qemu/tests/tcg/i386/test-i386.c
<<
>>
Prefs
   1/*
   2 *  x86 CPU test
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 *  This program is free software; you can redistribute it and/or modify
   7 *  it under the terms of the GNU General Public License as published by
   8 *  the Free Software Foundation; either version 2 of the License, or
   9 *  (at your option) any later version.
  10 *
  11 *  This program is distributed in the hope that it will be useful,
  12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 *  GNU General Public License for more details.
  15 *
  16 *  You should have received a copy of the GNU General Public License
  17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#define _GNU_SOURCE
  20#include <stdlib.h>
  21#include <stdio.h>
  22#include <string.h>
  23#include <inttypes.h>
  24#include <math.h>
  25#include <signal.h>
  26#include <setjmp.h>
  27#include <errno.h>
  28#include <sys/ucontext.h>
  29#include <sys/mman.h>
  30
  31#if !defined(__x86_64__)
  32//#define TEST_VM86
  33#define TEST_SEGS
  34#endif
  35//#define LINUX_VM86_IOPL_FIX
  36//#define TEST_P4_FLAGS
  37#ifdef __SSE__
  38#define TEST_SSE
  39#define TEST_CMOV  1
  40#define TEST_FCOMI 1
  41#else
  42#undef TEST_SSE
  43#define TEST_CMOV  1
  44#define TEST_FCOMI 1
  45#endif
  46
  47#if defined(__x86_64__)
  48#define FMT64X "%016lx"
  49#define FMTLX "%016lx"
  50#define X86_64_ONLY(x) x
  51#else
  52#define FMT64X "%016" PRIx64
  53#define FMTLX "%08lx"
  54#define X86_64_ONLY(x)
  55#endif
  56
  57#ifdef TEST_VM86
  58#include <asm/vm86.h>
  59#endif
  60
  61#define xglue(x, y) x ## y
  62#define glue(x, y) xglue(x, y)
  63#define stringify(s)    tostring(s)
  64#define tostring(s)     #s
  65
  66#define CC_C    0x0001
  67#define CC_P    0x0004
  68#define CC_A    0x0010
  69#define CC_Z    0x0040
  70#define CC_S    0x0080
  71#define CC_O    0x0800
  72
  73#define __init_call     __attribute__ ((unused,__section__ ("initcall")))
  74
  75#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
  76
  77#if defined(__x86_64__)
  78static inline long i2l(long v)
  79{
  80    return v | ((v ^ 0xabcd) << 32);
  81}
  82#else
  83static inline long i2l(long v)
  84{
  85    return v;
  86}
  87#endif
  88
  89#define OP add
  90#include "test-i386.h"
  91
  92#define OP sub
  93#include "test-i386.h"
  94
  95#define OP xor
  96#include "test-i386.h"
  97
  98#define OP and
  99#include "test-i386.h"
 100
 101#define OP or
 102#include "test-i386.h"
 103
 104#define OP cmp
 105#include "test-i386.h"
 106
 107#define OP adc
 108#define OP_CC
 109#include "test-i386.h"
 110
 111#define OP sbb
 112#define OP_CC
 113#include "test-i386.h"
 114
 115#define OP inc
 116#define OP_CC
 117#define OP1
 118#include "test-i386.h"
 119
 120#define OP dec
 121#define OP_CC
 122#define OP1
 123#include "test-i386.h"
 124
 125#define OP neg
 126#define OP_CC
 127#define OP1
 128#include "test-i386.h"
 129
 130#define OP not
 131#define OP_CC
 132#define OP1
 133#include "test-i386.h"
 134
 135#undef CC_MASK
 136#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
 137
 138#define OP shl
 139#include "test-i386-shift.h"
 140
 141#define OP shr
 142#include "test-i386-shift.h"
 143
 144#define OP sar
 145#include "test-i386-shift.h"
 146
 147#define OP rol
 148#include "test-i386-shift.h"
 149
 150#define OP ror
 151#include "test-i386-shift.h"
 152
 153#define OP rcr
 154#define OP_CC
 155#include "test-i386-shift.h"
 156
 157#define OP rcl
 158#define OP_CC
 159#include "test-i386-shift.h"
 160
 161#define OP shld
 162#define OP_SHIFTD
 163#define OP_NOBYTE
 164#include "test-i386-shift.h"
 165
 166#define OP shrd
 167#define OP_SHIFTD
 168#define OP_NOBYTE
 169#include "test-i386-shift.h"
 170
 171/* XXX: should be more precise ? */
 172#undef CC_MASK
 173#define CC_MASK (CC_C)
 174
 175#define OP bt
 176#define OP_NOBYTE
 177#include "test-i386-shift.h"
 178
 179#define OP bts
 180#define OP_NOBYTE
 181#include "test-i386-shift.h"
 182
 183#define OP btr
 184#define OP_NOBYTE
 185#include "test-i386-shift.h"
 186
 187#define OP btc
 188#define OP_NOBYTE
 189#include "test-i386-shift.h"
 190
 191/* lea test (modrm support) */
 192#define TEST_LEAQ(STR)\
 193{\
 194    asm("lea " STR ", %0"\
 195        : "=r" (res)\
 196        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
 197    printf("lea %s = " FMTLX "\n", STR, res);\
 198}
 199
 200#define TEST_LEA(STR)\
 201{\
 202    asm("lea " STR ", %0"\
 203        : "=r" (res)\
 204        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
 205    printf("lea %s = " FMTLX "\n", STR, res);\
 206}
 207
 208#define TEST_LEA16(STR)\
 209{\
 210    asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
 211        : "=r" (res)\
 212        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
 213    printf("lea %s = %08lx\n", STR, res);\
 214}
 215
 216
 217void test_lea(void)
 218{
 219    long eax, ebx, ecx, edx, esi, edi, res;
 220    eax = i2l(0x0001);
 221    ebx = i2l(0x0002);
 222    ecx = i2l(0x0004);
 223    edx = i2l(0x0008);
 224    esi = i2l(0x0010);
 225    edi = i2l(0x0020);
 226
 227    TEST_LEA("0x4000");
 228
 229    TEST_LEA("(%%eax)");
 230    TEST_LEA("(%%ebx)");
 231    TEST_LEA("(%%ecx)");
 232    TEST_LEA("(%%edx)");
 233    TEST_LEA("(%%esi)");
 234    TEST_LEA("(%%edi)");
 235
 236    TEST_LEA("0x40(%%eax)");
 237    TEST_LEA("0x40(%%ebx)");
 238    TEST_LEA("0x40(%%ecx)");
 239    TEST_LEA("0x40(%%edx)");
 240    TEST_LEA("0x40(%%esi)");
 241    TEST_LEA("0x40(%%edi)");
 242
 243    TEST_LEA("0x4000(%%eax)");
 244    TEST_LEA("0x4000(%%ebx)");
 245    TEST_LEA("0x4000(%%ecx)");
 246    TEST_LEA("0x4000(%%edx)");
 247    TEST_LEA("0x4000(%%esi)");
 248    TEST_LEA("0x4000(%%edi)");
 249
 250    TEST_LEA("(%%eax, %%ecx)");
 251    TEST_LEA("(%%ebx, %%edx)");
 252    TEST_LEA("(%%ecx, %%ecx)");
 253    TEST_LEA("(%%edx, %%ecx)");
 254    TEST_LEA("(%%esi, %%ecx)");
 255    TEST_LEA("(%%edi, %%ecx)");
 256
 257    TEST_LEA("0x40(%%eax, %%ecx)");
 258    TEST_LEA("0x4000(%%ebx, %%edx)");
 259
 260    TEST_LEA("(%%ecx, %%ecx, 2)");
 261    TEST_LEA("(%%edx, %%ecx, 4)");
 262    TEST_LEA("(%%esi, %%ecx, 8)");
 263
 264    TEST_LEA("(,%%eax, 2)");
 265    TEST_LEA("(,%%ebx, 4)");
 266    TEST_LEA("(,%%ecx, 8)");
 267
 268    TEST_LEA("0x40(,%%eax, 2)");
 269    TEST_LEA("0x40(,%%ebx, 4)");
 270    TEST_LEA("0x40(,%%ecx, 8)");
 271
 272
 273    TEST_LEA("-10(%%ecx, %%ecx, 2)");
 274    TEST_LEA("-10(%%edx, %%ecx, 4)");
 275    TEST_LEA("-10(%%esi, %%ecx, 8)");
 276
 277    TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
 278    TEST_LEA("0x4000(%%edx, %%ecx, 4)");
 279    TEST_LEA("0x4000(%%esi, %%ecx, 8)");
 280
 281#if defined(__x86_64__)
 282    TEST_LEAQ("0x4000");
 283    TEST_LEAQ("0x4000(%%rip)");
 284
 285    TEST_LEAQ("(%%rax)");
 286    TEST_LEAQ("(%%rbx)");
 287    TEST_LEAQ("(%%rcx)");
 288    TEST_LEAQ("(%%rdx)");
 289    TEST_LEAQ("(%%rsi)");
 290    TEST_LEAQ("(%%rdi)");
 291
 292    TEST_LEAQ("0x40(%%rax)");
 293    TEST_LEAQ("0x40(%%rbx)");
 294    TEST_LEAQ("0x40(%%rcx)");
 295    TEST_LEAQ("0x40(%%rdx)");
 296    TEST_LEAQ("0x40(%%rsi)");
 297    TEST_LEAQ("0x40(%%rdi)");
 298
 299    TEST_LEAQ("0x4000(%%rax)");
 300    TEST_LEAQ("0x4000(%%rbx)");
 301    TEST_LEAQ("0x4000(%%rcx)");
 302    TEST_LEAQ("0x4000(%%rdx)");
 303    TEST_LEAQ("0x4000(%%rsi)");
 304    TEST_LEAQ("0x4000(%%rdi)");
 305
 306    TEST_LEAQ("(%%rax, %%rcx)");
 307    TEST_LEAQ("(%%rbx, %%rdx)");
 308    TEST_LEAQ("(%%rcx, %%rcx)");
 309    TEST_LEAQ("(%%rdx, %%rcx)");
 310    TEST_LEAQ("(%%rsi, %%rcx)");
 311    TEST_LEAQ("(%%rdi, %%rcx)");
 312
 313    TEST_LEAQ("0x40(%%rax, %%rcx)");
 314    TEST_LEAQ("0x4000(%%rbx, %%rdx)");
 315
 316    TEST_LEAQ("(%%rcx, %%rcx, 2)");
 317    TEST_LEAQ("(%%rdx, %%rcx, 4)");
 318    TEST_LEAQ("(%%rsi, %%rcx, 8)");
 319
 320    TEST_LEAQ("(,%%rax, 2)");
 321    TEST_LEAQ("(,%%rbx, 4)");
 322    TEST_LEAQ("(,%%rcx, 8)");
 323
 324    TEST_LEAQ("0x40(,%%rax, 2)");
 325    TEST_LEAQ("0x40(,%%rbx, 4)");
 326    TEST_LEAQ("0x40(,%%rcx, 8)");
 327
 328
 329    TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
 330    TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
 331    TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
 332
 333    TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
 334    TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
 335    TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
 336#else
 337    /* limited 16 bit addressing test */
 338    TEST_LEA16("0x4000");
 339    TEST_LEA16("(%%bx)");
 340    TEST_LEA16("(%%si)");
 341    TEST_LEA16("(%%di)");
 342    TEST_LEA16("0x40(%%bx)");
 343    TEST_LEA16("0x40(%%si)");
 344    TEST_LEA16("0x40(%%di)");
 345    TEST_LEA16("0x4000(%%bx)");
 346    TEST_LEA16("0x4000(%%si)");
 347    TEST_LEA16("(%%bx,%%si)");
 348    TEST_LEA16("(%%bx,%%di)");
 349    TEST_LEA16("0x40(%%bx,%%si)");
 350    TEST_LEA16("0x40(%%bx,%%di)");
 351    TEST_LEA16("0x4000(%%bx,%%si)");
 352    TEST_LEA16("0x4000(%%bx,%%di)");
 353#endif
 354}
 355
 356#define TEST_JCC(JCC, v1, v2)\
 357{\
 358    int res;\
 359    asm("movl $1, %0\n\t"\
 360        "cmpl %2, %1\n\t"\
 361        "j" JCC " 1f\n\t"\
 362        "movl $0, %0\n\t"\
 363        "1:\n\t"\
 364        : "=r" (res)\
 365        : "r" (v1), "r" (v2));\
 366    printf("%-10s %d\n", "j" JCC, res);\
 367\
 368    asm("movl $0, %0\n\t"\
 369        "cmpl %2, %1\n\t"\
 370        "set" JCC " %b0\n\t"\
 371        : "=r" (res)\
 372        : "r" (v1), "r" (v2));\
 373    printf("%-10s %d\n", "set" JCC, res);\
 374 if (TEST_CMOV) {\
 375    long val = i2l(1);\
 376    long res = i2l(0x12345678);\
 377X86_64_ONLY(\
 378    asm("cmpl %2, %1\n\t"\
 379        "cmov" JCC "q %3, %0\n\t"\
 380        : "=r" (res)\
 381        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
 382        printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
 383    asm("cmpl %2, %1\n\t"\
 384        "cmov" JCC "l %k3, %k0\n\t"\
 385        : "=r" (res)\
 386        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
 387        printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
 388    asm("cmpl %2, %1\n\t"\
 389        "cmov" JCC "w %w3, %w0\n\t"\
 390        : "=r" (res)\
