qemu/tests/pflash-cfi02-test.c
<<
>>
Prefs
   1/*
   2 * QTest testcase for parallel flash with AMD command set
   3 *
   4 * Copyright (c) 2019 Stephen Checkoway
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "libqtest.h"
  12
  13/*
  14 * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
  15 * a pflash drive. This enables us to test some flash configurations, but not
  16 * all. In particular, we're limited to a 16-bit wide flash device.
  17 */
  18
  19#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
  20#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
  21
  22#define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
  23#define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
  24
  25/* Use a newtype to keep flash addresses separate from byte addresses. */
  26typedef struct {
  27    uint64_t addr;
  28} faddr;
  29#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
  30
  31#define CFI_ADDR FLASH_ADDR(0x55)
  32#define UNLOCK0_ADDR FLASH_ADDR(0x555)
  33#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
  34
  35#define CFI_CMD 0x98
  36#define UNLOCK0_CMD 0xAA
  37#define UNLOCK1_CMD 0x55
  38#define SECOND_UNLOCK_CMD 0x80
  39#define AUTOSELECT_CMD 0x90
  40#define RESET_CMD 0xF0
  41#define PROGRAM_CMD 0xA0
  42#define SECTOR_ERASE_CMD 0x30
  43#define CHIP_ERASE_CMD 0x10
  44#define UNLOCK_BYPASS_CMD 0x20
  45#define UNLOCK_BYPASS_RESET_CMD 0x00
  46#define ERASE_SUSPEND_CMD 0xB0
  47#define ERASE_RESUME_CMD SECTOR_ERASE_CMD
  48
  49typedef struct {
  50    int bank_width;
  51
  52    /* Nonuniform block size. */
  53    int nb_blocs[4];
  54    int sector_len[4];
  55
  56    QTestState *qtest;
  57} FlashConfig;
  58
  59static char image_path[] = "/tmp/qtest.XXXXXX";
  60
  61/*
  62 * The pflash implementation allows some parameters to be unspecified. We want
  63 * to test those configurations but we also need to know the real values in
  64 * our testing code. So after we launch qemu, we'll need a new FlashConfig
  65 * with the correct values filled in.
  66 */
  67static FlashConfig expand_config_defaults(const FlashConfig *c)
  68{
  69    FlashConfig ret = *c;
  70
  71    if (ret.bank_width == 0) {
  72        ret.bank_width = 2;
  73    }
  74    if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
  75        ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
  76        ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
  77    }
  78
  79    /* XXX: Limitations of test harness. */
  80    assert(ret.bank_width == 2);
  81    return ret;
  82}
  83
  84/*
  85 * Return a bit mask suitable for extracting the least significant
  86 * status/query response from an interleaved response.
  87 */
  88static inline uint64_t device_mask(const FlashConfig *c)
  89{
  90    return (uint64_t)-1;
  91}
  92
  93/*
  94 * Return a bit mask exactly as long as the bank_width.
  95 */
  96static inline uint64_t bank_mask(const FlashConfig *c)
  97{
  98    if (c->bank_width == 8) {
  99        return (uint64_t)-1;
 100    }
 101    return (1ULL << (c->bank_width * 8)) - 1ULL;
 102}
 103
 104static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
 105                               uint64_t data)
 106{
 107    /* Sanity check our tests. */
 108    assert((data & ~bank_mask(c)) == 0);
 109    uint64_t addr = BASE_ADDR + byte_addr;
 110    switch (c->bank_width) {
 111    case 1:
 112        qtest_writeb(c->qtest, addr, data);
 113        break;
 114    case 2:
 115        qtest_writew(c->qtest, addr, data);
 116        break;
 117    case 4:
 118        qtest_writel(c->qtest, addr, data);
 119        break;
 120    case 8:
 121        qtest_writeq(c->qtest, addr, data);
 122        break;
 123    default:
 124        abort();
 125    }
 126}
 127
 128static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
 129{
 130    uint64_t addr = BASE_ADDR + byte_addr;
 131    switch (c->bank_width) {
 132    case 1:
 133        return qtest_readb(c->qtest, addr);
 134    case 2:
 135        return qtest_readw(c->qtest, addr);
 136    case 4:
 137        return qtest_readl(c->qtest, addr);
 138    case 8:
 139        return qtest_readq(c->qtest, addr);
 140    default:
 141        abort();
 142    }
 143}
 144
 145/*
 146 * Convert a flash address expressed in the maximum width of the device as a
 147 * byte address.
