530            if (size == 4) {
 531                ret = env->mxccregs[3];
 532            } else {
 533                qemu_log_mask(LOG_UNIMP,
 534                              "%08x: unimplemented access size: %d\n", addr,
 535                              size);
 536            }
 537            break;
 538        case 0x01c00c00: /* Module reset register */
 539            if (size == 8) {
 540                ret = env->mxccregs[5];
 541                /* should we do something here? */
 542            } else {
 543                qemu_log_mask(LOG_UNIMP,
 544                              "%08x: unimplemented access size: %d\n", addr,
 545                              size);
 546            }
 547            break;
 548        case 0x01c00f00: /* MBus port address register */
 549            if (size == 8) {
 550                ret = env->mxccregs[7];
 551            } else {
 552                qemu_log_mask(LOG_UNIMP,
 553                              "%08x: unimplemented access size: %d\n", addr,
 554                              size);
 555            }
 556            break;
 557        default:
 558            qemu_log_mask(LOG_UNIMP,
 559                          "%08x: unimplemented address, size: %d\n", addr,
 560                          size);
 561            break;
 562        }
 563        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
 564                     "addr = %08x -> ret = %" PRIx64 ","
 565                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 566#ifdef DEBUG_MXCC
 567        dump_mxcc(env);
 568#endif
 569        break;
 570    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
 571    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
 572        {
 573            int mmulev;
 574
 575            mmulev = (addr >> 8) & 15;
 576            if (mmulev > 4) {
 577                ret = 0;
 578            } else {
 579                ret = mmu_probe(env, addr, mmulev);
 580            }
 581            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 582                        addr, mmulev, ret);
 583        }
 584        break;
 585    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
 586    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
 587        {
 588            int reg = (addr >> 8) & 0x1f;
 589
 590            ret = env->mmuregs[reg];
 591            if (reg == 3) { /* Fault status cleared on read */
 592                env->mmuregs[3] = 0;
 593            } else if (reg == 0x13) { /* Fault status read */
 594                ret = env->mmuregs[3];
 595            } else if (reg == 0x14) { /* Fault address read */
 596                ret = env->mmuregs[4];
 597            }
 598            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 599        }
 600        break;
 601    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 602    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 603    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 604        break;
 605    case ASI_KERNELTXT: /* Supervisor code access */
 606        switch (size) {
 607        case 1:
 608            ret = cpu_ldub_code(env, addr);
 609            break;
 610        case 2:
 611            ret = cpu_lduw_code(env, addr);
 612            break;
 613        default:
 614        case 4:
 615            ret = cpu_ldl_code(env, addr);
 616            break;
 617        case 8:
 618            ret = cpu_ldq_code(env, addr);
 619            break;
 620        }
 621        break;
 622    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
 623    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
 624    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
 625    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
 626        break;
 627    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 628        switch (size) {
 629        case 1:
 630            ret = ldub_phys(cs->as, (hwaddr)addr
 631                            | ((hwaddr)(asi & 0xf) << 32));
 632            break;
 633        case 2:
 634            ret = lduw_phys(cs->as, (hwaddr)addr
 635                            | ((hwaddr)(asi & 0xf) << 32));
 636            break;
 637        default:
 638        case 4:
 639            ret = ldl_phys(cs->as, (hwaddr)addr
 640                           | ((hwaddr)(asi & 0xf) << 32));
 641            break;
 642        case 8:
 643            ret = ldq_phys(cs->as, (hwaddr)addr
 644                           | ((hwaddr)(asi & 0xf) << 32));
 645            break;
 646        }
 647        break;
 648    case 0x30: /* Turbosparc secondary cache diagnostic */
 649    case 0x31: /* Turbosparc RAM snoop */
 650    case 0x32: /* Turbosparc page table descriptor diagnostic */
 651    case 0x39: /* data cache diagnostic register */
 652        ret = 0;
 653        break;
 654    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
 655        {
 656            int reg = (addr >> 8) & 3;
 657
 658            switch (reg) {
 659            case 0: /* Breakpoint Value (Addr) */
 660                ret = env->mmubpregs[reg];
 661                break;
 662            case 1: /* Breakpoint Mask */
 663                ret = env->mmubpregs[reg];
 664                break;
 665            case 2: /* Breakpoint Control */
 666                ret = env->mmubpregs[reg];
 667                break;
 668            case 3: /* Breakpoint Status */
 669                ret = env->mmubpregs[reg];
 670                env->mmubpregs[reg] = 0ULL;
 671                break;
 672            }
 673            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
 674                        ret);
 675        }
 676        break;
 677    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
 678        ret = env->mmubpctrv;
 679        break;
 680    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
 681        ret = env->mmubpctrc;
 682        break;
 683    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
 684        ret = env->mmubpctrs;
 685        break;
 686    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
 687        ret = env->mmubpaction;
 688        break;
 689    case ASI_USERTXT: /* User code access, XXX */
 690    default:
 691        cpu_unassigned_access(cs, addr, false, false, asi, size);
 692        ret = 0;
 693        break;
 694
 695    case ASI_USERDATA: /* User data access */
 696    case ASI_KERNELDATA: /* Supervisor data access */
 697    case ASI_P: /* Implicit primary context data access (v9 only?) */
 698    case ASI_M_BYPASS:    /* MMU passthrough */
 699    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
 700        /* These are always handled inline.  */
 701        g_assert_not_reached();
 702    }
 703    if (sign) {