 391        : "r" (v1), "r" (v2), "r" (1), "0" (res));\
 392        printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
 393 } \
 394}
 395
 396/* various jump tests */
 397void test_jcc(void)
 398{
 399    TEST_JCC("ne", 1, 1);
 400    TEST_JCC("ne", 1, 0);
 401
 402    TEST_JCC("e", 1, 1);
 403    TEST_JCC("e", 1, 0);
 404
 405    TEST_JCC("l", 1, 1);
 406    TEST_JCC("l", 1, 0);
 407    TEST_JCC("l", 1, -1);
 408
 409    TEST_JCC("le", 1, 1);
 410    TEST_JCC("le", 1, 0);
 411    TEST_JCC("le", 1, -1);
 412
 413    TEST_JCC("ge", 1, 1);
 414    TEST_JCC("ge", 1, 0);
 415    TEST_JCC("ge", -1, 1);
 416
 417    TEST_JCC("g", 1, 1);
 418    TEST_JCC("g", 1, 0);
 419    TEST_JCC("g", 1, -1);
 420
 421    TEST_JCC("b", 1, 1);
 422    TEST_JCC("b", 1, 0);
 423    TEST_JCC("b", 1, -1);
 424
 425    TEST_JCC("be", 1, 1);
 426    TEST_JCC("be", 1, 0);
 427    TEST_JCC("be", 1, -1);
 428
 429    TEST_JCC("ae", 1, 1);
 430    TEST_JCC("ae", 1, 0);
 431    TEST_JCC("ae", 1, -1);
 432
 433    TEST_JCC("a", 1, 1);
 434    TEST_JCC("a", 1, 0);
 435    TEST_JCC("a", 1, -1);
 436
 437
 438    TEST_JCC("p", 1, 1);
 439    TEST_JCC("p", 1, 0);
 440
 441    TEST_JCC("np", 1, 1);
 442    TEST_JCC("np", 1, 0);
 443
 444    TEST_JCC("o", 0x7fffffff, 0);
 445    TEST_JCC("o", 0x7fffffff, -1);
 446
 447    TEST_JCC("no", 0x7fffffff, 0);
 448    TEST_JCC("no", 0x7fffffff, -1);
 449
 450    TEST_JCC("s", 0, 1);
 451    TEST_JCC("s", 0, -1);
 452    TEST_JCC("s", 0, 0);
 453
 454    TEST_JCC("ns", 0, 1);
 455    TEST_JCC("ns", 0, -1);
 456    TEST_JCC("ns", 0, 0);
 457}
 458
 459#define TEST_LOOP(insn) \
 460{\
 461    for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
 462        ecx = ecx_vals[i];\
 463        for(zf = 0; zf < 2; zf++) {\
 464    asm("test %2, %2\n\t"\
 465        "movl $1, %0\n\t"\
 466          insn " 1f\n\t" \
 467        "movl $0, %0\n\t"\
 468        "1:\n\t"\
 469        : "=a" (res)\
 470        : "c" (ecx), "b" (!zf)); \
 471    printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
 472        }\
 473   }\
 474}
 475
 476void test_loop(void)
 477{
 478    long ecx, zf;
 479    const long ecx_vals[] = {
 480        0,
 481        1,
 482        0x10000,
 483        0x10001,
 484#if defined(__x86_64__)
 485        0x100000000L,
 486        0x100000001L,
 487#endif
 488    };
 489    int i, res;
 490
 491#if !defined(__x86_64__)
 492    TEST_LOOP("jcxz");
 493    TEST_LOOP("loopw");
 494    TEST_LOOP("loopzw");
 495    TEST_LOOP("loopnzw");
 496#endif
 497
 498    TEST_LOOP("jecxz");
 499    TEST_LOOP("loopl");
 500    TEST_LOOP("loopzl");
 501    TEST_LOOP("loopnzl");
 502}
 503
 504#undef CC_MASK
 505#ifdef TEST_P4_FLAGS
 506#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
 507#else
 508#define CC_MASK (CC_O | CC_C)
 509#endif
 510
 511#define OP mul
 512#include "test-i386-muldiv.h"
 513
 514#define OP imul
 515#include "test-i386-muldiv.h"
 516
 517void test_imulw2(long op0, long op1)
 518{
 519    long res, s1, s0, flags;
 520    s0 = op0;
 521    s1 = op1;
 522    res = s0;
 523    flags = 0;
 524    asm volatile ("push %4\n\t"
 525         "popf\n\t"
 526         "imulw %w2, %w0\n\t"
 527         "pushf\n\t"
 528         "pop %1\n\t"
 529         : "=q" (res), "=g" (flags)
 530         : "q" (s1), "0" (res), "1" (flags));
 531    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
 532           "imulw", s0, s1, res, flags & CC_MASK);
 533}
 534
 535void test_imull2(long op0, long op1)
 536{
 537    long res, s1, s0, flags;
 538    s0 = op0;
 539    s1 = op1;
 540    res = s0;
 541    flags = 0;
 542    asm volatile ("push %4\n\t"
 543         "popf\n\t"
 544         "imull %k2, %k0\n\t"
 545         "pushf\n\t"
 546         "pop %1\n\t"
 547         : "=q" (res), "=g" (flags)
 548         : "q" (s1), "0" (res), "1" (flags));
 549    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
 550           "imull", s0, s1, res, flags & CC_MASK);
 551}
 552
 553#if defined(__x86_64__)
 554void test_imulq2(long op0, long op1)
 555{
 556    long res, s1, s0, flags;
 557    s0 = op0;
 558    s1 = op1;
 559    res = s0;
 560    flags = 0;
 561    asm volatile ("push %4\n\t"
 562         "popf\n\t"
 563         "imulq %2, %0\n\t"
 564         "pushf\n\t"
 565         "pop %1\n\t"
 566         : "=q" (res), "=g" (flags)
 567         : "q" (s1), "0" (res), "1" (flags));
 568    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
 569           "imulq", s0, s1, res, flags & CC_MASK);
 570}
 571#endif
 572
 573#define TEST_IMUL_IM(size, rsize, op0, op1)\
 574{\
 575    long res, flags, s1;\
 576    flags = 0;\
 577    res = 0;\
 578    s1 = op1;\
 579    asm volatile ("push %3\n\t"\
 580         "popf\n\t"\
 581         "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
 582         "pushf\n\t"\
 583         "pop %1\n\t"\
 584         : "=r" (res), "=g" (flags)\
 585         : "r" (s1), "1" (flags), "0" (res));\
 586    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
 587           "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
 588}
 589
 590
 591#undef CC_MASK
 592#define CC_MASK (0)
 593
 594#define OP div
 595#include "test-i386-muldiv.h"
 596
 597#define OP idiv
 598#include "test-i386-muldiv.h"
 599
 600void test_mul(void)
 601{
 602    test_imulb(0x1234561d, 4);
 603    test_imulb(3, -4);
 604    test_imulb(0x80, 0x80);
 605    test_imulb(0x10, 0x10);
 606
 607    test_imulw(0, 0x1234001d, 45);
 608    test_imulw(0, 23, -45);
 609    test_imulw(0, 0x8000, 0x8000);
 610    test_imulw(0, 0x100, 0x100);
 611
 612    test_imull(0, 0x1234001d, 45);
 613    test_imull(0, 23, -45);
 614    test_imull(0, 0x80000000, 0x80000000);
 615    test_imull(0, 0x10000, 0x10000);
 616
 617    test_mulb(0x1234561d, 4);
 618    test_mulb(3, -4);
 619    test_mulb(0x80, 0x80);
 620    test_mulb(0x10, 0x10);
 621
 622    test_mulw(0, 0x1234001d, 45);
 623    test_mulw(0, 23, -45);
 624    test_mulw(0, 0x8000, 0x8000);
 625    test_mulw(0, 0x100, 0x100);
 626
 627    test_mull(0, 0x1234001d, 45);
 628    test_mull(0, 23, -45);
 629    test_mull(0, 0x80000000, 0x80000000);
 630    test_mull(0, 0x10000, 0x10000);
 631
 632    test_imulw2(0x1234001d, 45);
 633    test_imulw2(23, -45);
 634    test_imulw2(0x8000, 0x8000);
 635    test_imulw2(0x100, 0x100);
 636
 637    test_imull2(0x1234001d, 45);
 638    test_imull2(23, -45);
 639    test_imull2(0x80000000, 0x80000000);
 640    test_imull2(0x10000, 0x10000);
 641
 642    TEST_IMUL_IM("w", "w", 45, 0x1234);
 643    TEST_IMUL_IM("w", "w", -45, 23);
 644    TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
 645    TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
 646
 647    TEST_IMUL_IM("l", "k", 45, 0x1234);
 648    TEST_IMUL_IM("l", "k", -45, 23);
 649    TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
 650    TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
 651
 652    test_idivb(0x12341678, 0x127e);
 653    test_idivb(0x43210123, -5);
 654    test_idivb(0x12340004, -1);
 655
 656    test_idivw(0, 0x12345678, 12347);
 657    test_idivw(0, -23223, -45);
 658    test_idivw(0, 0x12348000, -1);
 659    test_idivw(0x12343, 0x12345678, 0x81238567);
 660
 661    test_idivl(0, 0x12345678, 12347);
 662    test_idivl(0, -233223, -45);
 663    test_idivl(0, 0x80000000, -1);
 664    test_idivl(0x12343, 0x12345678, 0x81234567);
 665
 666    test_divb(0x12341678, 0x127e);
 667    test_divb(0x43210123, -5);
 668    test_divb(0x12340004, -1);
 669
 670    test_divw(0, 0x12345678, 12347);
 671    test_divw(0, -23223, -45);
 672    test_divw(0, 0x12348000, -1);
 673    test_divw(0x12343, 0x12345678, 0x81238567);
 674
 675    test_divl(0, 0x12345678, 12347);
 676    test_divl(0, -233223, -45);
 677    test_divl(0, 0x80000000, -1);
 678    test_divl(0x12343, 0x12345678, 0x81234567);
 679
 680#if defined(__x86_64__)
 681    test_imulq(0, 0x1234001d1234001d, 45);
 682    test_imulq(0, 23, -45);
 683    test_imulq(0, 0x8000000000000000, 0x8000000000000000);
 684    test_imulq(0, 0x100000000, 0x100000000);
 685
 686    test_mulq(0, 0x1234001d1234001d, 45);
 687    test_mulq(0, 23, -45);
 688    test_mulq(0, 0x8000000000000000, 0x8000000000000000);
 689    test_mulq(0, 0x100000000, 0x100000000);
 690
 691    test_imulq2(0x1234001d1234001d, 45);
 692    test_imulq2(23, -45);
 693    test_imulq2(0x8000000000000000, 0x8000000000000000);
 694    test_imulq2(0x100000000, 0x100000000);
 695
 696    TEST_IMUL_IM("q", "", 45, 0x12341234);
 697    TEST_IMUL_IM("q", "", -45, 23);
 698    TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
 699    TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
 700
 701    test_idivq(0, 0x12345678abcdef, 12347);
 702    test_idivq(0, -233223, -45);
 703    test_idivq(0, 0x8000000000000000, -1);
 704    test_idivq(0x12343, 0x12345678, 0x81234567);
 705
 706    test_divq(0, 0x12345678abcdef, 12347);
 707    test_divq(0, -233223, -45);
 708    test_divq(0, 0x8000000000000000, -1);
 709    test_divq(0x12343, 0x12345678, 0x81234567);
 710#endif
 711}
 712
 713#define TEST_BSX(op, size, op0)\
 714{\
 715    long res, val, resz;\
 716    val = op0;\
 717    asm("xor %1, %1\n"\
 718        "mov $0x12345678, %0\n"\
 719        #op " %" size "2, %" size "0 ; setz %b1" \
 720        : "=&r" (res), "=&q" (resz)\
 721        : "r" (val));\
 722    printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
 723}
 724
 725void test_bsx(void)
 726{
 727    TEST_BSX(bsrw, "w", 0);
 728    TEST_BSX(bsrw, "w", 0x12340128);
 729    TEST_BSX(bsfw, "w", 0);
 730    TEST_BSX(bsfw, "w", 0x12340128);
 731    TEST_BSX(bsrl, "k", 0);
 732    TEST_BSX(bsrl, "k", 0x00340128);
 733    TEST_BSX(bsfl, "k", 0);
 734    TEST_BSX(bsfl, "k", 0x00340128);
 735#if defined(__x86_64__)
 736    TEST_BSX(bsrq, "", 0);
 737    TEST_BSX(bsrq, "", 0x003401281234);
 738    TEST_BSX(bsfq, "", 0);
 739    TEST_BSX(bsfq, "", 0x003401281234);
 740#endif
 741}
 742
 743/**********************************************/
 744
 745union float64u {
 746    double d;
 747    uint64_t l;
 748};
 749
 750union float64u q_nan = { .l = 0xFFF8000000000000LL };
 751union float64u s_nan = { .l = 0xFFF0000000000000LL };
 752
 753void test_fops(double a, double b)
 754{
 755    printf("a=%f b=%f a+b=%f\n", a, b, a + b);
 756    printf("a=%f b=%f a-b=%f\n", a, b, a - b);
 757    printf("a=%f b=%f a*b=%f\n", a, b, a * b);