 148 */
 149static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
 150{
 151    /*
 152     * Command addresses are always given as addresses in the maximum
 153     * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
 154     * uses addresses 0xAAA and 0x555 to unlock because the least significant
 155     * bit is ignored. (0x555 rather than 0x554 is traditional.)
 156     *
 157     * In general we need to multiply by the maximum device width.
 158     */
 159    return flash_addr.addr * c->bank_width;
 160}
 161
 162/*
 163 * Return the command value or expected status replicated across all devices.
 164 */
 165static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
 166{
 167    /* Sanity check our tests. */
 168    assert((data & ~device_mask(c)) == 0);
 169    return data;
 170}
 171
 172static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
 173                             uint8_t cmd)
 174{
 175    flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
 176}
 177
 178static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
 179{
 180    return flash_read(c, as_byte_addr(c, query_addr));
 181}
 182
 183static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
 184{
 185    return flash_query(c, query_addr) & device_mask(c);
 186}
 187
 188static void unlock(const FlashConfig *c)
 189{
 190    flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
 191    flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
 192}
 193
 194static void reset(const FlashConfig *c)
 195{
 196    flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
 197}
 198
 199static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
 200{
 201    unlock(c);
 202    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
 203    unlock(c);
 204    flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
 205}
 206
 207static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
 208{
 209    /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
 210    const uint64_t dq6 = replicate(c, 0x40);
 211    if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
 212        /* Wait for erase or program to finish. */
 213        qtest_clock_step_next(c->qtest);
 214        /* Ensure that DQ6 has stopped toggling. */
 215        g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
 216    }
 217}
 218
 219static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
 220                           uint16_t data)
 221{
 222    flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
 223    flash_write(c, byte_addr, data);
 224    /*
 225     * Data isn't valid until DQ6 stops toggling. We don't model this as
 226     * writes are immediate, but if this changes in the future, we can wait
 227     * until the program is complete.
 228     */
 229    wait_for_completion(c, byte_addr);
 230}
 231
 232static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
 233{
 234    unlock(c);
 235    bypass_program(c, byte_addr, data);
 236}
 237
 238static void chip_erase(const FlashConfig *c)
 239{
 240    unlock(c);
 241    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
 242    unlock(c);
 243    flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
 244}
 245
 246static void erase_suspend(const FlashConfig *c)
 247{
 248    flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
 249}
 250
 251static void erase_resume(const FlashConfig *c)
 252{
 253    flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
 254}
 255
 256/*
 257 * Test flash commands with a variety of device geometry.
 258 */
 259static void test_geometry(const void *opaque)
 260{
 261    const FlashConfig *config = opaque;
 262    QTestState *qtest;
 263    qtest = qtest_initf("-M musicpal,accel=qtest"
 264                        " -drive if=pflash,file=%s,format=raw,copy-on-read"
 265                        /* Device geometry properties. */
 266                        " -global driver=cfi.pflash02,"
 267                        "property=num-blocks0,value=%d"
 268                        " -global driver=cfi.pflash02,"
 269                        "property=sector-length0,value=%d"
 270                        " -global driver=cfi.pflash02,"
 271                        "property=num-blocks1,value=%d"
 272                        " -global driver=cfi.pflash02,"
 273                        "property=sector-length1,value=%d"
 274                        " -global driver=cfi.pflash02,"
 275                        "property=num-blocks2,value=%d"
 276                        " -global driver=cfi.pflash02,"
 277                        "property=sector-length2,value=%d"
 278                        " -global driver=cfi.pflash02,"
 279                        "property=num-blocks3,value=%d"
 280                        " -global driver=cfi.pflash02,"
 281                        "property=sector-length3,value=%d",
 282                        image_path,
 283                        config->nb_blocs[0],
 284                        config->sector_len[0],
 285                        config->nb_blocs[1],
 286                        config->sector_len[1],
 287                        config->nb_blocs[2],
 288                        config->sector_len[2],
 289                        config->nb_blocs[3],
 290                        config->sector_len[3]);
 291    FlashConfig explicit_config = expand_config_defaults(config);
 292    explicit_config.qtest = qtest;
 293    const FlashConfig *c = &explicit_config;
 294
 295    /* Check the IDs. */
 296    unlock(c);
 297    flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
 298    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
 299    if (c->bank_width >= 2) {
 300        /*
 301         * XXX: The ID returned by the musicpal flash chip is 16 bits which
 302         * wouldn't happen with an 8-bit device. It would probably be best to
 303         * prohibit addresses larger than the device width in pflash_cfi02.c,
 304         * but then we couldn't test smaller device widths at all.