 704        switch (size) {
 705        case 1:
 706            ret = (int8_t) ret;
 707            break;
 708        case 2:
 709            ret = (int16_t) ret;
 710            break;
 711        case 4:
 712            ret = (int32_t) ret;
 713            break;
 714        default:
 715            break;
 716        }
 717    }
 718#ifdef DEBUG_ASI
 719    dump_asi("read ", last_addr, asi, size, ret);
 720#endif
 721    return ret;
 722}
 723
 724void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
 725                   int asi, uint32_t memop)
 726{
 727    int size = 1 << (memop & MO_SIZE);
 728    CPUState *cs = env_cpu(env);
 729
 730    do_check_align(env, addr, size - 1, GETPC());
 731    switch (asi) {
 732    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 733    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 734        switch (addr) {
 735        case 0x00:          /* Leon3 Cache Control */
 736        case 0x08:          /* Leon3 Instruction Cache config */
 737        case 0x0C:          /* Leon3 Date Cache config */
 738            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 739                leon3_cache_control_st(env, addr, val, size);
 740            }
 741            break;
 742
 743        case 0x01c00000: /* MXCC stream data register 0 */
 744            if (size == 8) {
 745                env->mxccdata[0] = val;
 746            } else {
 747                qemu_log_mask(LOG_UNIMP,
 748                              "%08x: unimplemented access size: %d\n", addr,
 749                              size);
 750            }
 751            break;
 752        case 0x01c00008: /* MXCC stream data register 1 */
 753            if (size == 8) {
 754                env->mxccdata[1] = val;
 755            } else {
 756                qemu_log_mask(LOG_UNIMP,
 757                              "%08x: unimplemented access size: %d\n", addr,
 758                              size);
 759            }
 760            break;
 761        case 0x01c00010: /* MXCC stream data register 2 */
 762            if (size == 8) {
 763                env->mxccdata[2] = val;
 764            } else {
 765                qemu_log_mask(LOG_UNIMP,
 766                              "%08x: unimplemented access size: %d\n", addr,
 767                              size);
 768            }
 769            break;
 770        case 0x01c00018: /* MXCC stream data register 3 */
 771            if (size == 8) {
 772                env->mxccdata[3] = val;
 773            } else {
 774                qemu_log_mask(LOG_UNIMP,
 775                              "%08x: unimplemented access size: %d\n", addr,
 776                              size);
 777            }
 778            break;
 779        case 0x01c00100: /* MXCC stream source */
 780            if (size == 8) {
 781                env->mxccregs[0] = val;
 782            } else {
 783                qemu_log_mask(LOG_UNIMP,
 784                              "%08x: unimplemented access size: %d\n", addr,
 785                              size);
 786            }
 787            env->mxccdata[0] = ldq_phys(cs->as,
 788                                        (env->mxccregs[0] & 0xffffffffULL) +
 789                                        0);
 790            env->mxccdata[1] = ldq_phys(cs->as,
 791                                        (env->mxccregs[0] & 0xffffffffULL) +
 792                                        8);
 793            env->mxccdata[2] = ldq_phys(cs->as,
 794                                        (env->mxccregs[0] & 0xffffffffULL) +
 795                                        16);
 796            env->mxccdata[3] = ldq_phys(cs->as,
 797                                        (env->mxccregs[0] & 0xffffffffULL) +
 798                                        24);
 799            break;
 800        case 0x01c00200: /* MXCC stream destination */
 801            if (size == 8) {
 802                env->mxccregs[1] = val;
 803            } else {
 804                qemu_log_mask(LOG_UNIMP,
 805                              "%08x: unimplemented access size: %d\n", addr,
 806                              size);
 807            }
 808            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
 809                     env->mxccdata[0]);
 810            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
 811                     env->mxccdata[1]);
 812            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
 813                     env->mxccdata[2]);
 814            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
 815                     env->mxccdata[3]);
 816            break;
 817        case 0x01c00a00: /* MXCC control register */
 818            if (size == 8) {
 819                env->mxccregs[3] = val;
 820            } else {
 821                qemu_log_mask(LOG_UNIMP,
 822                              "%08x: unimplemented access size: %d\n", addr,
 823                              size);
 824            }
 825            break;
 826        case 0x01c00a04: /* MXCC control register */
 827            if (size == 4) {
 828                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
 829                    | val;
 830            } else {
 831                qemu_log_mask(LOG_UNIMP,
 832                              "%08x: unimplemented access size: %d\n", addr,
 833                              size);
 834            }
 835            break;
 836        case 0x01c00e00: /* MXCC error register  */
 837            /* writing a 1 bit clears the error */
 838            if (size == 8) {
 839                env->mxccregs[6] &= ~val;
 840            } else {
 841                qemu_log_mask(LOG_UNIMP,
 842                              "%08x: unimplemented access size: %d\n", addr,
 843                              size);
 844            }
 845            break;
 846        case 0x01c00f00: /* MBus port address register */
 847            if (size == 8) {
 848                env->mxccregs[7] = val;
 849            } else {
 850                qemu_log_mask(LOG_UNIMP,
 851                              "%08x: unimplemented access size: %d\n", addr,
 852                              size);
 853            }
 854            break;
 855        default:
 856            qemu_log_mask(LOG_UNIMP,
 857                          "%08x: unimplemented address, size: %d\n", addr,
 858                          size);
 859            break;
 860        }
 861        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
 862                     asi, size, addr, val);
 863#ifdef DEBUG_MXCC
 864        dump_mxcc(env);
 865#endif
 866        break;
 867    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
 868    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
