qemu/tests/rtc-test.c
<<
>>
Prefs
   1/*
   2 * QTest testcase for the MC146818 real-time clock
   3 *
   4 * Copyright IBM, Corp. 2012
   5 *
   6 * Authors:
   7 *  Anthony Liguori   <aliguori@us.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#include "qemu/osdep.h"
  15
  16#include "libqtest.h"
  17#include "qemu/timer.h"
  18#include "hw/timer/mc146818rtc_regs.h"
  19
  20#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
  21
  22static uint8_t base = 0x70;
  23
  24static int bcd2dec(int value)
  25{
  26    return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
  27}
  28
  29static uint8_t cmos_read(uint8_t reg)
  30{
  31    outb(base + 0, reg);
  32    return inb(base + 1);
  33}
  34
  35static void cmos_write(uint8_t reg, uint8_t val)
  36{
  37    outb(base + 0, reg);
  38    outb(base + 1, val);
  39}
  40
  41static int tm_cmp(struct tm *lhs, struct tm *rhs)
  42{
  43    time_t a, b;
  44    struct tm d1, d2;
  45
  46    memcpy(&d1, lhs, sizeof(d1));
  47    memcpy(&d2, rhs, sizeof(d2));
  48
  49    a = mktime(&d1);
  50    b = mktime(&d2);
  51
  52    if (a < b) {
  53        return -1;
  54    } else if (a > b) {
  55        return 1;
  56    }
  57
  58    return 0;
  59}
  60
  61#if 0
  62static void print_tm(struct tm *tm)
  63{
  64    printf("%04d-%02d-%02d %02d:%02d:%02d\n",
  65           tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
  66           tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
  67}
  68#endif
  69
  70static void cmos_get_date_time(struct tm *date)
  71{
  72    int base_year = 2000, hour_offset;
  73    int sec, min, hour, mday, mon, year;
  74    time_t ts;
  75    struct tm dummy;
  76
  77    sec = cmos_read(RTC_SECONDS);
  78    min = cmos_read(RTC_MINUTES);
  79    hour = cmos_read(RTC_HOURS);
  80    mday = cmos_read(RTC_DAY_OF_MONTH);
  81    mon = cmos_read(RTC_MONTH);
  82    year = cmos_read(RTC_YEAR);
  83
  84    if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
  85        sec = bcd2dec(sec);
  86        min = bcd2dec(min);
  87        hour = bcd2dec(hour);
  88        mday = bcd2dec(mday);
  89        mon = bcd2dec(mon);
  90        year = bcd2dec(year);
  91        hour_offset = 80;
  92    } else {
  93        hour_offset = 0x80;
  94    }
  95
  96    if ((cmos_read(0x0B) & REG_B_24H) == 0) {
  97        if (hour >= hour_offset) {
  98            hour -= hour_offset;
  99            hour += 12;
 100        }
 101    }
 102
 103    ts = time(NULL);
 104    localtime_r(&ts, &dummy);
 105
 106    date->tm_isdst = dummy.tm_isdst;
 107    date->tm_sec = sec;
 108    date->tm_min = min;
 109    date->tm_hour = hour;
 110    date->tm_mday = mday;
 111    date->tm_mon = mon - 1;
 112    date->tm_year = base_year + year - 1900;
 113#ifndef __sun__
 114    date->tm_gmtoff = 0;
 115#endif
 116
 117    ts = mktime(date);
 118}
 119
 120static void check_time(int wiggle)
 121{
 122    struct tm start, date[4], end;
 123    struct tm *datep;
 124    time_t ts;
 125
 126    /*
 127     * This check assumes a few things.  First, we cannot guarantee that we get
 128     * a consistent reading from the wall clock because we may hit an edge of
 129     * the clock while reading.  To work around this, we read four clock readings
 130     * such that at least two of them should match.  We need to assume that one
 131     * reading is corrupt so we need four readings to ensure that we have at
 132     * least two consecutive identical readings
 133     *
 134     * It's also possible that we'll cross an edge reading the host clock so
 135     * simply check to make sure that the clock reading is within the period of
 136     * when we expect it to be.