 758    printf("a=%f b=%f a/b=%f\n", a, b, a / b);
 759    printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
 760    printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
 761    printf("a=%f sin(a)=%f\n", a, sin(a));
 762    printf("a=%f cos(a)=%f\n", a, cos(a));
 763    printf("a=%f tan(a)=%f\n", a, tan(a));
 764    printf("a=%f log(a)=%f\n", a, log(a));
 765    printf("a=%f exp(a)=%f\n", a, exp(a));
 766    printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
 767    /* just to test some op combining */
 768    printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
 769    printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
 770    printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
 771
 772}
 773
 774void fpu_clear_exceptions(void)
 775{
 776    struct QEMU_PACKED {
 777        uint16_t fpuc;
 778        uint16_t dummy1;
 779        uint16_t fpus;
 780        uint16_t dummy2;
 781        uint16_t fptag;
 782        uint16_t dummy3;
 783        uint32_t ignored[4];
 784        long double fpregs[8];
 785    } float_env32;
 786
 787    asm volatile ("fnstenv %0\n" : "=m" (float_env32));
 788    float_env32.fpus &= ~0x7f;
 789    asm volatile ("fldenv %0\n" : : "m" (float_env32));
 790}
 791
 792/* XXX: display exception bits when supported */
 793#define FPUS_EMASK 0x0000
 794//#define FPUS_EMASK 0x007f
 795
 796void test_fcmp(double a, double b)
 797{
 798    long eflags, fpus;
 799
 800    fpu_clear_exceptions();
 801    asm("fcom %2\n"
 802        "fstsw %%ax\n"
 803        : "=a" (fpus)
 804        : "t" (a), "u" (b));
 805    printf("fcom(%f %f)=%04lx\n",
 806           a, b, fpus & (0x4500 | FPUS_EMASK));
 807    fpu_clear_exceptions();
 808    asm("fucom %2\n"
 809        "fstsw %%ax\n"
 810        : "=a" (fpus)
 811        : "t" (a), "u" (b));
 812    printf("fucom(%f %f)=%04lx\n",
 813           a, b, fpus & (0x4500 | FPUS_EMASK));
 814    if (TEST_FCOMI) {
 815        /* test f(u)comi instruction */
 816        fpu_clear_exceptions();
 817        asm("fcomi %3, %2\n"
 818            "fstsw %%ax\n"
 819            "pushf\n"
 820            "pop %0\n"
 821            : "=r" (eflags), "=a" (fpus)
 822            : "t" (a), "u" (b));
 823        printf("fcomi(%f %f)=%04lx %02lx\n",
 824               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
 825        fpu_clear_exceptions();
 826        asm("fucomi %3, %2\n"
 827            "fstsw %%ax\n"
 828            "pushf\n"
 829            "pop %0\n"
 830            : "=r" (eflags), "=a" (fpus)
 831            : "t" (a), "u" (b));
 832        printf("fucomi(%f %f)=%04lx %02lx\n",
 833               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
 834    }
 835    fpu_clear_exceptions();
 836    asm volatile("fxam\n"
 837                 "fstsw %%ax\n"
 838                 : "=a" (fpus)
 839                 : "t" (a));
 840    printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
 841    fpu_clear_exceptions();
 842}
 843
 844void test_fcvt(double a)
 845{
 846    float fa;
 847    long double la;
 848    int16_t fpuc;
 849    int i;
 850    int64_t lla;
 851    int ia;
 852    int16_t wa;
 853    double ra;
 854
 855    fa = a;
 856    la = a;
 857    printf("(float)%f = %f\n", a, fa);
 858    printf("(long double)%f = %Lf\n", a, la);
 859    printf("a=" FMT64X "\n", *(uint64_t *)&a);
 860    printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
 861           *(unsigned short *)((char *)(&la) + 8));
 862
 863    /* test all roundings */
 864    asm volatile ("fstcw %0" : "=m" (fpuc));
 865    for(i=0;i<4;i++) {
 866        uint16_t val16;
 867        val16 = (fpuc & ~0x0c00) | (i << 10);
 868        asm volatile ("fldcw %0" : : "m" (val16));
 869        asm volatile ("fist %0" : "=m" (wa) : "t" (a));
 870        asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
 871        asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
 872        asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
 873        asm volatile ("fldcw %0" : : "m" (fpuc));
 874        printf("(short)a = %d\n", wa);
 875        printf("(int)a = %d\n", ia);
 876        printf("(int64_t)a = " FMT64X "\n", lla);
 877        printf("rint(a) = %f\n", ra);
 878    }
 879}
 880
 881#define TEST(N) \
 882    asm("fld" #N : "=t" (a)); \
 883    printf("fld" #N "= %f\n", a);
 884
 885void test_fconst(void)
 886{
 887    double a;
 888    TEST(1);
 889    TEST(l2t);
 890    TEST(l2e);
 891    TEST(pi);
 892    TEST(lg2);
 893    TEST(ln2);
 894    TEST(z);
 895}
 896
 897void test_fbcd(double a)
 898{
 899    unsigned short bcd[5];
 900    double b;
 901
 902    asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
 903    asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
 904    printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
 905           a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
 906}
 907
 908#define TEST_ENV(env, save, restore)\
 909{\
 910    memset((env), 0xaa, sizeof(*(env)));\
 911    for(i=0;i<5;i++)\
 912        asm volatile ("fldl %0" : : "m" (dtab[i]));\
 913    asm volatile (save " %0\n" : : "m" (*(env)));\
 914    asm volatile (restore " %0\n": : "m" (*(env)));\
 915    for(i=0;i<5;i++)\
 916        asm volatile ("fstpl %0" : "=m" (rtab[i]));\
 917    for(i=0;i<5;i++)\
 918        printf("res[%d]=%f\n", i, rtab[i]);\
 919    printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
 920           (env)->fpuc,\
 921           (env)->fpus & 0xff00,\
 922           (env)->fptag);\
 923}
 924
 925void test_fenv(void)
 926{
 927    struct __attribute__((__packed__)) {
 928        uint16_t fpuc;
 929        uint16_t dummy1;
 930        uint16_t fpus;
 931        uint16_t dummy2;
 932        uint16_t fptag;
 933        uint16_t dummy3;
 934        uint32_t ignored[4];
 935        long double fpregs[8];
 936    } float_env32;
 937    struct __attribute__((__packed__)) {
 938        uint16_t fpuc;
 939        uint16_t fpus;
 940        uint16_t fptag;
 941        uint16_t ignored[4];
 942        long double fpregs[8];
 943    } float_env16;
 944    double dtab[8];
 945    double rtab[8];
 946    int i;
 947
 948    for(i=0;i<8;i++)
 949        dtab[i] = i + 1;
 950
 951    TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
 952    TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
 953    TEST_ENV(&float_env32, "fnstenv", "fldenv");
 954    TEST_ENV(&float_env32, "fnsave", "frstor");
 955
 956    /* test for ffree */
 957    for(i=0;i<5;i++)
 958        asm volatile ("fldl %0" : : "m" (dtab[i]));
 959    asm volatile("ffree %st(2)");
 960    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
 961    asm volatile ("fninit");
 962    printf("fptag=%04x\n", float_env32.fptag);
 963}
 964
 965
 966#define TEST_FCMOV(a, b, eflags, CC)\
 967{\
 968    double res;\
 969    asm("push %3\n"\
 970        "popf\n"\
 971        "fcmov" CC " %2, %0\n"\
 972        : "=t" (res)\
 973        : "0" (a), "u" (b), "g" (eflags));\
 974    printf("fcmov%s eflags=0x%04lx-> %f\n", \
 975           CC, (long)eflags, res);\
 976}
 977
 978void test_fcmov(void)
 979{
 980    double a, b;
 981    long eflags, i;
 982
 983    a = 1.0;
 984    b = 2.0;
 985    for(i = 0; i < 4; i++) {
 986        eflags = 0;
 987        if (i & 1)
 988            eflags |= CC_C;
 989        if (i & 2)
 990            eflags |= CC_Z;
 991        TEST_FCMOV(a, b, eflags, "b");
 992        TEST_FCMOV(a, b, eflags, "e");
 993        TEST_FCMOV(a, b, eflags, "be");
 994        TEST_FCMOV(a, b, eflags, "nb");
 995        TEST_FCMOV(a, b, eflags, "ne");
 996        TEST_FCMOV(a, b, eflags, "nbe");
 997    }
 998    TEST_FCMOV(a, b, 0, "u");
 999    TEST_FCMOV(a, b, CC_P, "u");
1000    TEST_FCMOV(a, b, 0, "nu");
1001    TEST_FCMOV(a, b, CC_P, "nu");
1002}
1003
1004void test_floats(void)
1005{
1006    test_fops(2, 3);
1007    test_fops(1.4, -5);
1008    test_fcmp(2, -1);
1009    test_fcmp(2, 2);
1010    test_fcmp(2, 3);
1011    test_fcmp(2, q_nan.d);
1012    test_fcmp(q_nan.d, -1);
1013    test_fcmp(-1.0/0.0, -1);
1014    test_fcmp(1.0/0.0, -1);
1015    test_fcvt(0.5);
1016    test_fcvt(-0.5);
1017    test_fcvt(1.0/7.0);
1018    test_fcvt(-1.0/9.0);
1019    test_fcvt(32768);
1020    test_fcvt(-1e20);
1021    test_fcvt(-1.0/0.0);
1022    test_fcvt(1.0/0.0);
1023    test_fcvt(q_nan.d);
1024    test_fconst();
1025    test_fbcd(1234567890123456.0);
1026    test_fbcd(-123451234567890.0);
1027    test_fenv();
1028    if (TEST_CMOV) {
1029        test_fcmov();
1030    }
1031}
1032
1033/**********************************************/
1034#if !defined(__x86_64__)
1035
1036#define TEST_BCD(op, op0, cc_in, cc_mask)\
1037{\
1038    int res, flags;\
1039    res = op0;\
1040    flags = cc_in;\
1041    asm ("push %3\n\t"\
1042         "popf\n\t"\
1043         #op "\n\t"\
1044         "pushf\n\t"\
1045         "pop %1\n\t"\
1046        : "=a" (res), "=g" (flags)\
1047        : "0" (res), "1" (flags));\
1048    printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1049           #op, op0, res, cc_in, flags & cc_mask);\
1050}
1051
1052void test_bcd(void)
1053{
1054    TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1055    TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1056    TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057    TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058    TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059    TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060    TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061    TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062    TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063    TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064    TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065    TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066    TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1067
