qemu/util/coroutine-sigaltstack.c
<<
>>
Prefs
   1/*
   2 * sigaltstack coroutine initialization code
   3 *
   4 * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
   5 * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
   6 * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
   7** This file is partly based on pth_mctx.c, from the GNU Portable Threads
   8**  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
   9 *
  10 * This library is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU Lesser General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2.1 of the License, or (at your option) any later version.
  14 *
  15 * This library is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * Lesser General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU Lesser General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
  25#ifdef _FORTIFY_SOURCE
  26#undef _FORTIFY_SOURCE
  27#endif
  28#include "qemu/osdep.h"
  29#include <pthread.h>
  30#include "qemu-common.h"
  31#include "qemu/coroutine_int.h"
  32
  33typedef struct {
  34    Coroutine base;
  35    void *stack;
  36    size_t stack_size;
  37    sigjmp_buf env;
  38} CoroutineSigAltStack;
  39
  40/**
  41 * Per-thread coroutine bookkeeping
  42 */
  43typedef struct {
  44    /** Currently executing coroutine */
  45    Coroutine *current;
  46
  47    /** The default coroutine */
  48    CoroutineSigAltStack leader;
  49
  50    /** Information for the signal handler (trampoline) */
  51    sigjmp_buf tr_reenter;
  52    volatile sig_atomic_t tr_called;
  53    void *tr_handler;
  54} CoroutineThreadState;
  55
  56static pthread_key_t thread_state_key;
  57
  58static CoroutineThreadState *coroutine_get_thread_state(void)
  59{
  60    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
  61
  62    if (!s) {
  63        s = g_malloc0(sizeof(*s));
  64        s->current = &s->leader.base;
  65        pthread_setspecific(thread_state_key, s);
  66    }
  67    return s;
  68}
  69
  70static void qemu_coroutine_thread_cleanup(void *opaque)
  71{
  72    CoroutineThreadState *s = opaque;
  73
  74    g_free(s);
  75}
  76
  77static void __attribute__((constructor)) coroutine_init(void)
  78{
  79    int ret;
  80
  81    ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
  82    if (ret != 0) {
  83        fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
  84        abort();
  85    }
  86}
  87
  88/* "boot" function
  89 * This is what starts the coroutine, is called from the trampoline
  90 * (from the signal handler when it is not signal handling, read ahead
  91 * for more information).
  92 */
  93static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co)
  94{
  95    /* Initialize longjmp environment and switch back the caller */
  96    if (!sigsetjmp(self->env, 0)) {
  97        siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
  98    }
  99
 100    while (true) {
 101        co->entry(co->entry_arg);
 102        qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
 103    }
 104}
 105
 106/*
 107 * This is used as the signal handler. This is called with the brand new stack
 108 * (thanks to sigaltstack). We have to return, given that this is a signal
 109 * handler and the sigmask and some other things are changed.
 110 */
 111static void coroutine_trampoline(int signal)
 112{
 113    CoroutineSigAltStack *self;
 114    Coroutine *co;
 115    CoroutineThreadState *coTS;
 116
 117    /* Get the thread specific information */
 118    coTS = coroutine_get_thread_state();
 119    self = coTS->tr_handler;
 120    coTS->tr_called = 1;
 121    co = &self->base;
 122
 123    /*
 124     * Here we have to do a bit of a ping pong between the caller, given that
 125     * this is a signal handler and we have to do a return "soon". Then the
 126     * caller can reestablish everything and do a siglongjmp here again.
 127     */
 128    if (!sigsetjmp(coTS->tr_reenter, 0)) {
 129        return;
 130    }
 131
 132    /*
 133     * Ok, the caller has siglongjmp'ed back to us, so now prepare
 134     * us for the real machine state switching. We have to jump
 135     * into another function here to get a new stack context for
 136     * the auto variables (which have to be auto-variables
 137     * because the start of the thread happens later). Else with
 138     * PIC (i.e. Position Independent Code which is used when PTH
 139     * is built as a shared library) most platforms would
 140     * horrible core dump as experience showed.
 141     */
 142    coroutine_bootstrap(self, co);
 143}
 144
 145Coroutine *qemu_coroutine_new(void)
 146{
 147    CoroutineSigAltStack *co;
 148    CoroutineThreadState *coTS;
 149    struct sigaction sa;
 150    struct sigaction osa;
 151    stack_t ss;
 152    stack_t oss;
 153    sigset_t sigs;
 154    sigset_t osigs;
 155    sigjmp_buf old_env;
 156
 157    /* The way to manipulate stack is with the sigaltstack function. We
 158     * prepare a stack, with it delivering a signal to ourselves and then
 159     * put sigsetjmp/siglongjmp where needed.
