1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16#include "qemu/osdep.h"
17#include <sys/ioctl.h>
18
19#include <linux/kvm.h>
20
21#include "qemu/atomic.h"
22#include "qemu/option.h"
23#include "qemu/config-file.h"
24#include "qemu/error-report.h"
25#include "qapi/error.h"
26#include "hw/pci/msi.h"
27#include "hw/pci/msix.h"
28#include "hw/s390x/adapter.h"
29#include "exec/gdbstub.h"
30#include "sysemu/kvm_int.h"
31#include "sysemu/runstate.h"
32#include "sysemu/cpus.h"
33#include "sysemu/sysemu.h"
34#include "qemu/bswap.h"
35#include "exec/memory.h"
36#include "exec/ram_addr.h"
37#include "exec/address-spaces.h"
38#include "qemu/event_notifier.h"
39#include "qemu/main-loop.h"
40#include "trace.h"
41#include "hw/irq.h"
42#include "sysemu/sev.h"
43#include "sysemu/balloon.h"
44
45#include "hw/boards.h"
46
47
48#ifdef CONFIG_EVENTFD
49#include <sys/eventfd.h>
50#endif
51
52
53
54
55#define PAGE_SIZE qemu_real_host_page_size
56
57
58
59#ifdef DEBUG_KVM
60#define DPRINTF(fmt, ...) \
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62#else
63#define DPRINTF(fmt, ...) \
64 do { } while (0)
65#endif
66
67#define KVM_MSI_HASHTAB_SIZE 256
68
69struct KVMParkedVcpu {
70 unsigned long vcpu_id;
71 int kvm_fd;
72 QLIST_ENTRY(KVMParkedVcpu) node;
73};
74
75struct KVMState
76{
77 AccelState parent_obj;
78
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 int coalesced_pio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int vcpu_events;
87 int robust_singlestep;
88 int debugregs;
89#ifdef KVM_CAP_SET_GUEST_DEBUG
90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91#endif
92 int max_nested_state_len;
93 int many_ioeventfds;
94 int intx_set_mask;
95 bool sync_mmu;
96 bool manual_dirty_log_protect;
97
98
99
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 GHashTable *gsimap;
103#ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 unsigned long *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109#endif
110 KVMMemoryListener memory_listener;
111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
112
113
114 void *memcrypt_handle;
115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
116
117
118 int nr_as;
119 struct KVMAs {
120 KVMMemoryListener *ml;
121 AddressSpace *as;
122 } *as;
123};
124
125KVMState *kvm_state;
126bool kvm_kernel_irqchip;
127bool kvm_split_irqchip;
128bool kvm_async_interrupts_allowed;
129bool kvm_halt_in_kernel_allowed;
130bool kvm_eventfds_allowed;
131bool kvm_irqfds_allowed;
132bool kvm_resamplefds_allowed;
133bool kvm_msi_via_irqfd_allowed;
134bool kvm_gsi_routing_allowed;
135bool kvm_gsi_direct_mapping;
136bool kvm_allowed;
137bool kvm_readonly_mem_allowed;
138bool kvm_vm_attributes_allowed;
139bool kvm_direct_msi_allowed;
140bool kvm_ioeventfd_any_length_allowed;
141bool kvm_msi_use_devid;
142static bool kvm_immediate_exit;
143static hwaddr kvm_max_slot_size = ~0;
144
145static const KVMCapabilityInfo kvm_required_capabilites[] = {
146 KVM_CAP_INFO(USER_MEMORY),
147 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
148 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
149 KVM_CAP_LAST_INFO
150};
151
152static NotifierList kvm_irqchip_change_notifiers =
153 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
154
155#define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
156#define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
157
158int kvm_get_max_memslots(void)
159{
160 KVMState *s = KVM_STATE(current_machine->accelerator);
161
162 return s->nr_slots;
163}
164
165bool kvm_memcrypt_enabled(void)
166{
167 if (kvm_state && kvm_state->memcrypt_handle) {
168 return true;
169 }
170
171 return false;
172}
173
174int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
175{
176 if (kvm_state->memcrypt_handle &&
177 kvm_state->memcrypt_encrypt_data) {
178 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
179 ptr, len);
180 }
181
182 return 1;
183}
184
185
186static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
187{
188 KVMState *s = kvm_state;
189 int i;
190
191 for (i = 0; i < s->nr_slots; i++) {
192 if (kml->slots[i].memory_size == 0) {
193 return &kml->slots[i];
194 }
195 }
196
197 return NULL;
198}
199