1068    TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1069    TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1070    TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071    TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072    TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073    TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074    TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075    TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076    TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077    TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078    TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079    TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080    TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1081
1082    TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1083    TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1084    TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1085    TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1086    TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1087    TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1088    TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1089    TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1090
1091    TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1092    TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1093    TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1094    TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1095    TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1096    TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1097    TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1098    TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1099
1100    TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1101    TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1102}
1103#endif
1104
1105#define TEST_XCHG(op, size, opconst)\
1106{\
1107    long op0, op1;\
1108    op0 = i2l(0x12345678);\
1109    op1 = i2l(0xfbca7654);\
1110    asm(#op " %" size "0, %" size "1" \
1111        : "=q" (op0), opconst (op1) \
1112        : "0" (op0));\
1113    printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1114           #op, op0, op1);\
1115}
1116
1117#define TEST_CMPXCHG(op, size, opconst, eax)\
1118{\
1119    long op0, op1, op2;\
1120    op0 = i2l(0x12345678);\
1121    op1 = i2l(0xfbca7654);\
1122    op2 = i2l(eax);\
1123    asm(#op " %" size "0, %" size "1" \
1124        : "=q" (op0), opconst (op1) \
1125        : "0" (op0), "a" (op2));\
1126    printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1127           #op, op2, op0, op1);\
1128}
1129
1130void test_xchg(void)
1131{
1132#if defined(__x86_64__)
1133    TEST_XCHG(xchgq, "", "+q");
1134#endif
1135    TEST_XCHG(xchgl, "k", "+q");
1136    TEST_XCHG(xchgw, "w", "+q");
1137    TEST_XCHG(xchgb, "b", "+q");
1138
1139#if defined(__x86_64__)
1140    TEST_XCHG(xchgq, "", "+m");
1141#endif
1142    TEST_XCHG(xchgl, "k", "+m");
1143    TEST_XCHG(xchgw, "w", "+m");
1144    TEST_XCHG(xchgb, "b", "+m");
1145
1146#if defined(__x86_64__)
1147    TEST_XCHG(xaddq, "", "+q");
1148#endif
1149    TEST_XCHG(xaddl, "k", "+q");
1150    TEST_XCHG(xaddw, "w", "+q");
1151    TEST_XCHG(xaddb, "b", "+q");
1152
1153    {
1154        int res;
1155        res = 0x12345678;
1156        asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1157        printf("xaddl same res=%08x\n", res);
1158    }
1159
1160#if defined(__x86_64__)
1161    TEST_XCHG(xaddq, "", "+m");
1162#endif
1163    TEST_XCHG(xaddl, "k", "+m");
1164    TEST_XCHG(xaddw, "w", "+m");
1165    TEST_XCHG(xaddb, "b", "+m");
1166
1167#if defined(__x86_64__)
1168    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1169#endif
1170    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1171    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1172    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1173
1174#if defined(__x86_64__)
1175    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1176#endif
1177    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1178    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1179    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1180
1181#if defined(__x86_64__)
1182    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1183#endif
1184    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1185    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1186    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1187
1188#if defined(__x86_64__)
1189    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1190#endif
1191    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1192    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1193    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1194
1195    {
1196        uint64_t op0, op1, op2;
1197        long eax, edx;
1198        long i, eflags;
1199
1200        for(i = 0; i < 2; i++) {
1201            op0 = 0x123456789abcdLL;
1202            eax = i2l(op0 & 0xffffffff);
1203            edx = i2l(op0 >> 32);
1204            if (i == 0)
1205                op1 = 0xfbca765423456LL;
1206            else
1207                op1 = op0;
1208            op2 = 0x6532432432434LL;
1209            asm("cmpxchg8b %2\n"
1210                "pushf\n"
1211                "pop %3\n"
1212                : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1213                : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1214            printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1215                   eax, edx, op1, eflags & CC_Z);
1216        }
1217    }
1218}
1219
1220#ifdef TEST_SEGS
1221/**********************************************/
1222/* segmentation tests */
1223
1224#include <sys/syscall.h>
1225#include <unistd.h>
1226#include <asm/ldt.h>
1227#include <linux/version.h>
1228
1229static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1230{
1231    return syscall(__NR_modify_ldt, func, ptr, bytecount);
1232}
1233
1234#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1235#define modify_ldt_ldt_s user_desc
1236#endif
1237
1238#define MK_SEL(n) (((n) << 3) | 7)
1239
1240uint8_t seg_data1[4096];
1241uint8_t seg_data2[4096];
1242
1243#define TEST_LR(op, size, seg, mask)\
1244{\
1245    int res, res2;\
1246    uint16_t mseg = seg;\
1247    res = 0x12345678;\
1248    asm (op " %" size "2, %" size "0\n" \
1249         "movl $0, %1\n"\
1250         "jnz 1f\n"\
1251         "movl $1, %1\n"\
1252         "1:\n"\
1253         : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1254    printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1255}
1256
1257#define TEST_ARPL(op, size, op1, op2)\
1258{\
1259    long a, b, c;                               \
1260    a = (op1);                                  \
1261    b = (op2);                                  \
1262    asm volatile(op " %" size "3, %" size "0\n"\
1263                 "movl $0,%1\n"\
1264                 "jnz 1f\n"\
1265                 "movl $1,%1\n"\
1266                 "1:\n"\
1267                 : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1268    printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1269           (long)(op1), (long)(op2), a, c);\
1270}
1271
1272/* NOTE: we use Linux modify_ldt syscall */
1273void test_segs(void)
1274{
1275    struct modify_ldt_ldt_s ldt;
1276    long long ldt_table[3];
1277    int res, res2;
1278    char tmp;
1279    struct {
1280        uint32_t offset;
1281        uint16_t seg;
1282    } __attribute__((__packed__)) segoff;
1283
1284    ldt.entry_number = 1;
1285    ldt.base_addr = (unsigned long)&seg_data1;
1286    ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1287    ldt.seg_32bit = 1;
1288    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1289    ldt.read_exec_only = 0;
1290    ldt.limit_in_pages = 1;
1291    ldt.seg_not_present = 0;
1292    ldt.useable = 1;
1293    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1294
1295    ldt.entry_number = 2;
1296    ldt.base_addr = (unsigned long)&seg_data2;
1297    ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1298    ldt.seg_32bit = 1;
1299    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1300    ldt.read_exec_only = 0;
1301    ldt.limit_in_pages = 1;
1302    ldt.seg_not_present = 0;
1303    ldt.useable = 1;
1304    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1305
1306    modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1307#if 0
1308    {
1309        int i;
1310        for(i=0;i<3;i++)
1311            printf("%d: %016Lx\n", i, ldt_table[i]);
1312    }
1313#endif
1314    /* do some tests with fs or gs */
1315    asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1316
1317    seg_data1[1] = 0xaa;
1318    seg_data2[1] = 0x55;
1319
1320    asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1321    printf("FS[1] = %02x\n", res);
1322
1323    asm volatile ("pushl %%gs\n"
1324                  "movl %1, %%gs\n"
1325                  "gs movzbl 0x1, %0\n"
1326                  "popl %%gs\n"
1327                  : "=r" (res)
1328                  : "r" (MK_SEL(2)));
1329    printf("GS[1] = %02x\n", res);
1330
1331    /* tests with ds/ss (implicit segment case) */
1332    tmp = 0xa5;
1333    asm volatile ("pushl %%ebp\n\t"
1334                  "pushl %%ds\n\t"
1335                  "movl %2, %%ds\n\t"
1336                  "movl %3, %%ebp\n\t"
1337                  "movzbl 0x1, %0\n\t"
1338                  "movzbl (%%ebp), %1\n\t"
1339                  "popl %%ds\n\t"
1340                  "popl %%ebp\n\t"
1341                  : "=r" (res), "=r" (res2)
1342                  : "r" (MK_SEL(1)), "r" (&tmp));
1343    printf("DS[1] = %02x\n", res);
1344    printf("SS[tmp] = %02x\n", res2);
1345
1346    segoff.seg = MK_SEL(2);
1347    segoff.offset = 0xabcdef12;
1348    asm volatile("lfs %2, %0\n\t"
1349                 "movl %%fs, %1\n\t"
1350                 : "=r" (res), "=g" (res2)
1351                 : "m" (segoff));
1352    printf("FS:reg = %04x:%08x\n", res2, res);
1353
1354    TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1355    TEST_LR("larl", "", MK_SEL(2), 0x0100);
1356    TEST_LR("lslw", "w", MK_SEL(2), 0);
1357    TEST_LR("lsll", "", MK_SEL(2), 0);
1358
1359    TEST_LR("larw", "w", 0xfff8, 0);
1360    TEST_LR("larl", "", 0xfff8, 0);
1361    TEST_LR("lslw", "w", 0xfff8, 0);
1362    TEST_LR("lsll", "", 0xfff8, 0);
1363
1364    TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1365    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1366    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1367}
1368
1369/* 16 bit code test */