 869        {
 870            int mmulev;
 871
 872            mmulev = (addr >> 8) & 15;
 873            DPRINTF_MMU("mmu flush level %d\n", mmulev);
 874            switch (mmulev) {
 875            case 0: /* flush page */
 876                tlb_flush_page(cs, addr & 0xfffff000);
 877                break;
 878            case 1: /* flush segment (256k) */
 879            case 2: /* flush region (16M) */
 880            case 3: /* flush context (4G) */
 881            case 4: /* flush entire */
 882                tlb_flush(cs);
 883                break;
 884            default:
 885                break;
 886            }
 887#ifdef DEBUG_MMU
 888            dump_mmu(env);
 889#endif
 890        }
 891        break;
 892    case ASI_M_MMUREGS: /* write MMU regs */
 893    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
 894        {
 895            int reg = (addr >> 8) & 0x1f;
 896            uint32_t oldreg;
 897
 898            oldreg = env->mmuregs[reg];
 899            switch (reg) {
 900            case 0: /* Control Register */
 901                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
 902                    (val & 0x00ffffff);
 903                /* Mappings generated during no-fault mode
 904                   are invalid in normal mode.  */
 905                if ((oldreg ^ env->mmuregs[reg])
 906                    & (MMU_NF | env->def.mmu_bm)) {
 907                    tlb_flush(cs);
 908                }
 909                break;
 910            case 1: /* Context Table Pointer Register */
 911                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
 912                break;
 913            case 2: /* Context Register */
 914                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
 915                if (oldreg != env->mmuregs[reg]) {
 916                    /* we flush when the MMU context changes because
 917                       QEMU has no MMU context support */
 918                    tlb_flush(cs);
 919                }
 920                break;
 921            case 3: /* Synchronous Fault Status Register with Clear */
 922            case 4: /* Synchronous Fault Address Register */
 923                break;
 924            case 0x10: /* TLB Replacement Control Register */
 925                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
 926                break;
 927            case 0x13: /* Synchronous Fault Status Register with Read
 928                          and Clear */
 929                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
 930                break;
 931            case 0x14: /* Synchronous Fault Address Register */
 932                env->mmuregs[4] = val;
 933                break;
 934            default:
 935                env->mmuregs[reg] = val;
 936                break;
 937            }
 938            if (oldreg != env->mmuregs[reg]) {
 939                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
 940                            reg, oldreg, env->mmuregs[reg]);
 941            }
 942#ifdef DEBUG_MMU
 943            dump_mmu(env);
 944#endif
 945        }
 946        break;
 947    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 948    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 949    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 950        break;
 951    case ASI_M_TXTC_TAG:   /* I-cache tag */
 952    case ASI_M_TXTC_DATA:  /* I-cache data */
 953    case ASI_M_DATAC_TAG:  /* D-cache tag */
 954    case ASI_M_DATAC_DATA: /* D-cache data */
 955    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
 956    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
 957    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
 958    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
 959    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
 960        break;
 961    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 962        {
 963            switch (size) {
 964            case 1:
 965                stb_phys(cs->as, (hwaddr)addr
 966                         | ((hwaddr)(asi & 0xf) << 32), val);
 967                break;
 968            case 2:
 969                stw_phys(cs->as, (hwaddr)addr
 970                         | ((hwaddr)(asi & 0xf) << 32), val);
 971                break;
 972            case 4:
 973            default:
 974                stl_phys(cs->as, (hwaddr)addr
 975                         | ((hwaddr)(asi & 0xf) << 32), val);
 976                break;
 977            case 8:
 978                stq_phys(cs->as, (hwaddr)addr
 979                         | ((hwaddr)(asi & 0xf) << 32), val);
 980                break;
 981            }
 982        }
 983        break;
 984    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
 985    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
 986                  Turbosparc snoop RAM */
 987    case 0x32: /* store buffer control or Turbosparc page table
 988                  descriptor diagnostic */
 989    case 0x36: /* I-cache flash clear */
 990    case 0x37: /* D-cache flash clear */
 991        break;
 992    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
 993        {
 994            int reg = (addr >> 8) & 3;
 995
 996            switch (reg) {
 997            case 0: /* Breakpoint Value (Addr) */
 998                env->mmubpregs[reg] = (val & 0xfffffffffULL);
 999                break;
1000            case 1: /* Breakpoint Mask */
1001                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1002                break;
1003            case 2: /* Breakpoint Control */
1004                env->mmubpregs[reg] = (val & 0x7fULL);
1005                break;
1006            case 3: /* Breakpoint Status */
1007                env->mmubpregs[reg] = (val & 0xfULL);
1008                break;
1009            }
1010            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1011                        env->mmuregs[reg]);
1012        }
1013        break;
1014    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1015        env->mmubpctrv = val & 0xffffffff;
1016        break;
1017    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1018        env->mmubpctrc = val & 0x3;
1019        break;
1020    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1021        env->mmubpctrs = val & 0x3;
1022        break;
1023    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1024        env->mmubpaction = val & 0x1fff;
1025        break;
1026    case ASI_USERTXT: /* User code access, XXX */
1027    case ASI_KERNELTXT: /* Supervisor code access, XXX */
1028    default:
1029        cpu_unassigned_access(cs, addr, true, false, asi, size);
1030        break;