200bool kvm_has_free_slot(MachineState *ms)
201{
202 KVMState *s = KVM_STATE(ms->accelerator);
203 bool result;
204 KVMMemoryListener *kml = &s->memory_listener;
205
206 kvm_slots_lock(kml);
207 result = !!kvm_get_free_slot(kml);
208 kvm_slots_unlock(kml);
209
210 return result;
211}
212
213
214static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
215{
216 KVMSlot *slot = kvm_get_free_slot(kml);
217
218 if (slot) {
219 return slot;
220 }
221
222 fprintf(stderr, "%s: no free slot available\n", __func__);
223 abort();
224}
225
226static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
227 hwaddr start_addr,
228 hwaddr size)
229{
230 KVMState *s = kvm_state;
231 int i;
232
233 for (i = 0; i < s->nr_slots; i++) {
234 KVMSlot *mem = &kml->slots[i];
235
236 if (start_addr == mem->start_addr && size == mem->memory_size) {
237 return mem;
238 }
239 }
240
241 return NULL;
242}
243
244
245
246
247
248static hwaddr kvm_align_section(MemoryRegionSection *section,
249 hwaddr *start)
250{
251 hwaddr size = int128_get64(section->size);
252 hwaddr delta, aligned;
253
254
255
256
257 aligned = ROUND_UP(section->offset_within_address_space,
258 qemu_real_host_page_size);
259 delta = aligned - section->offset_within_address_space;
260 *start = aligned;
261 if (delta > size) {
262 return 0;
263 }
264
265 return (size - delta) & qemu_real_host_page_mask;
266}
267
268int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
269 hwaddr *phys_addr)
270{
271 KVMMemoryListener *kml = &s->memory_listener;
272 int i, ret = 0;
273
274 kvm_slots_lock(kml);
275 for (i = 0; i < s->nr_slots; i++) {
276 KVMSlot *mem = &kml->slots[i];
277
278 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
279 *phys_addr = mem->start_addr + (ram - mem->ram);
280 ret = 1;
281 break;
282 }
283 }
284 kvm_slots_unlock(kml);
285
286 return ret;
287}
288
289static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
290{
291 KVMState *s = kvm_state;
292 struct kvm_userspace_memory_region mem;
293 int ret;
294
295 mem.slot = slot->slot | (kml->as_id << 16);
296 mem.guest_phys_addr = slot->start_addr;
297 mem.userspace_addr = (unsigned long)slot->ram;
298 mem.flags = slot->flags;
299
300 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
301
302
303 mem.memory_size = 0;
304 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
305 }
306 mem.memory_size = slot->memory_size;
307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308 slot->old_flags = mem.flags;
309 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
310 mem.memory_size, mem.userspace_addr, ret);
311 return ret;
312}
313
314int kvm_destroy_vcpu(CPUState *cpu)
315{
316 KVMState *s = kvm_state;
317 long mmap_size;
318 struct KVMParkedVcpu *vcpu = NULL;
319 int ret = 0;
320
321 DPRINTF("kvm_destroy_vcpu\n");
322
323 ret = kvm_arch_destroy_vcpu(cpu);
324 if (ret < 0) {
325 goto err;
326 }
327
328 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
329 if (mmap_size < 0) {
330 ret = mmap_size;
331 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
332 goto err;
333 }
334
335 ret = munmap(cpu->kvm_run, mmap_size);
336 if (ret < 0) {
337 goto err;
338 }
339
340 vcpu = g_malloc0(sizeof(*vcpu));
341 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
342 vcpu->kvm_fd = cpu->kvm_fd;
343 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
344err:
345 return ret;
346}
347
348static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
349{
350 struct KVMParkedVcpu *cpu;
351
352 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
353 if (cpu->vcpu_id == vcpu_id) {
354 int kvm_fd;
355
356 QLIST_REMOVE(cpu, node);
357 kvm_fd = cpu->kvm_fd;
358 g_free(cpu);
359 return kvm_fd;
360 }
361 }
362
363 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
364}
365
366int kvm_init_vcpu(CPUState *cpu)
367{
368 KVMState *s = kvm_state;
369 long mmap_size;
370 int ret;
371
372 DPRINTF("kvm_init_vcpu\n");
373
374 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
375 if (ret < 0) {
376 DPRINTF("kvm_create_vcpu failed\n");
377 goto err;
378 }
379
380 cpu->kvm_fd = ret;
381 cpu->kvm_state = s;
382 cpu->vcpu_dirty = true;
383
384 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
385 if (mmap_size < 0) {