1370extern char code16_start, code16_end;
1371extern char code16_func1;
1372extern char code16_func2;
1373extern char code16_func3;
1374
1375void test_code16(void)
1376{
1377    struct modify_ldt_ldt_s ldt;
1378    int res, res2;
1379
1380    /* build a code segment */
1381    ldt.entry_number = 1;
1382    ldt.base_addr = (unsigned long)&code16_start;
1383    ldt.limit = &code16_end - &code16_start;
1384    ldt.seg_32bit = 0;
1385    ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1386    ldt.read_exec_only = 0;
1387    ldt.limit_in_pages = 0;
1388    ldt.seg_not_present = 0;
1389    ldt.useable = 1;
1390    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1391
1392    /* call the first function */
1393    asm volatile ("lcall %1, %2"
1394                  : "=a" (res)
1395                  : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1396    printf("func1() = 0x%08x\n", res);
1397    asm volatile ("lcall %2, %3"
1398                  : "=a" (res), "=c" (res2)
1399                  : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1400    printf("func2() = 0x%08x spdec=%d\n", res, res2);
1401    asm volatile ("lcall %1, %2"
1402                  : "=a" (res)
1403                  : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1404    printf("func3() = 0x%08x\n", res);
1405}
1406#endif
1407
1408#if defined(__x86_64__)
1409asm(".globl func_lret\n"
1410    "func_lret:\n"
1411    "movl $0x87654641, %eax\n"
1412    "lretq\n");
1413#else
1414asm(".globl func_lret\n"
1415    "func_lret:\n"
1416    "movl $0x87654321, %eax\n"
1417    "lret\n"
1418
1419    ".globl func_iret\n"
1420    "func_iret:\n"
1421    "movl $0xabcd4321, %eax\n"
1422    "iret\n");
1423#endif
1424
1425extern char func_lret;
1426extern char func_iret;
1427
1428void test_misc(void)
1429{
1430    char table[256];
1431    long res, i;
1432
1433    for(i=0;i<256;i++) table[i] = 256 - i;
1434    res = 0x12345678;
1435    asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1436    printf("xlat: EAX=" FMTLX "\n", res);
1437
1438#if defined(__x86_64__)
1439#if 0
1440    {
1441        /* XXX: see if Intel Core2 and AMD64 behavior really
1442           differ. Here we implemented the Intel way which is not
1443           compatible yet with QEMU. */
1444        static struct QEMU_PACKED {
1445            uint64_t offset;
1446            uint16_t seg;
1447        } desc;
1448        long cs_sel;
1449
1450        asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1451
1452        asm volatile ("push %1\n"
1453                      "call func_lret\n"
1454                      : "=a" (res)
1455                      : "r" (cs_sel) : "memory", "cc");
1456        printf("func_lret=" FMTLX "\n", res);
1457
1458        desc.offset = (long)&func_lret;
1459        desc.seg = cs_sel;
1460
1461        asm volatile ("xor %%rax, %%rax\n"
1462                      "rex64 lcall *(%%rcx)\n"
1463                      : "=a" (res)
1464                      : "c" (&desc)
1465                      : "memory", "cc");
1466        printf("func_lret2=" FMTLX "\n", res);
1467
1468        asm volatile ("push %2\n"
1469                      "mov $ 1f, %%rax\n"
1470                      "push %%rax\n"
1471                      "rex64 ljmp *(%%rcx)\n"
1472                      "1:\n"
1473                      : "=a" (res)
1474                      : "c" (&desc), "b" (cs_sel)
1475                      : "memory", "cc");
1476        printf("func_lret3=" FMTLX "\n", res);
1477    }
1478#endif
1479#else
1480    asm volatile ("push %%cs ; call %1"
1481                  : "=a" (res)
1482                  : "m" (func_lret): "memory", "cc");
1483    printf("func_lret=" FMTLX "\n", res);
1484
1485    asm volatile ("pushf ; push %%cs ; call %1"
1486                  : "=a" (res)
1487                  : "m" (func_iret): "memory", "cc");
1488    printf("func_iret=" FMTLX "\n", res);
1489#endif
1490
1491#if defined(__x86_64__)
1492    /* specific popl test */
1493    asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1494                  : "=g" (res));
1495    printf("popl esp=" FMTLX "\n", res);
1496#else
1497    /* specific popl test */
1498    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1499                  : "=g" (res));
1500    printf("popl esp=" FMTLX "\n", res);
1501
1502    /* specific popw test */
1503    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1504                  : "=g" (res));
1505    printf("popw esp=" FMTLX "\n", res);
1506#endif
1507}
1508
1509uint8_t str_buffer[4096];
1510
1511#define TEST_STRING1(OP, size, DF, REP)\
1512{\
1513    long esi, edi, eax, ecx, eflags;\
1514\
1515    esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1516    edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1517    eax = i2l(0x12345678);\
1518    ecx = 17;\
1519\
1520    asm volatile ("push $0\n\t"\
1521                  "popf\n\t"\
1522                  DF "\n\t"\
1523                  REP #OP size "\n\t"\
1524                  "cld\n\t"\
1525                  "pushf\n\t"\
1526                  "pop %4\n\t"\
1527                  : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1528                  : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1529    printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1530           REP #OP size, esi, edi, eax, ecx,\
1531           (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1532}
1533
1534#define TEST_STRING(OP, REP)\
1535    TEST_STRING1(OP, "b", "", REP);\
1536    TEST_STRING1(OP, "w", "", REP);\
1537    TEST_STRING1(OP, "l", "", REP);\
1538    X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1539    TEST_STRING1(OP, "b", "std", REP);\
1540    TEST_STRING1(OP, "w", "std", REP);\
1541    TEST_STRING1(OP, "l", "std", REP);\
1542    X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1543
1544void test_string(void)
1545{
1546    int i;
1547    for(i = 0;i < sizeof(str_buffer); i++)
1548        str_buffer[i] = i + 0x56;
1549   TEST_STRING(stos, "");
1550   TEST_STRING(stos, "rep ");
1551   TEST_STRING(lods, ""); /* to verify stos */
1552   TEST_STRING(lods, "rep ");
1553   TEST_STRING(movs, "");
1554   TEST_STRING(movs, "rep ");
1555   TEST_STRING(lods, ""); /* to verify stos */
1556
1557   /* XXX: better tests */
1558   TEST_STRING(scas, "");
1559   TEST_STRING(scas, "repz ");
1560   TEST_STRING(scas, "repnz ");
1561   TEST_STRING(cmps, "");
1562   TEST_STRING(cmps, "repz ");
1563   TEST_STRING(cmps, "repnz ");
1564}
1565
1566#ifdef TEST_VM86
1567/* VM86 test */
1568
1569static inline void set_bit(uint8_t *a, unsigned int bit)
1570{
1571    a[bit / 8] |= (1 << (bit % 8));
1572}
1573
1574static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1575{
1576    return (uint8_t *)((seg << 4) + (reg & 0xffff));
1577}
1578
1579static inline void pushw(struct vm86_regs *r, int val)
1580{
1581    r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1582    *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1583}
1584
1585static inline int vm86(int func, struct vm86plus_struct *v86)
1586{
1587    return syscall(__NR_vm86, func, v86);
1588}
1589
1590extern char vm86_code_start;
1591extern char vm86_code_end;
1592
1593#define VM86_CODE_CS 0x100
1594#define VM86_CODE_IP 0x100
1595
1596void test_vm86(void)
1597{
1598    struct vm86plus_struct ctx;
1599    struct vm86_regs *r;
1600    uint8_t *vm86_mem;
1601    int seg, ret;
1602
1603    vm86_mem = mmap((void *)0x00000000, 0x110000,
1604                    PROT_WRITE | PROT_READ | PROT_EXEC,
1605                    MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1606    if (vm86_mem == MAP_FAILED) {
1607        printf("ERROR: could not map vm86 memory");
1608        return;
1609    }
1610    memset(&ctx, 0, sizeof(ctx));
1611
1612    /* init basic registers */
1613    r = &ctx.regs;
1614    r->eip = VM86_CODE_IP;
1615    r->esp = 0xfffe;
1616    seg = VM86_CODE_CS;
1617    r->cs = seg;
1618    r->ss = seg;
1619    r->ds = seg;
1620    r->es = seg;
1621    r->fs = seg;
1622    r->gs = seg;
1623    r->eflags = VIF_MASK;
1624
1625    /* move code to proper address. We use the same layout as a .com
1626       dos program. */
1627    memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1628           &vm86_code_start, &vm86_code_end - &vm86_code_start);
1629
1630    /* mark int 0x21 as being emulated */
1631    set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1632
1633    for(;;) {
1634        ret = vm86(VM86_ENTER, &ctx);
1635        switch(VM86_TYPE(ret)) {
1636        case VM86_INTx:
1637            {
1638                int int_num, ah, v;
1639
1640                int_num = VM86_ARG(ret);
1641                if (int_num != 0x21)
1642                    goto unknown_int;
1643                ah = (r->eax >> 8) & 0xff;
1644                switch(ah) {
1645                case 0x00: /* exit */
1646                    goto the_end;
1647                case 0x02: /* write char */
1648                    {
1649                        uint8_t c = r->edx;
1650                        putchar(c);
1651                    }
1652                    break;
1653                case 0x09: /* write string */
1654                    {
1655                        uint8_t c, *ptr;
1656                        ptr = seg_to_linear(r->ds, r->edx);
1657                        for(;;) {
1658                            c = *ptr++;
1659                            if (c == '$')
1660                                break;
1661                            putchar(c);
1662                        }
1663                        r->eax = (r->eax & ~0xff) | '$';
1664                    }
1665                    break;
1666                case 0xff: /* extension: write eflags number in edx */
1667                    v = (int)r->edx;
1668#ifndef LINUX_VM86_IOPL_FIX
1669                    v &= ~0x3000;
1670#endif
1671                    printf("%08x\n", v);
1672                    break;
1673                default:
1674                unknown_int:
1675                    printf("unsupported int 0x%02x\n", int_num);
1676                    goto the_end;
1677                }
1678            }
1679            break;
1680        case VM86_SIGNAL:
1681            /* a signal came, we just ignore that */
1682            break;
1683        case VM86_STI:
1684            break;
1685        default:
1686            printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1687            goto the_end;
1688        }
1689    }
1690 the_end:
1691    printf("VM86 end\n");
1692    munmap(vm86_mem, 0x110000);
1693}
1694#endif
1695
1696/* exception tests */
1697#if defined(__i386__) && !defined(REG_EAX)
1698#define REG_EAX EAX
1699#define REG_EBX EBX
1700#define REG_ECX ECX
1701#define REG_EDX EDX
1702#define REG_ESI ESI
1703#define REG_EDI EDI
1704#define REG_EBP EBP
1705#define REG_ESP ESP
1706#define REG_EIP EIP
1707#define REG_EFL EFL
1708#define REG_TRAPNO TRAPNO
1709#define REG_ERR ERR
1710#endif
1711
1712#if defined(__x86_64__)
1713#define REG_EIP REG_RIP
1714#endif
1715
1716jmp_buf jmp_env;
1717int v1;
1718int tab[2];
1719
1720void sig_handler(int sig, siginfo_t *info, void *puc)
1721{
1722    ucontext_t *uc = puc;
1723
1724    printf("si_signo=%d si_errno=%d si_code=%d",
1725           info->si_signo, info->si_errno, info->si_code);
1726    printf(" si_addr=0x%08lx",
1727           (unsigned long)info->si_addr);
1728    printf("\n");
1729
1730    printf("trapno=" FMTLX " err=" FMTLX,
1731           (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1732           (long)uc->uc_mcontext.gregs[REG_ERR]);
1733    printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1734    printf("\n");
1735    longjmp(jmp_env, 1);
1736}
1737
1738void test_exceptions(void)
1739{
1740    struct sigaction act;
1741    volatile int val;
1742
1743    act.sa_sigaction = sig_handler;
1744    sigemptyset(&act.sa_mask);
1745    act.sa_flags = SA_SIGINFO | SA_NODEFER;
1746    sigaction(SIGFPE, &act, NULL);
1747    sigaction(SIGILL, &act, NULL);
1748    sigaction(SIGSEGV, &act, NULL);
1749    sigaction(SIGBUS, &act, NULL);
1750    sigaction(SIGTRAP, &act, NULL);
1751
1752    /* test division by zero reporting */
1753    printf("DIVZ exception:\n");
1754    if (setjmp(jmp_env) == 0) {
1755        /* now divide by zero */
1756        v1 = 0;
1757        v1 = 2 / v1;
1758    }
1759
1760#if !defined(__x86_64__)
1761    printf("BOUND exception:\n");
1762    if (setjmp(jmp_env) == 0) {
1763        /* bound exception */
1764        tab[0] = 1;
1765        tab[1] = 10;
1766        asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1767    }
1768#endif
1769
1770#ifdef TEST_SEGS
1771    printf("segment exceptions:\n");
1772    if (setjmp(jmp_env) == 0) {
1773        /* load an invalid segment */
1774        asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1775    }
1776    if (setjmp(jmp_env) == 0) {
1777        /* null data segment is valid */
1778        asm volatile ("movl %0, %%fs" : : "r" (3));
1779        /* null stack segment */
1780        asm volatile ("movl %0, %%ss" : : "r" (3));
1781    }
1782
1783    {
1784        struct modify_ldt_ldt_s ldt;
1785        ldt.entry_number = 1;
1786        ldt.base_addr = (unsigned long)&seg_data1;
1787        ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1788        ldt.seg_32bit = 1;
1789        ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1790        ldt.read_exec_only = 0;
1791        ldt.limit_in_pages = 1;
1792        ldt.seg_not_present = 1;
1793        ldt.useable = 1;
1794        modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1795
1796        if (setjmp(jmp_env) == 0) {
1797            /* segment not present */
1798            asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1799        }
1800    }
1801#endif
1802
1803    /* test SEGV reporting */
1804    printf("PF exception:\n");
1805    if (setjmp(jmp_env) == 0) {
1806        val = 1;
1807        /* we add a nop to test a weird PC retrieval case */
1808        asm volatile ("nop");
1809        /* now store in an invalid address */
1810        *(char *)0x1234 = 1;
1811    }
1812
1813    /* test SEGV reporting */
1814    printf("PF exception:\n");
1815    if (setjmp(jmp_env) == 0) {
1816        val = 1;
1817        /* read from an invalid address */
1818        v1 = *(char *)0x1234;
1819    }
1820
1821    /* test illegal instruction reporting */
1822    printf("UD2 exception:\n");
1823    if (setjmp(jmp_env) == 0) {
1824        /* now execute an invalid instruction */
1825        asm volatile("ud2");
1826    }
1827    printf("lock nop exception:\n");
1828    if (setjmp(jmp_env) == 0) {
1829        /* now execute an invalid instruction */
1830        asm volatile(".byte 0xf0, 0x90");
1831    }
1832
1833    printf("INT exception:\n");
1834    if (setjmp(jmp_env) == 0) {
1835        asm volatile ("int $0xfd");
1836    }
1837    if (setjmp(jmp_env) == 0) {
1838        asm volatile ("int $0x01");
1839    }
1840    if (setjmp(jmp_env) == 0) {
1841        asm volatile (".byte 0xcd, 0x03");
1842    }
1843    if (setjmp(jmp_env) == 0) {
1844        asm volatile ("int $0x04");
1845    }
1846    if (setjmp(jmp_env) == 0) {
1847        asm volatile ("int $0x05");
1848    }
1849
1850    printf("INT3 exception:\n");
1851    if (setjmp(jmp_env) == 0) {
1852        asm volatile ("int3");
1853    }
1854
1855    printf("CLI exception:\n");
1856    if (setjmp(jmp_env) == 0) {
1857        asm volatile ("cli");
1858    }
1859
1860    printf("STI exception:\n");
1861    if (setjmp(jmp_env) == 0) {
1862        asm volatile ("cli");
1863    }
1864
1865#if !defined(__x86_64__)
1866    printf("INTO exception:\n");
1867    if (setjmp(jmp_env) == 0) {
1868        /* overflow exception */
1869        asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1870    }
1871#endif
1872
1873    printf("OUTB exception:\n");
1874    if (setjmp(jmp_env) == 0) {
1875        asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1876    }
1877
1878    printf("INB exception:\n");
1879    if (setjmp(jmp_env) == 0) {
1880        asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1881    }
1882
1883    printf("REP OUTSB exception:\n");
1884    if (setjmp(jmp_env) == 0) {
1885        asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1886    }
1887
1888    printf("REP INSB exception:\n");
1889    if (setjmp(jmp_env) == 0) {
1890        asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1891    }
1892
1893    printf("HLT exception:\n");
1894    if (setjmp(jmp_env) == 0) {
1895        asm volatile ("hlt");
1896    }
1897
1898    printf("single step exception:\n");
1899    val = 0;
1900    if (setjmp(jmp_env) == 0) {
1901        asm volatile ("pushf\n"
1902                      "orl $0x00100, (%%esp)\n"
1903                      "popf\n"
1904                      "movl $0xabcd, %0\n"
1905                      "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1906    }
1907    printf("val=0x%x\n", val);
1908}
1909
1910#if !defined(__x86_64__)
1911/* specific precise single step test */
1912void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1913{
1914    ucontext_t *uc = puc;
1915    printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1916}
1917
1918const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1919uint8_t sstep_buf2[4];
1920
1921void test_single_step(void)
1922{
1923    struct sigaction act;
1924    volatile int val;
1925    int i;
1926
1927    val = 0;
1928    act.sa_sigaction = sig_trap_handler;
1929    sigemptyset(&act.sa_mask);
1930    act.sa_flags = SA_SIGINFO;
1931    sigaction(SIGTRAP, &act, NULL);
1932    asm volatile ("pushf\n"
1933                  "orl $0x00100, (%%esp)\n"
1934                  "popf\n"
1935                  "movl $0xabcd, %0\n"
1936
1937                  /* jmp test */
1938                  "movl $3, %%ecx\n"
1939                  "1:\n"
1940                  "addl $1, %0\n"
1941                  "decl %%ecx\n"
1942                  "jnz 1b\n"
1943
1944                  /* movsb: the single step should stop at each movsb iteration */
1945                  "movl $sstep_buf1, %%esi\n"
1946                  "movl $sstep_buf2, %%edi\n"
1947                  "movl $0, %%ecx\n"
1948                  "rep movsb\n"
1949                  "movl $3, %%ecx\n"
1950                  "rep movsb\n"
1951                  "movl $1, %%ecx\n"
1952                  "rep movsb\n"
1953
1954                  /* cmpsb: the single step should stop at each cmpsb iteration */
1955                  "movl $sstep_buf1, %%esi\n"
1956                  "movl $sstep_buf2, %%edi\n"
1957                  "movl $0, %%ecx\n"
1958                  "rep cmpsb\n"
1959                  "movl $4, %%ecx\n"
1960                  "rep cmpsb\n"
1961
1962                  /* getpid() syscall: single step should skip one
1963                     instruction */
1964                  "movl $20, %%eax\n"
1965                  "int $0x80\n"
1966                  "movl $0, %%eax\n"
1967
1968                  /* when modifying SS, trace is not done on the next
1969                     instruction */
1970                  "movl %%ss, %%ecx\n"
1971                  "movl %%ecx, %%ss\n"
1972                  "addl $1, %0\n"
1973                  "movl $1, %%eax\n"
1974                  "movl %%ecx, %%ss\n"
1975                  "jmp 1f\n"
1976                  "addl $1, %0\n"
1977                  "1:\n"
1978                  "movl $1, %%eax\n"
1979                  "pushl %%ecx\n"
1980                  "popl %%ss\n"
1981                  "addl $1, %0\n"
1982                  "movl $1, %%eax\n"
1983
1984                  "pushf\n"
1985                  "andl $~0x00100, (%%esp)\n"
1986                  "popf\n"
1987                  : "=m" (val)
1988                  :
1989                  : "cc", "memory", "eax", "ecx", "esi", "edi");
1990    printf("val=%d\n", val);
1991    for(i = 0; i < 4; i++)
1992        printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1993}
1994
1995/* self modifying code test */
1996uint8_t code[] = {
1997    0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
1998    0xc3, /* ret */
1999};
2000
2001asm(".section \".data\"\n"
2002    "smc_code2:\n"
2003    "movl 4(%esp), %eax\n"
2004    "movl %eax, smc_patch_addr2 + 1\n"
2005    "nop\n"
2006    "nop\n"
2007    "nop\n"
2008    "nop\n"
2009    "nop\n"
2010    "nop\n"
2011    "nop\n"
2012    "nop\n"
2013    "smc_patch_addr2:\n"
2014    "movl $1, %eax\n"
2015    "ret\n"
2016    ".previous\n"
2017    );
2018
2019typedef int FuncType(void);
2020extern int smc_code2(int);
2021void test_self_modifying_code(void)
2022{