 137     */
 138
 139    ts = time(NULL);
 140    gmtime_r(&ts, &start);
 141
 142    cmos_get_date_time(&date[0]);
 143    cmos_get_date_time(&date[1]);
 144    cmos_get_date_time(&date[2]);
 145    cmos_get_date_time(&date[3]);
 146
 147    ts = time(NULL);
 148    gmtime_r(&ts, &end);
 149
 150    if (tm_cmp(&date[0], &date[1]) == 0) {
 151        datep = &date[0];
 152    } else if (tm_cmp(&date[1], &date[2]) == 0) {
 153        datep = &date[1];
 154    } else if (tm_cmp(&date[2], &date[3]) == 0) {
 155        datep = &date[2];
 156    } else {
 157        g_assert_not_reached();
 158    }
 159
 160    if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
 161        long t, s;
 162
 163        start.tm_isdst = datep->tm_isdst;
 164
 165        t = (long)mktime(datep);
 166        s = (long)mktime(&start);
 167        if (t < s) {
 168            g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
 169        } else {
 170            g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
 171        }
 172
 173        g_assert_cmpint(ABS(t - s), <=, wiggle);
 174    }
 175}
 176
 177static int wiggle = 2;
 178
 179static void set_year_20xx(void)
 180{
 181    /* Set BCD mode */
 182    cmos_write(RTC_REG_B, REG_B_24H);
 183    cmos_write(RTC_REG_A, 0x76);
 184    cmos_write(RTC_YEAR, 0x11);
 185    cmos_write(RTC_CENTURY, 0x20);
 186    cmos_write(RTC_MONTH, 0x02);
 187    cmos_write(RTC_DAY_OF_MONTH, 0x02);
 188    cmos_write(RTC_HOURS, 0x02);
 189    cmos_write(RTC_MINUTES, 0x04);
 190    cmos_write(RTC_SECONDS, 0x58);
 191    cmos_write(RTC_REG_A, 0x26);
 192
 193    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
 194    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
 195    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
 196    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
 197    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
 198    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
 199    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
 200
 201    if (sizeof(time_t) == 4) {
 202        return;
 203    }
 204
 205    /* Set a date in 2080 to ensure there is no year-2038 overflow.  */
 206    cmos_write(RTC_REG_A, 0x76);
 207    cmos_write(RTC_YEAR, 0x80);
 208    cmos_write(RTC_REG_A, 0x26);
 209
 210    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
 211    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
 212    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
 213    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
 214    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
 215    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
 216    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
 217
 218    cmos_write(RTC_REG_A, 0x76);
 219    cmos_write(RTC_YEAR, 0x11);
 220    cmos_write(RTC_REG_A, 0x26);
 221
 222    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
 223    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
 224    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
 225    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
 226    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
 227    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
 228    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
 229}
 230
 231static void set_year_1980(void)
 232{
 233    /* Set BCD mode */
 234    cmos_write(RTC_REG_B, REG_B_24H);
 235    cmos_write(RTC_REG_A, 0x76);
 236    cmos_write(RTC_YEAR, 0x80);
 237    cmos_write(RTC_CENTURY, 0x19);
 238    cmos_write(RTC_MONTH, 0x02);
 239    cmos_write(RTC_DAY_OF_MONTH, 0x02);
 240    cmos_write(RTC_HOURS, 0x02);
 241    cmos_write(RTC_MINUTES, 0x04);
 242    cmos_write(RTC_SECONDS, 0x58);
 243    cmos_write(RTC_REG_A, 0x26);
 244
 245    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
 246    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
 247    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
 248    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