1031
1032    case ASI_USERDATA: /* User data access */
1033    case ASI_KERNELDATA: /* Supervisor data access */
1034    case ASI_P:
1035    case ASI_M_BYPASS:    /* MMU passthrough */
1036    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1037    case ASI_M_BCOPY: /* Block copy, sta access */
1038    case ASI_M_BFILL: /* Block fill, stda access */
1039        /* These are always handled inline.  */
1040        g_assert_not_reached();
1041    }
1042#ifdef DEBUG_ASI
1043    dump_asi("write", addr, asi, size, val);
1044#endif
1045}
1046
1047#endif /* CONFIG_USER_ONLY */
1048#else /* TARGET_SPARC64 */
1049
1050#ifdef CONFIG_USER_ONLY
1051uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1052                       int asi, uint32_t memop)
1053{
1054    int size = 1 << (memop & MO_SIZE);
1055    int sign = memop & MO_SIGN;
1056    uint64_t ret = 0;
1057
1058    if (asi < 0x80) {
1059        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1060    }
1061    do_check_align(env, addr, size - 1, GETPC());
1062    addr = asi_address_mask(env, asi, addr);
1063
1064    switch (asi) {
1065    case ASI_PNF:  /* Primary no-fault */
1066    case ASI_PNFL: /* Primary no-fault LE */
1067    case ASI_SNF:  /* Secondary no-fault */
1068    case ASI_SNFL: /* Secondary no-fault LE */
1069        if (page_check_range(addr, size, PAGE_READ) == -1) {
1070            ret = 0;
1071            break;
1072        }
1073        switch (size) {
1074        case 1:
1075            ret = cpu_ldub_data(env, addr);
1076            break;
1077        case 2:
1078            ret = cpu_lduw_data(env, addr);
1079            break;
1080        case 4:
1081            ret = cpu_ldl_data(env, addr);
1082            break;
1083        case 8:
1084            ret = cpu_ldq_data(env, addr);
1085            break;
1086        default:
1087            g_assert_not_reached();
1088        }
1089        break;
1090        break;
1091
1092    case ASI_P: /* Primary */
1093    case ASI_PL: /* Primary LE */
1094    case ASI_S:  /* Secondary */
1095    case ASI_SL: /* Secondary LE */
1096        /* These are always handled inline.  */
1097        g_assert_not_reached();
1098
1099    default:
1100        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1101    }
1102
1103    /* Convert from little endian */
1104    switch (asi) {
1105    case ASI_PNFL: /* Primary no-fault LE */
1106    case ASI_SNFL: /* Secondary no-fault LE */
1107        switch (size) {
1108        case 2:
1109            ret = bswap16(ret);
1110            break;
1111        case 4:
1112            ret = bswap32(ret);
1113            break;
1114        case 8:
1115            ret = bswap64(ret);
1116            break;
1117        }
1118    }
1119
1120    /* Convert to signed number */
1121    if (sign) {
1122        switch (size) {
1123        case 1:
1124            ret = (int8_t) ret;
1125            break;
1126        case 2:
1127            ret = (int16_t) ret;
1128            break;
1129        case 4:
1130            ret = (int32_t) ret;
1131            break;
1132        }
1133    }
1134#ifdef DEBUG_ASI
1135    dump_asi("read", addr, asi, size, ret);
1136#endif
1137    return ret;
1138}
1139
1140void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1141                   int asi, uint32_t memop)
1142{
1143    int size = 1 << (memop & MO_SIZE);
1144#ifdef DEBUG_ASI
1145    dump_asi("write", addr, asi, size, val);
1146#endif
1147    if (asi < 0x80) {
1148        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1149    }
1150    do_check_align(env, addr, size - 1, GETPC());
1151
1152    switch (asi) {
1153    case ASI_P:  /* Primary */
1154    case ASI_PL: /* Primary LE */
1155    case ASI_S:  /* Secondary */
1156    case ASI_SL: /* Secondary LE */
1157        /* These are always handled inline.  */
1158        g_assert_not_reached();
1159
1160    case ASI_PNF:  /* Primary no-fault, RO */
1161    case ASI_SNF:  /* Secondary no-fault, RO */
1162    case ASI_PNFL: /* Primary no-fault LE, RO */
1163    case ASI_SNFL: /* Secondary no-fault LE, RO */
1164    default:
1165        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1166    }
1167}
1168
1169#else /* CONFIG_USER_ONLY */
1170
1171uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1172                       int asi, uint32_t memop)
1173{
1174    int size = 1 << (memop & MO_SIZE);
1175    int sign = memop & MO_SIGN;
1176    CPUState *cs = env_cpu(env);
1177    uint64_t ret = 0;
1178#if defined(DEBUG_ASI)
1179    target_ulong last_addr = addr;
1180#endif
1181
1182    asi &= 0xff;
1183
1184    do_check_asi(env, asi, GETPC());
1185    do_check_align(env, addr, size - 1, GETPC());
1186    addr = asi_address_mask(env, asi, addr);
1187
1188    switch (asi) {
1189    case ASI_PNF:
1190    case ASI_PNFL:
1191    case ASI_SNF:
1192    case ASI_SNFL:
1193        {
1194            TCGMemOpIdx oi;
1195            int idx = (env->pstate & PS_PRIV
1196                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1197                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1198
1199            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1200#ifdef DEBUG_ASI
1201                dump_asi("read ", last_addr, asi, size, ret);
1202#endif
1203                /* exception_index is set in get_physical_address_data. */
1204                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1205            }
1206            oi = make_memop_idx(memop, idx);
1207            switch (size) {
1208            case 1:
1209                ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1210                break;
1211            case 2:
1212                if (asi & 8) {
1213                    ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1214                } else {
1215                    ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1216                }
1217                break;
1218            case 4:
1219                if (asi & 8) {
1220                    ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1221                } else {
1222                    ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1223                }
1224                break;
1225            case 8:
1226                if (asi & 8) {
1227                    ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1228                } else {
1229                    ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1230                }
1231                break;
1232            default:
1233                g_assert_not_reached();
1234            }
1235        }
1236        break;
1237
1238    case ASI_AIUP:  /* As if user primary */
1239    case ASI_AIUS:  /* As if user secondary */
1240    case ASI_AIUPL: /* As if user primary LE */