2023    int i;
2024    printf("self modifying code:\n");
2025    printf("func1 = 0x%x\n", ((FuncType *)code)());
2026    for(i = 2; i <= 4; i++) {
2027        code[1] = i;
2028        printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2029    }
2030
2031    /* more difficult test : the modified code is just after the
2032       modifying instruction. It is forbidden in Intel specs, but it
2033       is used by old DOS programs */
2034    for(i = 2; i <= 4; i++) {
2035        printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2036    }
2037}
2038#endif
2039
2040long enter_stack[4096];
2041
2042#if defined(__x86_64__)
2043#define RSP "%%rsp"
2044#define RBP "%%rbp"
2045#else
2046#define RSP "%%esp"
2047#define RBP "%%ebp"
2048#endif
2049
2050#if !defined(__x86_64__)
2051/* causes an infinite loop, disable it for now.  */
2052#define TEST_ENTER(size, stack_type, level)
2053#else
2054#define TEST_ENTER(size, stack_type, level)\
2055{\
2056    long esp_save, esp_val, ebp_val, ebp_save, i;\
2057    stack_type *ptr, *stack_end, *stack_ptr;\
2058    memset(enter_stack, 0, sizeof(enter_stack));\
2059    stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2060    ebp_val = (long)stack_ptr;\
2061    for(i=1;i<=32;i++)\
2062       *--stack_ptr = i;\
2063    esp_val = (long)stack_ptr;\
2064    asm("mov " RSP ", %[esp_save]\n"\
2065        "mov " RBP ", %[ebp_save]\n"\
2066        "mov %[esp_val], " RSP "\n"\
2067        "mov %[ebp_val], " RBP "\n"\
2068        "enter" size " $8, $" #level "\n"\
2069        "mov " RSP ", %[esp_val]\n"\
2070        "mov " RBP ", %[ebp_val]\n"\
2071        "mov %[esp_save], " RSP "\n"\
2072        "mov %[ebp_save], " RBP "\n"\
2073        : [esp_save] "=r" (esp_save),\
2074        [ebp_save] "=r" (ebp_save),\
2075        [esp_val] "=r" (esp_val),\
2076        [ebp_val] "=r" (ebp_val)\
2077        :  "[esp_val]" (esp_val),\
2078        "[ebp_val]" (ebp_val));\
2079    printf("level=%d:\n", level);\
2080    printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2081    printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2082    for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2083        printf(FMTLX "\n", (long)ptr[0]);\
2084}
2085#endif
2086
2087static void test_enter(void)
2088{
2089#if defined(__x86_64__)
2090    TEST_ENTER("q", uint64_t, 0);
2091    TEST_ENTER("q", uint64_t, 1);
2092    TEST_ENTER("q", uint64_t, 2);
2093    TEST_ENTER("q", uint64_t, 31);
2094#else
2095    TEST_ENTER("l", uint32_t, 0);
2096    TEST_ENTER("l", uint32_t, 1);
2097    TEST_ENTER("l", uint32_t, 2);
2098    TEST_ENTER("l", uint32_t, 31);
2099#endif
2100
2101    TEST_ENTER("w", uint16_t, 0);
2102    TEST_ENTER("w", uint16_t, 1);
2103    TEST_ENTER("w", uint16_t, 2);
2104    TEST_ENTER("w", uint16_t, 31);
2105}
2106
2107#ifdef TEST_SSE
2108
2109typedef int __m64 __attribute__ ((vector_size(8)));
2110typedef float __m128 __attribute__ ((vector_size(16)));
2111
2112typedef union {
2113    double d[2];
2114    float s[4];
2115    uint32_t l[4];
2116    uint64_t q[2];
2117    __m128 dq;
2118} XMMReg;
2119
2120static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2121    { 0x456723c698694873, 0xdc515cff944a58ec },
2122    { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2123    { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2124    { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2125};
2126
2127#define SSE_OP(op)\
2128{\
2129    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2130    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2131           #op,\
2132           a.q[1], a.q[0],\
2133           b.q[1], b.q[0],\
2134           r.q[1], r.q[0]);\
2135}
2136
2137#define SSE_OP2(op)\
2138{\
2139    int i;\
2140    for(i=0;i<2;i++) {\
2141    a.q[0] = test_values[2*i][0];\
2142    a.q[1] = test_values[2*i][1];\
2143    b.q[0] = test_values[2*i+1][0];\
2144    b.q[1] = test_values[2*i+1][1];\
2145    SSE_OP(op);\
2146    }\
2147}
2148
2149#define MMX_OP2(op)\
2150{\
2151    int i;\
2152    for(i=0;i<2;i++) {\
2153    a.q[0] = test_values[2*i][0];\
2154    b.q[0] = test_values[2*i+1][0];\
2155    asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2156    printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2157           #op,\
2158           a.q[0],\
2159           b.q[0],\
2160           r.q[0]);\
2161    }\
2162    SSE_OP2(op);\
2163}
2164
2165#define SHUF_OP(op, ib)\
2166{\
2167    a.q[0] = test_values[0][0];\
2168    a.q[1] = test_values[0][1];\
2169    b.q[0] = test_values[1][0];\
2170    b.q[1] = test_values[1][1];\
2171    asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2172    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2173           #op,\
2174           a.q[1], a.q[0],\
2175           b.q[1], b.q[0],\
2176           ib,\
2177           r.q[1], r.q[0]);\
2178}
2179
2180#define PSHUF_OP(op, ib)\
2181{\
2182    int i;\
2183    for(i=0;i<2;i++) {\
2184    a.q[0] = test_values[2*i][0];\
2185    a.q[1] = test_values[2*i][1];\
2186    asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2187    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2188           #op,\
2189           a.q[1], a.q[0],\
2190           ib,\
2191           r.q[1], r.q[0]);\
2192    }\
2193}
2194
2195#define SHIFT_IM(op, ib)\
2196{\
2197    int i;\
2198    for(i=0;i<2;i++) {\
2199    a.q[0] = test_values[2*i][0];\
2200    a.q[1] = test_values[2*i][1];\
2201    asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2202    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2203           #op,\
2204           a.q[1], a.q[0],\
2205           ib,\
2206           r.q[1], r.q[0]);\
2207    }\
2208}
2209
2210#define SHIFT_OP(op, ib)\
2211{\
2212    int i;\
2213    SHIFT_IM(op, ib);\
2214    for(i=0;i<2;i++) {\
2215    a.q[0] = test_values[2*i][0];\
2216    a.q[1] = test_values[2*i][1];\
2217    b.q[0] = ib;\
2218    b.q[1] = 0;\
2219    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2220    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2221           #op,\
2222           a.q[1], a.q[0],\
2223           b.q[1], b.q[0],\
2224           r.q[1], r.q[0]);\
2225    }\
2226}
2227
2228#define MOVMSK(op)\
2229{\
2230    int i, reg;\
2231    for(i=0;i<2;i++) {\
2232    a.q[0] = test_values[2*i][0];\
2233    a.q[1] = test_values[2*i][1];\
2234    asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2235    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2236           #op,\
2237           a.q[1], a.q[0],\
2238           reg);\
2239    }\
2240}
2241
2242#define SSE_OPS(a) \
2243SSE_OP(a ## ps);\
2244SSE_OP(a ## ss);
2245
2246#define SSE_OPD(a) \
2247SSE_OP(a ## pd);\
2248SSE_OP(a ## sd);
2249
2250#define SSE_COMI(op, field)\
2251{\
2252    unsigned long eflags;\
2253    XMMReg a, b;\
2254    a.field[0] = a1;\
2255    b.field[0] = b1;\
2256    asm volatile (#op " %2, %1\n"\
2257        "pushf\n"\
2258        "pop %0\n"\
2259        : "=rm" (eflags)\
2260        : "x" (a.dq), "x" (b.dq));\
2261    printf("%-9s: a=%f b=%f cc=%04lx\n",\
2262           #op, a1, b1,\
2263           eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2264}
2265
2266void test_sse_comi(double a1, double b1)
2267{
2268    SSE_COMI(ucomiss, s);
2269    SSE_COMI(ucomisd, d);
2270    SSE_COMI(comiss, s);
2271    SSE_COMI(comisd, d);
2272}
2273
2274#define CVT_OP_XMM(op)\
2275{\
2276    asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2277    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2278           #op,\
2279           a.q[1], a.q[0],\
2280           r.q[1], r.q[0]);\
2281}
2282
2283/* Force %xmm0 usage to avoid the case where both register index are 0
2284   to test instruction decoding more extensively */
2285#define CVT_OP_XMM2MMX(op)\
2286{\
2287    asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2288                  : "%xmm0"); \
2289    asm volatile("emms\n"); \
2290    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2291           #op,\
2292           a.q[1], a.q[0],\
2293           r.q[0]);\
2294}
2295
2296#define CVT_OP_MMX2XMM(op)\
2297{\
2298    asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2299    asm volatile("emms\n"); \
2300    printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2301           #op,\
2302           a.q[0],\
2303           r.q[1], r.q[0]);\
2304}
2305
2306#define CVT_OP_REG2XMM(op)\
2307{\
2308    asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2309    printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2310           #op,\
2311           a.l[0],\
2312           r.q[1], r.q[0]);\
2313}
2314
2315#define CVT_OP_XMM2REG(op)\
2316{\
2317    asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2318    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2319           #op,\
2320           a.q[1], a.q[0],\
2321           r.l[0]);\
2322}
2323
2324struct fpxstate {
2325    uint16_t fpuc;
2326    uint16_t fpus;
2327    uint16_t fptag;
2328    uint16_t fop;
2329    uint32_t fpuip;
2330    uint16_t cs_sel;
2331    uint16_t dummy0;
2332    uint32_t fpudp;
2333    uint16_t ds_sel;
2334    uint16_t dummy1;
2335    uint32_t mxcsr;
2336    uint32_t mxcsr_mask;
2337    uint8_t fpregs1[8 * 16];
2338    uint8_t xmm_regs[8 * 16];
2339    uint8_t dummy2[224];
2340};
2341
2342static struct fpxstate fpx_state __attribute__((aligned(16)));
2343static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2344
2345void test_fxsave(void)
2346{
2347    struct fpxstate *fp = &fpx_state;
2348    struct fpxstate *fp2 = &fpx_state2;
2349    int i, nb_xmm;
2350    XMMReg a, b;
2351    a.q[0] = test_values[0][0];
2352    a.q[1] = test_values[0][1];
2353    b.q[0] = test_values[1][0];
2354    b.q[1] = test_values[1][1];
2355
2356    asm("movdqa %2, %%xmm0\n"
2357        "movdqa %3, %%xmm7\n"
2358#if defined(__x86_64__)
2359        "movdqa %2, %%xmm15\n"
2360#endif
2361        " fld1\n"
2362        " fldpi\n"
2363        " fldln2\n"
2364        " fxsave %0\n"
2365        " fxrstor %0\n"
2366        " fxsave %1\n"
2367        " fninit\n"
2368        : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2369        : "m" (a), "m" (b));
2370    printf("fpuc=%04x\n", fp->fpuc);
2371    printf("fpus=%04x\n", fp->fpus);
2372    printf("fptag=%04x\n", fp->fptag);
2373    for(i = 0; i < 3; i++) {
2374        printf("ST%d: " FMT64X " %04x\n",