 249    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
 250    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
 251    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
 252}
 253
 254static void bcd_check_time(void)
 255{
 256    /* Set BCD mode */
 257    cmos_write(RTC_REG_B, REG_B_24H);
 258    check_time(wiggle);
 259}
 260
 261static void dec_check_time(void)
 262{
 263    /* Set DEC mode */
 264    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
 265    check_time(wiggle);
 266}
 267
 268static void alarm_time(void)
 269{
 270    struct tm now;
 271    time_t ts;
 272    int i;
 273
 274    ts = time(NULL);
 275    gmtime_r(&ts, &now);
 276
 277    /* set DEC mode */
 278    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
 279
 280    g_assert(!get_irq(RTC_ISA_IRQ));
 281    cmos_read(RTC_REG_C);
 282
 283    now.tm_sec = (now.tm_sec + 2) % 60;
 284    cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
 285    cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
 286    cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
 287    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
 288
 289    for (i = 0; i < 2 + wiggle; i++) {
 290        if (get_irq(RTC_ISA_IRQ)) {
 291            break;
 292        }
 293
 294        clock_step(1000000000);
 295    }
 296
 297    g_assert(get_irq(RTC_ISA_IRQ));
 298    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
 299    g_assert(cmos_read(RTC_REG_C) == 0);
 300}
 301
 302static void set_time_regs(int h, int m, int s)
 303{
 304    cmos_write(RTC_HOURS, h);
 305    cmos_write(RTC_MINUTES, m);
 306    cmos_write(RTC_SECONDS, s);
 307}
 308
 309static void set_time(int mode, int h, int m, int s)
 310{
 311    cmos_write(RTC_REG_B, mode);
 312    cmos_write(RTC_REG_A, 0x76);
 313    set_time_regs(h, m, s);
 314    cmos_write(RTC_REG_A, 0x26);
 315}
 316
 317static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
 318{
 319    cmos_write(RTC_HOURS, h);
 320    cmos_write(RTC_MINUTES, min);
 321    cmos_write(RTC_SECONDS, s);
 322    cmos_write(RTC_YEAR, y & 0xFF);
 323    cmos_write(RTC_CENTURY, y >> 8);
 324    cmos_write(RTC_MONTH, m);
 325    cmos_write(RTC_DAY_OF_MONTH, d);
 326}
 327
 328static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
 329{
 330    cmos_write(RTC_HOURS, h);
 331    cmos_write(RTC_MINUTES, min);
 332    cmos_write(RTC_SECONDS, s);
 333    cmos_write(RTC_YEAR, y % 100);
 334    cmos_write(RTC_CENTURY, y / 100);
 335    cmos_write(RTC_MONTH, m);
 336    cmos_write(RTC_DAY_OF_MONTH, d);
 337}
 338
 339static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
 340{
 341    cmos_write(RTC_REG_B, mode);
 342
 343    cmos_write(RTC_REG_A, 0x76);
 344    if (mode & REG_B_DM) {
 345        set_datetime_dec(h, min, s, d, m, y);
 346    } else {
 347        set_datetime_bcd(h, min, s, d, m, y);
 348    }
 349    cmos_write(RTC_REG_A, 0x26);
 350}
 351
 352#define assert_time(h, m, s) \
 353    do { \
 354        g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
 355        g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
 356        g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
 357    } while(0)
 358
 359#define assert_datetime_bcd(h, min, s, d, m, y) \
 360    do { \
 361        g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
 362        g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
 363        g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
 364        g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
 365        g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
 366        g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
 367        g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
 368    } while(0)
 369
 370static void basic_12h_bcd(void)
 371{
 372    /* set BCD 12 hour mode */
 373    set_time(0, 0x81, 0x59, 0x00);
 374    clock_step(1000000000LL);
 375    assert_time(0x81, 0x59, 0x01);
 376    clock_step(59000000000LL);