 305         */
 306        g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
 307                        replicate(c, 0x236D));
 308    }
 309    reset(c);
 310
 311    /* Check the erase blocks. */
 312    flash_cmd(c, CFI_ADDR, CFI_CMD);
 313    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
 314    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
 315    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
 316
 317    /* Num erase regions. */
 318    int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
 319    g_assert_cmphex(nb_erase_regions, ==,
 320                    !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
 321                    !!c->nb_blocs[3]);
 322
 323    /* Check device length. */
 324    uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
 325    g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
 326
 327    /* Check that erase suspend to read/write is supported. */
 328    uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
 329                   (flash_query_1(c, FLASH_ADDR(0x16)) << 8);
 330    g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
 331    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
 332    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
 333    g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
 334    g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
 335    reset(c);
 336
 337    const uint64_t dq7 = replicate(c, 0x80);
 338    const uint64_t dq6 = replicate(c, 0x40);
 339    const uint64_t dq3 = replicate(c, 0x08);
 340    const uint64_t dq2 = replicate(c, 0x04);
 341
 342    uint64_t byte_addr = 0;
 343    for (int region = 0; region < nb_erase_regions; ++region) {
 344        uint64_t base = 0x2D + 4 * region;
 345        flash_cmd(c, CFI_ADDR, CFI_CMD);
 346        uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
 347                              (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
 348        uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
 349                              (flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
 350        g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
 351        g_assert_cmphex(sector_len, ==, c->sector_len[region]);
 352        reset(c);
 353
 354        /* Erase and program sector. */
 355        for (uint32_t i = 0; i < nb_sectors; ++i) {
 356            sector_erase(c, byte_addr);
 357
 358            /* Check that DQ3 is 0. */
 359            g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
 360            qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
 361
 362            /* Check that DQ3 is 1. */
 363            uint64_t status0 = flash_read(c, byte_addr);
 364            g_assert_cmphex(status0 & dq3, ==, dq3);
 365
 366            /* DQ7 is 0 during an erase. */
 367            g_assert_cmphex(status0 & dq7, ==, 0);
 368            uint64_t status1 = flash_read(c, byte_addr);
 369
 370            /* DQ6 toggles during an erase. */
 371            g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
 372
 373            /* Wait for erase to complete. */
 374            wait_for_completion(c, byte_addr);
 375
 376            /* Ensure DQ6 has stopped toggling. */
 377            g_assert_cmphex(flash_read(c, byte_addr), ==,
 378                            flash_read(c, byte_addr));
 379
 380            /* Now the data should be valid. */
 381            g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
 382
 383            /* Program a bit pattern. */
 384            program(c, byte_addr, 0x55);
 385            g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
 386            program(c, byte_addr, 0xA5);
 387            g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
 388            byte_addr += sector_len;
 389        }
 390    }
 391
 392    /* Erase the chip. */
 393    chip_erase(c);
 394    /* Read toggle. */
 395    uint64_t status0 = flash_read(c, 0);
 396    /* DQ7 is 0 during an erase. */
 397    g_assert_cmphex(status0 & dq7, ==, 0);
 398    uint64_t status1 = flash_read(c, 0);
 399    /* DQ6 toggles during an erase. */
 400    g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
 401    /* Wait for erase to complete. */
 402    qtest_clock_step_next(c->qtest);
 403    /* Ensure DQ6 has stopped toggling. */
 404    g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
 405    /* Now the data should be valid. */
 406
 407    for (int region = 0; region < nb_erase_regions; ++region) {
 408        for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
 409            uint64_t byte_addr = i * c->sector_len[region];
 410            g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
 411        }
 412    }
 413
 414    /* Unlock bypass */
 415    unlock(c);
 416    flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
 417    bypass_program(c, 0 * c->bank_width, 0x01);
 418    bypass_program(c, 1 * c->bank_width, 0x23);
 419    bypass_program(c, 2 * c->bank_width, 0x45);
 420    /*
 421     * Test that bypass programming, unlike normal programming can use any
 422     * address for the PROGRAM_CMD.