1241    case ASI_AIUSL: /* As if user secondary LE */
1242    case ASI_P:  /* Primary */
1243    case ASI_S:  /* Secondary */
1244    case ASI_PL: /* Primary LE */
1245    case ASI_SL: /* Secondary LE */
1246    case ASI_REAL:      /* Bypass */
1247    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1248    case ASI_REAL_L:    /* Bypass LE */
1249    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1250    case ASI_N:  /* Nucleus */
1251    case ASI_NL: /* Nucleus Little Endian (LE) */
1252    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1253    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1254    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1255    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1256    case ASI_TWINX_REAL:   /* Real address, twinx */
1257    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1258    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1259    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1260    case ASI_TWINX_N:  /* Nucleus, twinx */
1261    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1262    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1263    case ASI_TWINX_P:  /* Primary, twinx */
1264    case ASI_TWINX_PL: /* Primary, twinx, LE */
1265    case ASI_TWINX_S:  /* Secondary, twinx */
1266    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1267        /* These are always handled inline.  */
1268        g_assert_not_reached();
1269
1270    case ASI_UPA_CONFIG: /* UPA config */
1271        /* XXX */
1272        break;
1273    case ASI_LSU_CONTROL: /* LSU */
1274        ret = env->lsu;
1275        break;
1276    case ASI_IMMU: /* I-MMU regs */
1277        {
1278            int reg = (addr >> 3) & 0xf;
1279            switch (reg) {
1280            case 0:
1281                /* 0x00 I-TSB Tag Target register */
1282                ret = ultrasparc_tag_target(env->immu.tag_access);
1283                break;
1284            case 3: /* SFSR */
1285                ret = env->immu.sfsr;
1286                break;
1287            case 5: /* TSB access */
1288                ret = env->immu.tsb;
1289                break;
1290            case 6:
1291                /* 0x30 I-TSB Tag Access register */
1292                ret = env->immu.tag_access;
1293                break;
1294            default:
1295                cpu_unassigned_access(cs, addr, false, false, 1, size);
1296                ret = 0;
1297            }
1298            break;
1299        }
1300    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1301        {
1302            /* env->immuregs[5] holds I-MMU TSB register value
1303               env->immuregs[6] holds I-MMU Tag Access register value */
1304            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1305            break;
1306        }
1307    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1308        {
1309            /* env->immuregs[5] holds I-MMU TSB register value
1310               env->immuregs[6] holds I-MMU Tag Access register value */
1311            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1312            break;
1313        }
1314    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1315        {
1316            int reg = (addr >> 3) & 0x3f;
1317
1318            ret = env->itlb[reg].tte;
1319            break;
1320        }
1321    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1322        {
1323            int reg = (addr >> 3) & 0x3f;
1324
1325            ret = env->itlb[reg].tag;
1326            break;
1327        }
1328    case ASI_DMMU: /* D-MMU regs */
1329        {
1330            int reg = (addr >> 3) & 0xf;
1331            switch (reg) {
1332            case 0:
1333                /* 0x00 D-TSB Tag Target register */
1334                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1335                break;
1336            case 1: /* 0x08 Primary Context */
1337                ret = env->dmmu.mmu_primary_context;
1338                break;
1339            case 2: /* 0x10 Secondary Context */
1340                ret = env->dmmu.mmu_secondary_context;
1341                break;
1342            case 3: /* SFSR */
1343                ret = env->dmmu.sfsr;
1344                break;
1345            case 4: /* 0x20 SFAR */
1346                ret = env->dmmu.sfar;
1347                break;
1348            case 5: /* 0x28 TSB access */
1349                ret = env->dmmu.tsb;
1350                break;
1351            case 6: /* 0x30 D-TSB Tag Access register */
1352                ret = env->dmmu.tag_access;
1353                break;
1354            case 7:
1355                ret = env->dmmu.virtual_watchpoint;
1356                break;
1357            case 8:
1358                ret = env->dmmu.physical_watchpoint;
1359                break;
1360            default:
1361                cpu_unassigned_access(cs, addr, false, false, 1, size);
1362                ret = 0;
1363            }
1364            break;
1365        }
1366    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1367        {
1368            /* env->dmmuregs[5] holds D-MMU TSB register value
1369               env->dmmuregs[6] holds D-MMU Tag Access register value */
1370            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1371            break;
1372        }
1373    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1374        {
1375            /* env->dmmuregs[5] holds D-MMU TSB register value
1376               env->dmmuregs[6] holds D-MMU Tag Access register value */
1377            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1378            break;
1379        }
1380    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1381        {
1382            int reg = (addr >> 3) & 0x3f;
1383
1384            ret = env->dtlb[reg].tte;
1385            break;
1386        }
1387    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1388        {
1389            int reg = (addr >> 3) & 0x3f;
1390
1391            ret = env->dtlb[reg].tag;
1392            break;
1393        }
1394    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1395        break;
1396    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1397        ret = env->ivec_status;
1398        break;
1399    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1400        {
1401            int reg = (addr >> 4) & 0x3;
1402            if (reg < 3) {
1403                ret = env->ivec_data[reg];
1404            }
1405            break;
1406        }
1407    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1408        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1409            /* Hyperprivileged access only */
1410            cpu_unassigned_access(cs, addr, false, false, 1, size);