 377    assert_time(0x82, 0x00, 0x00);
 378
 379    /* test BCD wraparound */
 380    set_time(0, 0x09, 0x59, 0x59);
 381    clock_step(60000000000LL);
 382    assert_time(0x10, 0x00, 0x59);
 383
 384    /* 12 AM -> 1 AM */
 385    set_time(0, 0x12, 0x59, 0x59);
 386    clock_step(1000000000LL);
 387    assert_time(0x01, 0x00, 0x00);
 388
 389    /* 12 PM -> 1 PM */
 390    set_time(0, 0x92, 0x59, 0x59);
 391    clock_step(1000000000LL);
 392    assert_time(0x81, 0x00, 0x00);
 393
 394    /* 11 AM -> 12 PM */
 395    set_time(0, 0x11, 0x59, 0x59);
 396    clock_step(1000000000LL);
 397    assert_time(0x92, 0x00, 0x00);
 398    /* TODO: test day wraparound */
 399
 400    /* 11 PM -> 12 AM */
 401    set_time(0, 0x91, 0x59, 0x59);
 402    clock_step(1000000000LL);
 403    assert_time(0x12, 0x00, 0x00);
 404    /* TODO: test day wraparound */
 405}
 406
 407static void basic_12h_dec(void)
 408{
 409    /* set decimal 12 hour mode */
 410    set_time(REG_B_DM, 0x81, 59, 0);
 411    clock_step(1000000000LL);
 412    assert_time(0x81, 59, 1);
 413    clock_step(59000000000LL);
 414    assert_time(0x82, 0, 0);
 415
 416    /* 12 PM -> 1 PM */
 417    set_time(REG_B_DM, 0x8c, 59, 59);
 418    clock_step(1000000000LL);
 419    assert_time(0x81, 0, 0);
 420
 421    /* 12 AM -> 1 AM */
 422    set_time(REG_B_DM, 0x0c, 59, 59);
 423    clock_step(1000000000LL);
 424    assert_time(0x01, 0, 0);
 425
 426    /* 11 AM -> 12 PM */
 427    set_time(REG_B_DM, 0x0b, 59, 59);
 428    clock_step(1000000000LL);
 429    assert_time(0x8c, 0, 0);
 430
 431    /* 11 PM -> 12 AM */
 432    set_time(REG_B_DM, 0x8b, 59, 59);
 433    clock_step(1000000000LL);
 434    assert_time(0x0c, 0, 0);
 435    /* TODO: test day wraparound */
 436}
 437
 438static void basic_24h_bcd(void)
 439{
 440    /* set BCD 24 hour mode */
 441    set_time(REG_B_24H, 0x09, 0x59, 0x00);
 442    clock_step(1000000000LL);
 443    assert_time(0x09, 0x59, 0x01);
 444    clock_step(59000000000LL);
 445    assert_time(0x10, 0x00, 0x00);
 446
 447    /* test BCD wraparound */
 448    set_time(REG_B_24H, 0x09, 0x59, 0x00);
 449    clock_step(60000000000LL);
 450    assert_time(0x10, 0x00, 0x00);
 451
 452    /* TODO: test day wraparound */
 453    set_time(REG_B_24H, 0x23, 0x59, 0x00);
 454    clock_step(60000000000LL);
 455    assert_time(0x00, 0x00, 0x00);
 456}
 457
 458static void basic_24h_dec(void)
 459{
 460    /* set decimal 24 hour mode */
 461    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
 462    clock_step(1000000000LL);
 463    assert_time(9, 59, 1);
 464    clock_step(59000000000LL);
 465    assert_time(10, 0, 0);
 466
 467    /* test BCD wraparound */
 468    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
 469    clock_step(60000000000LL);
 470    assert_time(10, 0, 0);
 471
 472    /* TODO: test day wraparound */
 473    set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
 474    clock_step(60000000000LL);
 475    assert_time(0, 0, 0);
 476}
 477
 478static void am_pm_alarm(void)
 479{
 480    cmos_write(RTC_MINUTES_ALARM, 0xC0);
 481    cmos_write(RTC_SECONDS_ALARM, 0xC0);
 482
 483    /* set BCD 12 hour mode */
 484    cmos_write(RTC_REG_B, 0);
 485
 486    /* Set time and alarm hour.  */
 487    cmos_write(RTC_REG_A, 0x76);
 488    cmos_write(RTC_HOURS_ALARM, 0x82);
 489    cmos_write(RTC_HOURS, 0x81);
 490    cmos_write(RTC_MINUTES, 0x59);
 491    cmos_write(RTC_SECONDS, 0x00);
 492    cmos_read(RTC_REG_C);
 493    cmos_write(RTC_REG_A, 0x26);
 494
 495    /* Check that alarm triggers when AM/PM is set.  */
 496    clock_step(60000000000LL);
 497    g_assert(cmos_read(RTC_HOURS) == 0x82);
 498    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
 499
 500    /*
 501     * Each of the following two tests takes over 60 seconds due to the time
 502     * needed to report the PIT interrupts.  Unfortunately, our PIT device
 503     * model keeps counting even when GATE=0, so we cannot simply disable
 504     * it in main().