386 ret = mmap_size;
387 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
388 goto err;
389 }
390
391 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
392 cpu->kvm_fd, 0);
393 if (cpu->kvm_run == MAP_FAILED) {
394 ret = -errno;
395 DPRINTF("mmap'ing vcpu state failed\n");
396 goto err;
397 }
398
399 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
400 s->coalesced_mmio_ring =
401 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
402 }
403
404 ret = kvm_arch_init_vcpu(cpu);
405err:
406 return ret;
407}
408
409
410
411
412
413static int kvm_mem_flags(MemoryRegion *mr)
414{
415 bool readonly = mr->readonly || memory_region_is_romd(mr);
416 int flags = 0;
417
418 if (memory_region_get_dirty_log_mask(mr) != 0) {
419 flags |= KVM_MEM_LOG_DIRTY_PAGES;
420 }
421 if (readonly && kvm_readonly_mem_allowed) {
422 flags |= KVM_MEM_READONLY;
423 }
424 return flags;
425}
426
427
428static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
429 MemoryRegion *mr)
430{
431 mem->flags = kvm_mem_flags(mr);
432
433
434 if (mem->flags == mem->old_flags) {
435 return 0;
436 }
437
438 return kvm_set_user_memory_region(kml, mem, false);
439}
440
441static int kvm_section_update_flags(KVMMemoryListener *kml,
442 MemoryRegionSection *section)
443{
444 hwaddr start_addr, size, slot_size;
445 KVMSlot *mem;
446 int ret = 0;
447
448 size = kvm_align_section(section, &start_addr);
449 if (!size) {
450 return 0;
451 }
452
453 kvm_slots_lock(kml);
454
455 while (size && !ret) {
456 slot_size = MIN(kvm_max_slot_size, size);
457 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
458 if (!mem) {
459
460 goto out;
461 }
462
463 ret = kvm_slot_update_flags(kml, mem, section->mr);
464 start_addr += slot_size;
465 size -= slot_size;
466 }
467
468out:
469 kvm_slots_unlock(kml);
470 return ret;
471}
472
473static void kvm_log_start(MemoryListener *listener,
474 MemoryRegionSection *section,
475 int old, int new)
476{
477 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
478 int r;
479
480 if (old != 0) {
481 return;
482 }
483
484 r = kvm_section_update_flags(kml, section);
485 if (r < 0) {
486 abort();
487 }
488}
489
490static void kvm_log_stop(MemoryListener *listener,
491 MemoryRegionSection *section,
492 int old, int new)
493{
494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
495 int r;
496
497 if (new != 0) {
498 return;
499 }
500
501 r = kvm_section_update_flags(kml, section);
502 if (r < 0) {
503 abort();
504 }
505}
506
507
508static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
509 unsigned long *bitmap)
510{
511 ram_addr_t start = section->offset_within_region +
512 memory_region_get_ram_addr(section->mr);
513 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
514
515 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
516 return 0;
517}
518
519#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
520
521
522
523
524
525
526
527
528
529
530
531
532static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
533 MemoryRegionSection *section)
534{
535 KVMState *s = kvm_state;
536 struct kvm_dirty_log d = {};
537 KVMSlot *mem;
538 hwaddr start_addr, size;
539 hwaddr slot_size, slot_offset = 0;
540 int ret = 0;
541
542 size = kvm_align_section(section, &start_addr);
543 while (size) {
544 MemoryRegionSection subsection = *section;
545
546 slot_size = MIN(kvm_max_slot_size, size);
547 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
548 if (!mem) {
549
550 goto out;
551 }
552
553
554
555
556
557
558
559
560
561
562
563
564
565 if (!mem->dirty_bmap) {
566 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
567 64) / 8;
568
569 mem->dirty_bmap = g_malloc0(bitmap_size);
570 }
571
572 d.dirty_bitmap = mem->dirty_bmap;
573 d.slot = mem->slot | (kml->as_id << 16);
574 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
575 DPRINTF("ioctl failed %d\n", errno);
576 ret = -1;
577 goto out;
578 }
579
580 subsection.offset_within_region += slot_offset;
581 subsection.size = int128_make64(slot_size);
582 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
583
584 slot_offset += slot_size;
585 start_addr += slot_size;
586 size -= slot_size;
587 }
588out:
589 return ret;
590}
591
592