1411        }
1412        /* fall through */
1413    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1414        {
1415            unsigned int i = (addr >> 3) & 0x7;
1416            ret = env->scratch[i];
1417            break;
1418        }
1419    case ASI_MMU: /* UA2005 Context ID registers */
1420        switch ((addr >> 3) & 0x3) {
1421        case 1:
1422            ret = env->dmmu.mmu_primary_context;
1423            break;
1424        case 2:
1425            ret = env->dmmu.mmu_secondary_context;
1426            break;
1427        default:
1428          cpu_unassigned_access(cs, addr, true, false, 1, size);
1429        }
1430        break;
1431    case ASI_DCACHE_DATA:     /* D-cache data */
1432    case ASI_DCACHE_TAG:      /* D-cache tag access */
1433    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1434    case ASI_AFSR:            /* E-cache asynchronous fault status */
1435    case ASI_AFAR:            /* E-cache asynchronous fault address */
1436    case ASI_EC_TAG_DATA:     /* E-cache tag data */
1437    case ASI_IC_INSTR:        /* I-cache instruction access */
1438    case ASI_IC_TAG:          /* I-cache tag access */
1439    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1440    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1441    case ASI_EC_W:            /* E-cache tag */
1442    case ASI_EC_R:            /* E-cache tag */
1443        break;
1444    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1445    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1446    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1447    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1448    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1449    case ASI_INTR_W:              /* Interrupt vector, WO */
1450    default:
1451        cpu_unassigned_access(cs, addr, false, false, 1, size);
1452        ret = 0;
1453        break;
1454    }
1455
1456    /* Convert to signed number */
1457    if (sign) {
1458        switch (size) {
1459        case 1:
1460            ret = (int8_t) ret;
1461            break;
1462        case 2:
1463            ret = (int16_t) ret;
1464            break;
1465        case 4:
1466            ret = (int32_t) ret;
1467            break;
1468        default:
1469            break;
1470        }
1471    }
1472#ifdef DEBUG_ASI
1473    dump_asi("read ", last_addr, asi, size, ret);
1474#endif
1475    return ret;
1476}
1477
1478void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1479                   int asi, uint32_t memop)
1480{
1481    int size = 1 << (memop & MO_SIZE);
1482    CPUState *cs = env_cpu(env);
1483
1484#ifdef DEBUG_ASI
1485    dump_asi("write", addr, asi, size, val);
1486#endif
1487
1488    asi &= 0xff;
1489
1490    do_check_asi(env, asi, GETPC());
1491    do_check_align(env, addr, size - 1, GETPC());
1492    addr = asi_address_mask(env, asi, addr);
1493
1494    switch (asi) {
1495    case ASI_AIUP:  /* As if user primary */
1496    case ASI_AIUS:  /* As if user secondary */
1497    case ASI_AIUPL: /* As if user primary LE */
1498    case ASI_AIUSL: /* As if user secondary LE */
1499    case ASI_P:  /* Primary */
1500    case ASI_S:  /* Secondary */
1501    case ASI_PL: /* Primary LE */
1502    case ASI_SL: /* Secondary LE */
1503    case ASI_REAL:      /* Bypass */
1504    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1505    case ASI_REAL_L:    /* Bypass LE */
1506    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1507    case ASI_N:  /* Nucleus */
1508    case ASI_NL: /* Nucleus Little Endian (LE) */
1509    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1510    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1511    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1512    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1513    case ASI_TWINX_REAL:   /* Real address, twinx */
1514    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1515    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1516    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1517    case ASI_TWINX_N:  /* Nucleus, twinx */
1518    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1519    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1520    case ASI_TWINX_P:  /* Primary, twinx */
1521    case ASI_TWINX_PL: /* Primary, twinx, LE */
1522    case ASI_TWINX_S:  /* Secondary, twinx */
1523    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1524        /* These are always handled inline.  */
1525        g_assert_not_reached();
1526    /* these ASIs have different functions on UltraSPARC-IIIi
1527     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1528     */
1529    case 0x31:
1530    case 0x32:
1531    case 0x39:
1532    case 0x3a:
1533        if (cpu_has_hypervisor(env)) {
1534            /* UA2005
1535             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1536             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1537             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1538             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1539             */
1540            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1541            env->dmmu.sun4v_tsb_pointers[idx] = val;
1542        } else {
1543            helper_raise_exception(env, TT_ILL_INSN);
1544        }
1545        break;
1546    case 0x33:
1547    case 0x3b:
1548        if (cpu_has_hypervisor(env)) {
1549            /* UA2005
1550             * ASI_DMMU_CTX_ZERO_CONFIG
1551             * ASI_DMMU_CTX_NONZERO_CONFIG
1552             */
1553            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1554        } else {
1555            helper_raise_exception(env, TT_ILL_INSN);
1556        }
1557        break;
1558    case 0x35:
1559    case 0x36:
1560    case 0x3d:
1561    case 0x3e:
1562        if (cpu_has_hypervisor(env)) {
1563            /* UA2005
1564             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1565             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1566             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1567             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1568             */
1569            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1570            env->immu.sun4v_tsb_pointers[idx] = val;
1571        } else {
1572            helper_raise_exception(env, TT_ILL_INSN);
1573        }
1574      break;
1575    case 0x37:
1576    case 0x3f:
1577        if (cpu_has_hypervisor(env)) {
1578            /* UA2005
1579             * ASI_IMMU_CTX_ZERO_CONFIG
1580             * ASI_IMMU_CTX_NONZERO_CONFIG
1581             */
1582            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1583        } else {