 505     */
 506    if (g_test_quick()) {
 507        return;
 508    }
 509
 510    /* set DEC 12 hour mode */
 511    cmos_write(RTC_REG_B, REG_B_DM);
 512
 513    /* Set time and alarm hour.  */
 514    cmos_write(RTC_REG_A, 0x76);
 515    cmos_write(RTC_HOURS_ALARM, 0x82);
 516    cmos_write(RTC_HOURS, 3);
 517    cmos_write(RTC_MINUTES, 0);
 518    cmos_write(RTC_SECONDS, 0);
 519    cmos_read(RTC_REG_C);
 520    cmos_write(RTC_REG_A, 0x26);
 521
 522    /* Check that alarm triggers.  */
 523    clock_step(3600 * 11 * 1000000000LL);
 524    g_assert(cmos_read(RTC_HOURS) == 0x82);
 525    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
 526
 527    /* Same as above, with inverted HOURS and HOURS_ALARM.  */
 528    cmos_write(RTC_REG_A, 0x76);
 529    cmos_write(RTC_HOURS_ALARM, 2);
 530    cmos_write(RTC_HOURS, 3);
 531    cmos_write(RTC_MINUTES, 0);
 532    cmos_write(RTC_SECONDS, 0);
 533    cmos_read(RTC_REG_C);
 534    cmos_write(RTC_REG_A, 0x26);
 535
 536    /* Check that alarm does not trigger if hours differ only by AM/PM.  */
 537    clock_step(3600 * 11 * 1000000000LL);
 538    g_assert(cmos_read(RTC_HOURS) == 0x82);
 539    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
 540}
 541
 542/* success if no crash or abort */
 543static void fuzz_registers(void)
 544{
 545    unsigned int i;
 546
 547    for (i = 0; i < 1000; i++) {
 548        uint8_t reg, val;
 549
 550        reg = (uint8_t)g_test_rand_int_range(0, 16);
 551        val = (uint8_t)g_test_rand_int_range(0, 256);
 552
 553        cmos_write(reg, val);
 554        cmos_read(reg);
 555    }
 556}
 557
 558static void register_b_set_flag(void)
 559{
 560    if (cmos_read(RTC_REG_A) & REG_A_UIP) {
 561        clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
 562    }
 563    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
 564
 565    /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
 566    cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
 567
 568    set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 569
 570    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 571
 572    /* Since SET flag is still enabled, time does not advance. */
 573    clock_step(1000000000LL);
 574    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 575
 576    /* Disable SET flag in Register B */
 577    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
 578
 579    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 580
 581    /* Since SET flag is disabled, the clock now advances.  */
 582    clock_step(1000000000LL);
 583    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
 584}
 585
 586static void divider_reset(void)
 587{
 588    /* Enable binary-coded decimal (BCD) mode in Register B*/
 589    cmos_write(RTC_REG_B, REG_B_24H);
 590
 591    /* Enter divider reset */
 592    cmos_write(RTC_REG_A, 0x76);
 593    set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 594
 595    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 596
 597    /* Since divider reset flag is still enabled, these are equality checks. */
 598    clock_step(1000000000LL);
 599    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 600
 601    /* The first update ends 500 ms after divider reset */
 602    cmos_write(RTC_REG_A, 0x26);
 603    clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
 604    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
 605    assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 606
 607    clock_step(1);
 608    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
 609    clock_step(UIP_HOLD_LENGTH);
 610    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
 611
 612    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
 613}
 614
 615static void uip_stuck(void)
 616{
 617    set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
 618
 619    /* The first update ends 500 ms after divider reset */