593#define KVM_CLEAR_LOG_SHIFT 6
594#define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
595#define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
596
597static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
598 uint64_t size)
599{
600 KVMState *s = kvm_state;
601 uint64_t end, bmap_start, start_delta, bmap_npages;
602 struct kvm_clear_dirty_log d;
603 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
604 int ret;
605
606
607
608
609
610
611 bmap_start = start & KVM_CLEAR_LOG_MASK;
612 start_delta = start - bmap_start;
613 bmap_start /= psize;
614
615
616
617
618
619
620
621 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
622 << KVM_CLEAR_LOG_SHIFT;
623 end = mem->memory_size / psize;
624 if (bmap_npages > end - bmap_start) {
625 bmap_npages = end - bmap_start;
626 }
627 start_delta /= psize;
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651 assert(bmap_start % BITS_PER_LONG == 0);
652
653 assert(mem->dirty_bmap);
654 if (start_delta) {
655
656 bmap_clear = bitmap_new(bmap_npages);
657 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
658 bmap_start, start_delta + size / psize);
659
660
661
662
663
664 bitmap_clear(bmap_clear, 0, start_delta);
665 d.dirty_bitmap = bmap_clear;
666 } else {
667
668 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
669 }
670
671 d.first_page = bmap_start;
672
673 assert(bmap_npages <= UINT32_MAX);
674 d.num_pages = bmap_npages;
675 d.slot = mem->slot | (as_id << 16);
676
677 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
678 ret = -errno;
679 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
680 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
681 __func__, d.slot, (uint64_t)d.first_page,
682 (uint32_t)d.num_pages, ret);
683 } else {
684 ret = 0;
685 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
686 }
687
688
689
690
691
692
693
694 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
695 size / psize);
696
697 g_free(bmap_clear);
698 return ret;
699}
700
701
702
703
704
705
706
707
708
709
710
711
712static int kvm_physical_log_clear(KVMMemoryListener *kml,
713 MemoryRegionSection *section)
714{
715 KVMState *s = kvm_state;
716 uint64_t start, size, offset, count;
717 KVMSlot *mem;
718 int ret = 0, i;
719
720 if (!s->manual_dirty_log_protect) {
721
722 return ret;
723 }
724
725 start = section->offset_within_address_space;
726 size = int128_get64(section->size);
727
728 if (!size) {
729
730 return ret;
731 }
732
733 kvm_slots_lock(kml);
734
735 for (i = 0; i < s->nr_slots; i++) {
736 mem = &kml->slots[i];
737
738 if (!mem->memory_size ||
739 mem->start_addr > start + size - 1 ||
740 start > mem->start_addr + mem->memory_size - 1) {
741 continue;
742 }
743
744 if (start >= mem->start_addr) {
745
746 offset = start - mem->start_addr;
747 count = MIN(mem->memory_size - offset, size);
748 } else {
749
750 offset = 0;
751 count = MIN(mem->memory_size, size - (mem->start_addr - start));
752 }
753 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
754 if (ret < 0) {
755 break;
756 }
757 }
758
759 kvm_slots_unlock(kml);
760
761 return ret;
762}
763
764static void kvm_coalesce_mmio_region(MemoryListener *listener,
765 MemoryRegionSection *secion,
766 hwaddr start, hwaddr size)
767{
768 KVMState *s = kvm_state;
769
770 if (s->coalesced_mmio) {
771 struct kvm_coalesced_mmio_zone zone;
772
773 zone.addr = start;
774 zone.size = size;
775 zone.pad = 0;
776
777 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
778 }
779}
780
781static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
782 MemoryRegionSection *secion,
783 hwaddr start, hwaddr size)
784{
785 KVMState *s = kvm_state;
786
787 if (s->coalesced_mmio) {
788 struct kvm_coalesced_mmio_zone zone;
789
790 zone.addr = start;
791 zone.size = size;
792 zone.pad = 0;
793
794 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
795 }
796}
797
798static void kvm_coalesce_pio_add(MemoryListener *listener,
799 MemoryRegionSection *section,
800 hwaddr start, hwaddr size)
801{
802 KVMState *s = kvm_state;
803
804 if (s->coalesced_pio) {
805 struct kvm_coalesced_mmio_zone zone;
806
807 zone.addr = start;
808 zone.size = size;
809 zone.pio = 1;
810