1584          helper_raise_exception(env, TT_ILL_INSN);
1585        }
1586        break;
1587    case ASI_UPA_CONFIG: /* UPA config */
1588        /* XXX */
1589        return;
1590    case ASI_LSU_CONTROL: /* LSU */
1591        env->lsu = val & (DMMU_E | IMMU_E);
1592        return;
1593    case ASI_IMMU: /* I-MMU regs */
1594        {
1595            int reg = (addr >> 3) & 0xf;
1596            uint64_t oldreg;
1597
1598            oldreg = env->immu.mmuregs[reg];
1599            switch (reg) {
1600            case 0: /* RO */
1601                return;
1602            case 1: /* Not in I-MMU */
1603            case 2:
1604                return;
1605            case 3: /* SFSR */
1606                if ((val & 1) == 0) {
1607                    val = 0; /* Clear SFSR */
1608                }
1609                env->immu.sfsr = val;
1610                break;
1611            case 4: /* RO */
1612                return;
1613            case 5: /* TSB access */
1614                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1615                            PRIx64 "\n", env->immu.tsb, val);
1616                env->immu.tsb = val;
1617                break;
1618            case 6: /* Tag access */
1619                env->immu.tag_access = val;
1620                break;
1621            case 7:
1622            case 8:
1623                return;
1624            default:
1625                cpu_unassigned_access(cs, addr, true, false, 1, size);
1626                break;
1627            }
1628
1629            if (oldreg != env->immu.mmuregs[reg]) {
1630                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1631                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1632            }
1633#ifdef DEBUG_MMU
1634            dump_mmu(env);
1635#endif
1636            return;
1637        }
1638    case ASI_ITLB_DATA_IN: /* I-MMU data in */
1639        /* ignore real translation entries */
1640        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1641            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1642                                 val, "immu", env, addr);
1643        }
1644        return;
1645    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1646        {
1647            /* TODO: auto demap */
1648
1649            unsigned int i = (addr >> 3) & 0x3f;
1650
1651            /* ignore real translation entries */
1652            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1653                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1654                                  sun4v_tte_to_sun4u(env, addr, val), env);
1655            }
1656#ifdef DEBUG_MMU
1657            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1658            dump_mmu(env);
1659#endif
1660            return;
1661        }
1662    case ASI_IMMU_DEMAP: /* I-MMU demap */
1663        demap_tlb(env->itlb, addr, "immu", env);
1664        return;
1665    case ASI_DMMU: /* D-MMU regs */
1666        {
1667            int reg = (addr >> 3) & 0xf;
1668            uint64_t oldreg;
1669
1670            oldreg = env->dmmu.mmuregs[reg];
1671            switch (reg) {
1672            case 0: /* RO */
1673            case 4:
1674                return;
1675            case 3: /* SFSR */
1676                if ((val & 1) == 0) {
1677                    val = 0; /* Clear SFSR, Fault address */
1678                    env->dmmu.sfar = 0;
1679                }
1680                env->dmmu.sfsr = val;
1681                break;
1682            case 1: /* Primary context */
1683                env->dmmu.mmu_primary_context = val;
1684                /* can be optimized to only flush MMU_USER_IDX
1685                   and MMU_KERNEL_IDX entries */
1686                tlb_flush(cs);
1687                break;
1688            case 2: /* Secondary context */
1689                env->dmmu.mmu_secondary_context = val;
1690                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1691                   and MMU_KERNEL_SECONDARY_IDX entries */
1692                tlb_flush(cs);
1693                break;
1694            case 5: /* TSB access */
1695                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1696                            PRIx64 "\n", env->dmmu.tsb, val);
1697                env->dmmu.tsb = val;
1698                break;
1699            case 6: /* Tag access */
1700                env->dmmu.tag_access = val;
1701                break;
1702            case 7: /* Virtual Watchpoint */
1703                env->dmmu.virtual_watchpoint = val;
1704                break;
1705            case 8: /* Physical Watchpoint */
1706                env->dmmu.physical_watchpoint = val;
1707                break;
1708            default:
1709                cpu_unassigned_access(cs, addr, true, false, 1, size);
1710                break;
1711            }
1712
1713            if (oldreg != env->dmmu.mmuregs[reg]) {
1714                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1715                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1716            }
1717#ifdef DEBUG_MMU
1718            dump_mmu(env);
1719#endif
1720            return;
1721        }
1722    case ASI_DTLB_DATA_IN: /* D-MMU data in */
1723      /* ignore real translation entries */
1724      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1725          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1726                               val, "dmmu", env, addr);
1727      }
1728      return;
1729    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1730        {
1731            unsigned int i = (addr >> 3) & 0x3f;
1732
1733            /* ignore real translation entries */
1734            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1735                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1736                                  sun4v_tte_to_sun4u(env, addr, val), env);
1737            }
1738#ifdef DEBUG_MMU
1739            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1740            dump_mmu(env);
1741#endif
1742            return;
1743        }
1744    case ASI_DMMU_DEMAP: /* D-MMU demap */
1745        demap_tlb(env->dtlb, addr, "dmmu", env);
1746        return;
1747    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1748        env->ivec_status = val & 0x20;
1749        return;
1750    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1751        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1752            /* Hyperprivileged access only */
1753            cpu_unassigned_access(cs, addr, true, false, 1, size);
1754        }
1755        /* fall through */
1756    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1757        {