 423     */
 424    flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
 425    flash_write(c, 3 * c->bank_width, 0x67);
 426    wait_for_completion(c, 3 * c->bank_width);
 427    flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
 428    bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
 429    g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
 430    g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
 431    g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
 432    g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
 433    g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
 434
 435    /* Test ignored high order bits of address. */
 436    flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
 437    flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
 438    flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
 439    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
 440    reset(c);
 441
 442    /*
 443     * Program a word on each sector, erase one or two sectors per region, and
 444     * verify that all of those, and only those, are erased.
 445     */
 446    byte_addr = 0;
 447    for (int region = 0; region < nb_erase_regions; ++region) {
 448        for (int i = 0; i < config->nb_blocs[region]; ++i) {
 449            program(c, byte_addr, 0);
 450            byte_addr += config->sector_len[region];
 451        }
 452    }
 453    unlock(c);
 454    flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
 455    unlock(c);
 456    byte_addr = 0;
 457    const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
 458    for (int region = 0; region < nb_erase_regions; ++region) {
 459        flash_write(c, byte_addr, erase_cmd);
 460        if (c->nb_blocs[region] > 1) {
 461            flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
 462        }
 463        byte_addr += c->sector_len[region] * c->nb_blocs[region];
 464    }
 465
 466    qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
 467    wait_for_completion(c, 0);
 468    byte_addr = 0;
 469    for (int region = 0; region < nb_erase_regions; ++region) {
 470        for (int i = 0; i < config->nb_blocs[region]; ++i) {
 471            if (i < 2) {
 472                g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
 473            } else {
 474                g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
 475            }
 476            byte_addr += config->sector_len[region];
 477        }
 478    }
 479
 480    /* Test erase suspend/resume during erase timeout. */
 481    sector_erase(c, 0);
 482    /*
 483     * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
 484     * erased as well as in a sector not being erased.
 485     */
 486    byte_addr = c->sector_len[0];
 487    status0 = flash_read(c, 0);
 488    status1 = flash_read(c, 0);
 489    g_assert_cmpint(status0 & dq3, ==, 0);
 490    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 491    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 492    status0 = flash_read(c, byte_addr);
 493    status1 = flash_read(c, byte_addr);
 494    g_assert_cmpint(status0 & dq3, ==, 0);
 495    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 496    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 497
 498    /*
 499     * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
 500     * an erase suspended sector but that neither toggle (we should be
 501     * getting data) in a sector not being erased.
 502     */
 503    erase_suspend(c);
 504    status0 = flash_read(c, 0);
 505    status1 = flash_read(c, 0);
 506    g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
 507    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 508    g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
 509
 510    /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
 511    erase_resume(c);
 512    status0 = flash_read(c, 0);
 513    status1 = flash_read(c, 0);
 514    g_assert_cmpint(status0 & dq3, ==, dq3);
 515    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 516    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 517    status0 = flash_read(c, byte_addr);
 518    status1 = flash_read(c, byte_addr);
 519    g_assert_cmpint(status0 & dq3, ==, dq3);
 520    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 521    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 522    wait_for_completion(c, 0);
 523
 524    /* Repeat this process but this time suspend after the timeout. */
 525    sector_erase(c, 0);
 526    qtest_clock_step_next(c->qtest);
 527    /*
 528     * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
 529     * erased as well as in a sector not being erased.
 530     */
 531    byte_addr = c->sector_len[0];
 532    status0 = flash_read(c, 0);
 533    status1 = flash_read(c, 0);
 534    g_assert_cmpint(status0 & dq3, ==, dq3);
 535    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 536    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 537    status0 = flash_read(c, byte_addr);
 538    status1 = flash_read(c, byte_addr);
 539    g_assert_cmpint(status0 & dq3, ==, dq3);
 540    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 541    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 542
 543    /*
 544     * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
 545     * an erase suspended sector but that neither toggle (we should be
 546     * getting data) in a sector not being erased.