811 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
812 }
813}
814
815static void kvm_coalesce_pio_del(MemoryListener *listener,
816 MemoryRegionSection *section,
817 hwaddr start, hwaddr size)
818{
819 KVMState *s = kvm_state;
820
821 if (s->coalesced_pio) {
822 struct kvm_coalesced_mmio_zone zone;
823
824 zone.addr = start;
825 zone.size = size;
826 zone.pio = 1;
827
828 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
829 }
830}
831
832static MemoryListener kvm_coalesced_pio_listener = {
833 .coalesced_io_add = kvm_coalesce_pio_add,
834 .coalesced_io_del = kvm_coalesce_pio_del,
835};
836
837int kvm_check_extension(KVMState *s, unsigned int extension)
838{
839 int ret;
840
841 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
842 if (ret < 0) {
843 ret = 0;
844 }
845
846 return ret;
847}
848
849int kvm_vm_check_extension(KVMState *s, unsigned int extension)
850{
851 int ret;
852
853 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
854 if (ret < 0) {
855
856 ret = kvm_check_extension(s, extension);
857 }
858
859 return ret;
860}
861
862static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
863{
864#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
865
866
867
868
869
870 switch (size) {
871 case 2:
872 val = bswap16(val);
873 break;
874 case 4:
875 val = bswap32(val);
876 break;
877 }
878#endif
879 return val;
880}
881
882static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
883 bool assign, uint32_t size, bool datamatch)
884{
885 int ret;
886 struct kvm_ioeventfd iofd = {
887 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
888 .addr = addr,
889 .len = size,
890 .flags = 0,
891 .fd = fd,
892 };
893
894 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
895 datamatch);
896 if (!kvm_enabled()) {
897 return -ENOSYS;
898 }
899
900 if (datamatch) {
901 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
902 }
903 if (!assign) {
904 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
905 }
906
907 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
908
909 if (ret < 0) {
910 return -errno;
911 }
912
913 return 0;
914}
915
916static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
917 bool assign, uint32_t size, bool datamatch)
918{
919 struct kvm_ioeventfd kick = {
920 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
921 .addr = addr,
922 .flags = KVM_IOEVENTFD_FLAG_PIO,
923 .len = size,
924 .fd = fd,
925 };
926 int r;
927 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
928 if (!kvm_enabled()) {
929 return -ENOSYS;
930 }
931 if (datamatch) {
932 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
933 }
934 if (!assign) {
935 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
936 }
937 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
938 if (r < 0) {
939 return r;
940 }
941 return 0;
942}
943
944
945static int kvm_check_many_ioeventfds(void)
946{
947
948
949
950
951
952
953
954#if defined(CONFIG_EVENTFD)
955 int ioeventfds[7];
956 int i, ret = 0;
957 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
958 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
959 if (ioeventfds[i] < 0) {
960 break;
961 }
962 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
963 if (ret < 0) {
964 close(ioeventfds[i]);
965 break;
966 }
967 }
968
969
970 ret = i == ARRAY_SIZE(ioeventfds);
971
972 while (i-- > 0) {
973 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
974 close(ioeventfds[i]);
975 }
976 return ret;
977#else
978 return 0;
979#endif
980}
981
982static const KVMCapabilityInfo *
983kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
984{
985 while (list->name) {
986 if (!kvm_check_extension(s, list->value)) {
987 return list;
988 }
989 list++;
990 }
991 return NULL;
992}
993
994void kvm_set_max_memslot_size(hwaddr max_slot_size)
995{
996 g_assert(
997 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
998 );
999 kvm_max_slot_size = max_slot_size;
1000}
1001
1002static void kvm_set_phys_mem(KVMMemoryListener *kml,
1003 MemoryRegionSection *section, bool add)
1004{
1005 KVMSlot *mem;
1006 int err;
1007 MemoryRegion *mr = section->mr;
1008 bool writeable = !mr->readonly && !mr->rom_device;
1009 hwaddr start_addr, size, slot_size;
1010 void *ram;