1758            unsigned int i = (addr >> 3) & 0x7;
1759            env->scratch[i] = val;
1760            return;
1761        }
1762    case ASI_MMU: /* UA2005 Context ID registers */
1763        {
1764          switch ((addr >> 3) & 0x3) {
1765          case 1:
1766              env->dmmu.mmu_primary_context = val;
1767              env->immu.mmu_primary_context = val;
1768              tlb_flush_by_mmuidx(cs,
1769                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1770              break;
1771          case 2:
1772              env->dmmu.mmu_secondary_context = val;
1773              env->immu.mmu_secondary_context = val;
1774              tlb_flush_by_mmuidx(cs,
1775                                  (1 << MMU_USER_SECONDARY_IDX) |
1776                                  (1 << MMU_KERNEL_SECONDARY_IDX));
1777              break;
1778          default:
1779              cpu_unassigned_access(cs, addr, true, false, 1, size);
1780          }
1781        }
1782        return;
1783    case ASI_QUEUE: /* UA2005 CPU mondo queue */
1784    case ASI_DCACHE_DATA: /* D-cache data */
1785    case ASI_DCACHE_TAG: /* D-cache tag access */
1786    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1787    case ASI_AFSR: /* E-cache asynchronous fault status */
1788    case ASI_AFAR: /* E-cache asynchronous fault address */
1789    case ASI_EC_TAG_DATA: /* E-cache tag data */
1790    case ASI_IC_INSTR: /* I-cache instruction access */
1791    case ASI_IC_TAG: /* I-cache tag access */
1792    case ASI_IC_PRE_DECODE: /* I-cache predecode */
1793    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1794    case ASI_EC_W: /* E-cache tag */
1795    case ASI_EC_R: /* E-cache tag */
1796        return;
1797    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1798    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1799    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1800    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1801    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1802    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1803    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1804    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1805    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1806    case ASI_PNF: /* Primary no-fault, RO */
1807    case ASI_SNF: /* Secondary no-fault, RO */
1808    case ASI_PNFL: /* Primary no-fault LE, RO */
1809    case ASI_SNFL: /* Secondary no-fault LE, RO */
1810    default:
1811        cpu_unassigned_access(cs, addr, true, false, 1, size);
1812        return;
1813    }
1814}
1815#endif /* CONFIG_USER_ONLY */
1816#endif /* TARGET_SPARC64 */
1817
1818#if !defined(CONFIG_USER_ONLY)
1819#ifndef TARGET_SPARC64
1820void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1821                                 bool is_write, bool is_exec, int is_asi,
1822                                 unsigned size)
1823{
1824    SPARCCPU *cpu = SPARC_CPU(cs);
1825    CPUSPARCState *env = &cpu->env;
1826    int fault_type;
1827
1828#ifdef DEBUG_UNASSIGNED
1829    if (is_asi) {
1830        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1831               " asi 0x%02x from " TARGET_FMT_lx "\n",
1832               is_exec ? "exec" : is_write ? "write" : "read", size,
1833               size == 1 ? "" : "s", addr, is_asi, env->pc);
1834    } else {
1835        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1836               " from " TARGET_FMT_lx "\n",
1837               is_exec ? "exec" : is_write ? "write" : "read", size,
1838               size == 1 ? "" : "s", addr, env->pc);
1839    }
1840#endif
1841    /* Don't overwrite translation and access faults */
1842    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
1843    if ((fault_type > 4) || (fault_type == 0)) {
1844        env->mmuregs[3] = 0; /* Fault status register */
1845        if (is_asi) {
1846            env->mmuregs[3] |= 1 << 16;
1847        }
1848        if (env->psrs) {
1849            env->mmuregs[3] |= 1 << 5;
1850        }
1851        if (is_exec) {
1852            env->mmuregs[3] |= 1 << 6;
1853        }
1854        if (is_write) {
1855            env->mmuregs[3] |= 1 << 7;
1856        }
1857        env->mmuregs[3] |= (5 << 2) | 2;
1858        /* SuperSPARC will never place instruction fault addresses in the FAR */
1859        if (!is_exec) {
1860            env->mmuregs[4] = addr; /* Fault address register */
1861        }
1862    }
1863    /* overflow (same type fault was not read before another fault) */
1864    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
1865        env->mmuregs[3] |= 1;
1866    }
1867
1868    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1869        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1870        cpu_raise_exception_ra(env, tt, GETPC());
1871    }
1872
1873    /* flush neverland mappings created during no-fault mode,
1874       so the sequential MMU faults report proper fault types */
1875    if (env->mmuregs[0] & MMU_NF) {
1876        tlb_flush(cs);
1877    }
1878}
1879#else
1880void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1881                                 bool is_write, bool is_exec, int is_asi,
1882                                 unsigned size)
1883{
1884    SPARCCPU *cpu = SPARC_CPU(cs);
1885    CPUSPARCState *env = &cpu->env;
1886
1887#ifdef DEBUG_UNASSIGNED
1888    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1889           "\n", addr, env->pc);
1890#endif
1891
1892    if (is_exec) { /* XXX has_hypervisor */
1893        if (env->lsu & (IMMU_E)) {
1894            cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
1895        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1896            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
1897        }
1898    } else {
1899        if (env->lsu & (DMMU_E)) {
1900            cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1901        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
1902            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
1903        }
1904    }
1905}
1906#endif
1907#endif
1908
1909#if !defined(CONFIG_USER_ONLY)
1910void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1911                                                 MMUAccessType access_type,
1912                                                 int mmu_idx,
1913                                                 uintptr_t retaddr)
1914{
1915    SPARCCPU *cpu = SPARC_CPU(cs);
1916    CPUSPARCState *env = &cpu->env;
1917
1918#ifdef DEBUG_UNALIGNED
1919    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1920           "\n", addr, env->pc);
1921#endif
1922    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1923}
1924#endif
1925