2375               i,
2376               *(uint64_t *)&fp->fpregs1[i * 16],
2377               *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2378    }
2379    printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2380#if defined(__x86_64__)
2381    nb_xmm = 16;
2382#else
2383    nb_xmm = 8;
2384#endif
2385    for(i = 0; i < nb_xmm; i++) {
2386        printf("xmm%d: " FMT64X "" FMT64X "\n",
2387               i,
2388               *(uint64_t *)&fp->xmm_regs[i * 16],
2389               *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2390    }
2391}
2392
2393void test_sse(void)
2394{
2395    XMMReg r, a, b;
2396    int i;
2397
2398    MMX_OP2(punpcklbw);
2399    MMX_OP2(punpcklwd);
2400    MMX_OP2(punpckldq);
2401    MMX_OP2(packsswb);
2402    MMX_OP2(pcmpgtb);
2403    MMX_OP2(pcmpgtw);
2404    MMX_OP2(pcmpgtd);
2405    MMX_OP2(packuswb);
2406    MMX_OP2(punpckhbw);
2407    MMX_OP2(punpckhwd);
2408    MMX_OP2(punpckhdq);
2409    MMX_OP2(packssdw);
2410    MMX_OP2(pcmpeqb);
2411    MMX_OP2(pcmpeqw);
2412    MMX_OP2(pcmpeqd);
2413
2414    MMX_OP2(paddq);
2415    MMX_OP2(pmullw);
2416    MMX_OP2(psubusb);
2417    MMX_OP2(psubusw);
2418    MMX_OP2(pminub);
2419    MMX_OP2(pand);
2420    MMX_OP2(paddusb);
2421    MMX_OP2(paddusw);
2422    MMX_OP2(pmaxub);
2423    MMX_OP2(pandn);
2424
2425    MMX_OP2(pmulhuw);
2426    MMX_OP2(pmulhw);
2427
2428    MMX_OP2(psubsb);
2429    MMX_OP2(psubsw);
2430    MMX_OP2(pminsw);
2431    MMX_OP2(por);
2432    MMX_OP2(paddsb);
2433    MMX_OP2(paddsw);
2434    MMX_OP2(pmaxsw);
2435    MMX_OP2(pxor);
2436    MMX_OP2(pmuludq);
2437    MMX_OP2(pmaddwd);
2438    MMX_OP2(psadbw);
2439    MMX_OP2(psubb);
2440    MMX_OP2(psubw);
2441    MMX_OP2(psubd);
2442    MMX_OP2(psubq);
2443    MMX_OP2(paddb);
2444    MMX_OP2(paddw);
2445    MMX_OP2(paddd);
2446
2447    MMX_OP2(pavgb);
2448    MMX_OP2(pavgw);
2449
2450    asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2451    printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2452
2453    asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2454    printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2455
2456    a.q[0] = test_values[0][0];
2457    a.q[1] = test_values[0][1];
2458    asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2459    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2460
2461    asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2462    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2463
2464    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2465    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2466
2467    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2468    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2469
2470    {
2471        r.q[0] = -1;
2472        r.q[1] = -1;
2473
2474        a.q[0] = test_values[0][0];
2475        a.q[1] = test_values[0][1];
2476        b.q[0] = test_values[1][0];
2477        b.q[1] = test_values[1][1];
2478        asm volatile("maskmovq %1, %0" :
2479                     : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2480                     : "memory");
2481        printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2482               "maskmov",
2483               r.q[0],
2484               a.q[0],
2485               b.q[0]);
2486        asm volatile("maskmovdqu %1, %0" :
2487                     : "x" (a.dq), "x" (b.dq), "D" (&r)
2488                     : "memory");
2489        printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2490               "maskmov",
2491               r.q[1], r.q[0],
2492               a.q[1], a.q[0],
2493               b.q[1], b.q[0]);
2494    }
2495
2496    asm volatile ("emms");
2497
2498    SSE_OP2(punpcklqdq);
2499    SSE_OP2(punpckhqdq);
2500    SSE_OP2(andps);
2501    SSE_OP2(andpd);
2502    SSE_OP2(andnps);
2503    SSE_OP2(andnpd);
2504    SSE_OP2(orps);
2505    SSE_OP2(orpd);
2506    SSE_OP2(xorps);
2507    SSE_OP2(xorpd);
2508
2509    SSE_OP2(unpcklps);
2510    SSE_OP2(unpcklpd);
2511    SSE_OP2(unpckhps);
2512    SSE_OP2(unpckhpd);
2513
2514    SHUF_OP(shufps, 0x78);
2515    SHUF_OP(shufpd, 0x02);
2516
2517    PSHUF_OP(pshufd, 0x78);
2518    PSHUF_OP(pshuflw, 0x78);
2519    PSHUF_OP(pshufhw, 0x78);
2520
2521    SHIFT_OP(psrlw, 7);
2522    SHIFT_OP(psrlw, 16);
2523    SHIFT_OP(psraw, 7);
2524    SHIFT_OP(psraw, 16);
2525    SHIFT_OP(psllw, 7);
2526    SHIFT_OP(psllw, 16);
2527
2528    SHIFT_OP(psrld, 7);
2529    SHIFT_OP(psrld, 32);
2530    SHIFT_OP(psrad, 7);
2531    SHIFT_OP(psrad, 32);
2532    SHIFT_OP(pslld, 7);
2533    SHIFT_OP(pslld, 32);
2534
2535    SHIFT_OP(psrlq, 7);
2536    SHIFT_OP(psrlq, 32);
2537    SHIFT_OP(psllq, 7);
2538    SHIFT_OP(psllq, 32);
2539
2540    SHIFT_IM(psrldq, 16);
2541    SHIFT_IM(psrldq, 7);
2542    SHIFT_IM(pslldq, 16);
2543    SHIFT_IM(pslldq, 7);
2544
2545    MOVMSK(movmskps);
2546    MOVMSK(movmskpd);
2547
2548    /* FPU specific ops */
2549
2550    {
2551        uint32_t mxcsr;
2552        asm volatile("stmxcsr %0" : "=m" (mxcsr));
2553        printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2554        asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2555    }
2556
2557    test_sse_comi(2, -1);
2558    test_sse_comi(2, 2);
2559    test_sse_comi(2, 3);
2560    test_sse_comi(2, q_nan.d);
2561    test_sse_comi(q_nan.d, -1);
2562
2563    for(i = 0; i < 2; i++) {
2564        a.s[0] = 2.7;
2565        a.s[1] = 3.4;
2566        a.s[2] = 4;
2567        a.s[3] = -6.3;
2568        b.s[0] = 45.7;
2569        b.s[1] = 353.4;
2570        b.s[2] = 4;
2571        b.s[3] = 56.3;
2572        if (i == 1) {
2573            a.s[0] = q_nan.d;
2574            b.s[3] = q_nan.d;
2575        }
2576
2577        SSE_OPS(add);
2578        SSE_OPS(mul);
2579        SSE_OPS(sub);
2580        SSE_OPS(min);
2581        SSE_OPS(div);
2582        SSE_OPS(max);
2583        SSE_OPS(sqrt);
2584        SSE_OPS(cmpeq);
2585        SSE_OPS(cmplt);
2586        SSE_OPS(cmple);
2587        SSE_OPS(cmpunord);
2588        SSE_OPS(cmpneq);
2589        SSE_OPS(cmpnlt);
2590        SSE_OPS(cmpnle);
2591        SSE_OPS(cmpord);
2592
2593
2594        a.d[0] = 2.7;
2595        a.d[1] = -3.4;
2596        b.d[0] = 45.7;
2597        b.d[1] = -53.4;
2598        if (i == 1) {
2599            a.d[0] = q_nan.d;
2600            b.d[1] = q_nan.d;
2601        }
2602        SSE_OPD(add);
2603        SSE_OPD(mul);
2604        SSE_OPD(sub);
2605        SSE_OPD(min);
2606        SSE_OPD(div);
2607        SSE_OPD(max);
2608        SSE_OPD(sqrt);
2609        SSE_OPD(cmpeq);
2610        SSE_OPD(cmplt);
2611        SSE_OPD(cmple);
2612        SSE_OPD(cmpunord);
2613        SSE_OPD(cmpneq);
2614        SSE_OPD(cmpnlt);
2615        SSE_OPD(cmpnle);
2616        SSE_OPD(cmpord);
2617    }
2618
2619    /* float to float/int */
2620    a.s[0] = 2.7;
2621    a.s[1] = 3.4;
2622    a.s[2] = 4;
2623    a.s[3] = -6.3;
2624    CVT_OP_XMM(cvtps2pd);
2625    CVT_OP_XMM(cvtss2sd);
2626    CVT_OP_XMM2MMX(cvtps2pi);
2627    CVT_OP_XMM2MMX(cvttps2pi);
2628    CVT_OP_XMM2REG(cvtss2si);
2629    CVT_OP_XMM2REG(cvttss2si);
2630    CVT_OP_XMM(cvtps2dq);
2631    CVT_OP_XMM(cvttps2dq);
2632
2633    a.d[0] = 2.6;
2634    a.d[1] = -3.4;
2635    CVT_OP_XMM(cvtpd2ps);
2636    CVT_OP_XMM(cvtsd2ss);
2637    CVT_OP_XMM2MMX(cvtpd2pi);
2638    CVT_OP_XMM2MMX(cvttpd2pi);
2639    CVT_OP_XMM2REG(cvtsd2si);
2640    CVT_OP_XMM2REG(cvttsd2si);
2641    CVT_OP_XMM(cvtpd2dq);
2642    CVT_OP_XMM(cvttpd2dq);
2643
2644    /* sse/mmx moves */
2645    CVT_OP_XMM2MMX(movdq2q);
2646    CVT_OP_MMX2XMM(movq2dq);
2647
2648    /* int to float */
2649    a.l[0] = -6;
2650    a.l[1] = 2;
2651    a.l[2] = 100;
2652    a.l[3] = -60000;
2653    CVT_OP_MMX2XMM(cvtpi2ps);
2654    CVT_OP_MMX2XMM(cvtpi2pd);
2655    CVT_OP_REG2XMM(cvtsi2ss);
2656    CVT_OP_REG2XMM(cvtsi2sd);
2657    CVT_OP_XMM(cvtdq2ps);
2658    CVT_OP_XMM(cvtdq2pd);
2659
2660    /* XXX: test PNI insns */
2661#if 0
2662    SSE_OP2(movshdup);
2663#endif
2664    asm volatile ("emms");
2665}
2666
2667#endif
2668
2669#define TEST_CONV_RAX(op)\
2670{\
2671    unsigned long a, r;\
2672    a = i2l(0x8234a6f8);\
2673    r = a;\
2674    asm volatile(#op : "=a" (r) : "0" (r));\
2675    printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2676}
2677
2678#define TEST_CONV_RAX_RDX(op)\
2679{\
2680    unsigned long a, d, r, rh;                   \
2681    a = i2l(0x8234a6f8);\
2682    d = i2l(0x8345a1f2);\
2683    r = a;\
2684    rh = d;\
2685    asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2686    printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2687}
2688
2689void test_conv(void)
2690{
2691    TEST_CONV_RAX(cbw);
2692    TEST_CONV_RAX(cwde);
2693#if defined(__x86_64__)
2694    TEST_CONV_RAX(cdqe);
2695#endif
2696
2697    TEST_CONV_RAX_RDX(cwd);
2698    TEST_CONV_RAX_RDX(cdq);
2699#if defined(__x86_64__)
2700    TEST_CONV_RAX_RDX(cqo);
2701#endif
2702
2703    {
2704        unsigned long a, r;
2705        a = i2l(0x12345678);
2706        asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2707        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2708    }
2709#if defined(__x86_64__)
2710    {
2711        unsigned long a, r;
2712        a = i2l(0x12345678);
2713        asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2714        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2715    }
2716#endif
2717}
2718
2719extern void *__start_initcall;
2720extern void *__stop_initcall;
2721
2722
2723int main(int argc, char **argv)
2724{
2725    void **ptr;
2726    void (*func)(void);
2727
2728    ptr = &__start_initcall;
2729    while (ptr != &__stop_initcall) {
2730        func = *ptr++;
2731        func();
2732    }
2733    test_bsx();
2734    test_mul();
2735    test_jcc();
2736    test_loop();
2737    test_floats();
2738#if !defined(__x86_64__)
2739    test_bcd();
2740#endif
2741    test_xchg();
2742    test_string();
2743    test_misc();
2744    test_lea();
2745#ifdef TEST_SEGS
2746    test_segs();
2747    test_code16();
2748#endif
2749#ifdef TEST_VM86
2750    test_vm86();
2751#endif
2752#if !defined(__x86_64__)
2753    test_exceptions();
2754    test_self_modifying_code();
2755    test_single_step();
2756#endif
2757    test_enter();
2758    test_conv();
2759#ifdef TEST_SSE
2760    test_sse();
2761    test_fxsave();
2762#endif
2763    return 0;
2764}
2765