 620    (void)cmos_read(RTC_REG_C);
 621    clock_step(500000000LL);
 622    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
 623    assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
 624
 625    /* UF is now set.  */
 626    cmos_write(RTC_HOURS_ALARM, 0x02);
 627    cmos_write(RTC_MINUTES_ALARM, 0xC0);
 628    cmos_write(RTC_SECONDS_ALARM, 0xC0);
 629
 630    /* Because the alarm will fire soon, reading register A will latch UIP.  */
 631    clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
 632    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
 633
 634    /* Move the alarm far away.  This must not cause UIP to remain stuck!  */
 635    cmos_write(RTC_HOURS_ALARM, 0x03);
 636    clock_step(UIP_HOLD_LENGTH);
 637    g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
 638}
 639
 640#define RTC_PERIOD_CODE1    13   /* 8 Hz */
 641#define RTC_PERIOD_CODE2    15   /* 2 Hz */
 642
 643#define RTC_PERIOD_TEST_NR  50
 644
 645static uint64_t wait_periodic_interrupt(uint64_t real_time)
 646{
 647    while (!get_irq(RTC_ISA_IRQ)) {
 648        real_time = clock_step_next();
 649    }
 650
 651    g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
 652    return real_time;
 653}
 654
 655static void periodic_timer(void)
 656{
 657    int i;
 658    uint64_t period_clocks, period_time, start_time, real_time;
 659
 660    /* disable all interrupts. */
 661    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
 662                                   ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
 663    cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
 664    /* enable periodic interrupt after properly configure the period. */
 665    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
 666
 667    start_time = real_time = clock_step_next();
 668
 669    for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
 670        cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
 671        real_time = wait_periodic_interrupt(real_time);
 672        cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
 673        real_time = wait_periodic_interrupt(real_time);
 674    }
 675
 676    period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
 677                       periodic_period_to_clock(RTC_PERIOD_CODE2);
 678    period_clocks *= RTC_PERIOD_TEST_NR;
 679    period_time = periodic_clock_to_ns(period_clocks);
 680
 681    real_time -= start_time;
 682    g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
 683                    NANOSECONDS_PER_SECOND * 0.5);
 684}
 685
 686int main(int argc, char **argv)
 687{
 688    QTestState *s = NULL;
 689    int ret;
 690
 691    g_test_init(&argc, &argv, NULL);
 692
 693    s = qtest_start("-rtc clock=vm");
 694    qtest_irq_intercept_in(s, "ioapic");
 695
 696    qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
 697    qtest_add_func("/rtc/check-time/dec", dec_check_time);
 698    qtest_add_func("/rtc/alarm/interrupt", alarm_time);
 699    qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
 700    qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
 701    qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
 702    qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
 703    qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
 704    qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
 705    qtest_add_func("/rtc/set-year/1980", set_year_1980);
 706    qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
 707    qtest_add_func("/rtc/update/divider-reset", divider_reset);
 708    qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
 709    qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
 710    qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
 711
 712    ret = g_test_run();
 713
 714    if (s) {
 715        qtest_quit(s);
 716    }
 717
 718    return ret;
 719}
 720