 547     */
 548    erase_suspend(c);
 549    status0 = flash_read(c, 0);
 550    status1 = flash_read(c, 0);
 551    g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
 552    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 553    g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
 554
 555    /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
 556    erase_resume(c);
 557    status0 = flash_read(c, 0);
 558    status1 = flash_read(c, 0);
 559    g_assert_cmpint(status0 & dq3, ==, dq3);
 560    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 561    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 562    status0 = flash_read(c, byte_addr);
 563    status1 = flash_read(c, byte_addr);
 564    g_assert_cmpint(status0 & dq3, ==, dq3);
 565    g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
 566    g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
 567    wait_for_completion(c, 0);
 568
 569    qtest_quit(qtest);
 570}
 571
 572/*
 573 * Test that
 574 * 1. enter autoselect mode;
 575 * 2. enter CFI mode; and then
 576 * 3. exit CFI mode
 577 * leaves the flash device in autoselect mode.
 578 */
 579static void test_cfi_in_autoselect(const void *opaque)
 580{
 581    const FlashConfig *config = opaque;
 582    QTestState *qtest;
 583    qtest = qtest_initf("-M musicpal,accel=qtest"
 584                        " -drive if=pflash,file=%s,format=raw,copy-on-read",
 585                        image_path);
 586    FlashConfig explicit_config = expand_config_defaults(config);
 587    explicit_config.qtest = qtest;
 588    const FlashConfig *c = &explicit_config;
 589
 590    /* 1. Enter autoselect. */
 591    unlock(c);
 592    flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
 593    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
 594
 595    /* 2. Enter CFI. */
 596    flash_cmd(c, CFI_ADDR, CFI_CMD);
 597    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
 598    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
 599    g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
 600
 601    /* 3. Exit CFI. */
 602    reset(c);
 603    g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
 604
 605    qtest_quit(qtest);
 606}
 607
 608static void cleanup(void *opaque)
 609{
 610    unlink(image_path);
 611}
 612
 613/*
 614 * XXX: Tests are limited to bank_width = 2 for now because that's what
 615 * hw/arm/musicpal.c has.
 616 */
 617static const FlashConfig configuration[] = {
 618    /* One x16 device. */
 619    {
 620        .bank_width = 2,
 621    },
 622    /* Nonuniform sectors (top boot). */
 623    {
 624        .bank_width = 2,
 625        .nb_blocs = { 127, 1, 2, 1 },
 626        .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
 627    },
 628    /* Nonuniform sectors (bottom boot). */
 629    {
 630        .bank_width = 2,
 631        .nb_blocs = { 1, 2, 1, 127 },
 632        .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
 633    },
 634};
 635
 636int main(int argc, char **argv)
 637{
 638    int fd = mkstemp(image_path);
 639    if (fd == -1) {
 640        g_printerr("Failed to create temporary file %s: %s\n", image_path,
 641                   strerror(errno));
 642        exit(EXIT_FAILURE);
 643    }
 644    if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
 645        int error_code = errno;
 646        close(fd);
 647        unlink(image_path);
 648        g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
 649                   UNIFORM_FLASH_SIZE, strerror(error_code));
 650        exit(EXIT_FAILURE);
 651    }
 652    close(fd);
 653
 654    qtest_add_abrt_handler(cleanup, NULL);
 655    g_test_init(&argc, &argv, NULL);
 656
 657    size_t nb_configurations = sizeof configuration / sizeof configuration[0];
 658    for (size_t i = 0; i < nb_configurations; ++i) {
 659        const FlashConfig *config = &configuration[i];
 660        char *path = g_strdup_printf("pflash-cfi02"
 661                                     "/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
 662                                     "/%d",
 663                                     config->nb_blocs[0],
 664                                     config->sector_len[0],
 665                                     config->nb_blocs[1],
 666                                     config->sector_len[1],
 667                                     config->nb_blocs[2],
 668                                     config->sector_len[2],
 669                                     config->nb_blocs[3],
 670                                     config->sector_len[3],
 671                                     config->bank_width);
 672        qtest_add_data_func(path, config, test_geometry);
 673        g_free(path);
 674    }
 675
 676    qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
 677                        test_cfi_in_autoselect);
 678    int result = g_test_run();
 679    cleanup(NULL);
 680    return result;
 681}
 682