 160     * This has been done keeping coroutine-ucontext as a model and with the
 161     * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
 162     * of the coroutines and see pth_mctx.c (from the pth project) for the
 163     * sigaltstack way of manipulating stacks.
 164     */
 165
 166    co = g_malloc0(sizeof(*co));
 167    co->stack_size = COROUTINE_STACK_SIZE;
 168    co->stack = qemu_alloc_stack(&co->stack_size);
 169    co->base.entry_arg = &old_env; /* stash away our jmp_buf */
 170
 171    coTS = coroutine_get_thread_state();
 172    coTS->tr_handler = co;
 173
 174    /*
 175     * Preserve the SIGUSR2 signal state, block SIGUSR2,
 176     * and establish our signal handler. The signal will
 177     * later transfer control onto the signal stack.
 178     */
 179    sigemptyset(&sigs);
 180    sigaddset(&sigs, SIGUSR2);
 181    pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
 182    sa.sa_handler = coroutine_trampoline;
 183    sigfillset(&sa.sa_mask);
 184    sa.sa_flags = SA_ONSTACK;
 185    if (sigaction(SIGUSR2, &sa, &osa) != 0) {
 186        abort();
 187    }
 188
 189    /*
 190     * Set the new stack.
 191     */
 192    ss.ss_sp = co->stack;
 193    ss.ss_size = co->stack_size;
 194    ss.ss_flags = 0;
 195    if (sigaltstack(&ss, &oss) < 0) {
 196        abort();
 197    }
 198
 199    /*
 200     * Now transfer control onto the signal stack and set it up.
 201     * It will return immediately via "return" after the sigsetjmp()
 202     * was performed. Be careful here with race conditions.  The
 203     * signal can be delivered the first time sigsuspend() is
 204     * called.
 205     */
 206    coTS->tr_called = 0;
 207    pthread_kill(pthread_self(), SIGUSR2);
 208    sigfillset(&sigs);
 209    sigdelset(&sigs, SIGUSR2);
 210    while (!coTS->tr_called) {
 211        sigsuspend(&sigs);
 212    }
 213
 214    /*
 215     * Inform the system that we are back off the signal stack by
 216     * removing the alternative signal stack. Be careful here: It
 217     * first has to be disabled, before it can be removed.
 218     */
 219    sigaltstack(NULL, &ss);
 220    ss.ss_flags = SS_DISABLE;
 221    if (sigaltstack(&ss, NULL) < 0) {
 222        abort();
 223    }
 224    sigaltstack(NULL, &ss);
 225    if (!(oss.ss_flags & SS_DISABLE)) {
 226        sigaltstack(&oss, NULL);
 227    }
 228
 229    /*
 230     * Restore the old SIGUSR2 signal handler and mask
 231     */
 232    sigaction(SIGUSR2, &osa, NULL);
 233    pthread_sigmask(SIG_SETMASK, &osigs, NULL);
 234
 235    /*
 236     * Now enter the trampoline again, but this time not as a signal
 237     * handler. Instead we jump into it directly. The functionally
 238     * redundant ping-pong pointer arithmetic is necessary to avoid
 239     * type-conversion warnings related to the `volatile' qualifier and
 240     * the fact that `jmp_buf' usually is an array type.
 241     */
 242    if (!sigsetjmp(old_env, 0)) {
 243        siglongjmp(coTS->tr_reenter, 1);
 244    }
 245
 246    /*
 247     * Ok, we returned again, so now we're finished
 248     */
 249
 250    return &co->base;
 251}
 252
 253void qemu_coroutine_delete(Coroutine *co_)
 254{
 255    CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_);
 256
 257    qemu_free_stack(co->stack, co->stack_size);
 258    g_free(co);
 259}
 260
 261CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
 262                                      CoroutineAction action)
 263{
 264    CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_);
 265    CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_);
 266    CoroutineThreadState *s = coroutine_get_thread_state();
 267    int ret;
 268
 269    s->current = to_;
 270
 271    ret = sigsetjmp(from->env, 0);
 272    if (ret == 0) {
 273        siglongjmp(to->env, action);
 274    }
 275    return ret;
 276}
 277
 278Coroutine *qemu_coroutine_self(void)
 279{
 280    CoroutineThreadState *s = coroutine_get_thread_state();
 281
 282    return s->current;
 283}
 284
 285bool qemu_in_coroutine(void)
 286{
 287    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
 288
 289    return s && s->current->caller;
 290}
 291
 292