1011
1012 if (!memory_region_is_ram(mr)) {
1013 if (writeable || !kvm_readonly_mem_allowed) {
1014 return;
1015 } else if (!mr->romd_mode) {
1016
1017
1018 add = false;
1019 }
1020 }
1021
1022 size = kvm_align_section(section, &start_addr);
1023 if (!size) {
1024 return;
1025 }
1026
1027
1028 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1029 (start_addr - section->offset_within_address_space);
1030
1031 kvm_slots_lock(kml);
1032
1033 if (!add) {
1034 do {
1035 slot_size = MIN(kvm_max_slot_size, size);
1036 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1037 if (!mem) {
1038 goto out;
1039 }
1040 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1041 kvm_physical_sync_dirty_bitmap(kml, section);
1042 }
1043
1044
1045 g_free(mem->dirty_bmap);
1046 mem->dirty_bmap = NULL;
1047 mem->memory_size = 0;
1048 mem->flags = 0;
1049 err = kvm_set_user_memory_region(kml, mem, false);
1050 if (err) {
1051 fprintf(stderr, "%s: error unregistering slot: %s\n",
1052 __func__, strerror(-err));
1053 abort();
1054 }
1055 start_addr += slot_size;
1056 size -= slot_size;
1057 } while (size);
1058 goto out;
1059 }
1060
1061
1062 do {
1063 slot_size = MIN(kvm_max_slot_size, size);
1064 mem = kvm_alloc_slot(kml);
1065 mem->memory_size = slot_size;
1066 mem->start_addr = start_addr;
1067 mem->ram = ram;
1068 mem->flags = kvm_mem_flags(mr);
1069
1070 err = kvm_set_user_memory_region(kml, mem, true);
1071 if (err) {
1072 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1073 strerror(-err));
1074 abort();
1075 }
1076 start_addr += slot_size;
1077 ram += slot_size;
1078 size -= slot_size;
1079 } while (size);
1080
1081out:
1082 kvm_slots_unlock(kml);
1083}
1084
1085static void kvm_region_add(MemoryListener *listener,
1086 MemoryRegionSection *section)
1087{
1088 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1089
1090 memory_region_ref(section->mr);
1091 kvm_set_phys_mem(kml, section, true);
1092}
1093
1094static void kvm_region_del(MemoryListener *listener,
1095 MemoryRegionSection *section)
1096{
1097 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1098
1099 kvm_set_phys_mem(kml, section, false);
1100 memory_region_unref(section->mr);
1101}
1102
1103static void kvm_log_sync(MemoryListener *listener,
1104 MemoryRegionSection *section)
1105{
1106 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1107 int r;
1108
1109 kvm_slots_lock(kml);
1110 r = kvm_physical_sync_dirty_bitmap(kml, section);
1111 kvm_slots_unlock(kml);
1112 if (r < 0) {
1113 abort();
1114 }
1115}
1116
1117static void kvm_log_clear(MemoryListener *listener,
1118 MemoryRegionSection *section)
1119{
1120 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1121 int r;
1122
1123 r = kvm_physical_log_clear(kml, section);
1124 if (r < 0) {
1125 error_report_once("%s: kvm log clear failed: mr=%s "
1126 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1127 section->mr->name, section->offset_within_region,
1128 int128_get64(section->size));
1129 abort();
1130 }
1131}
1132
1133static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1134 MemoryRegionSection *section,
1135 bool match_data, uint64_t data,
1136 EventNotifier *e)
1137{
1138 int fd = event_notifier_get_fd(e);
1139 int r;
1140
1141 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1142 data, true, int128_get64(section->size),
1143 match_data);
1144 if (r < 0) {
1145 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1146 __func__, strerror(-r), -r);
1147 abort();
1148 }
1149}
1150
1151static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1152 MemoryRegionSection *section,
1153 bool match_data, uint64_t data,
1154 EventNotifier *e)
1155{
1156 int fd = event_notifier_get_fd(e);
1157 int r;
1158
1159 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1160 data, false, int128_get64(section->size),
1161 match_data);
1162 if (r < 0) {
1163 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1164 __func__, strerror(-r), -r);
1165 abort();
1166 }
1167}
1168
1169static void kvm_io_ioeventfd_add(MemoryListener *listener,
1170 MemoryRegionSection *section,
1171 bool match_data, uint64_t data,
1172 EventNotifier *e)
1173{
1174 int fd = event_notifier_get_fd(e);
1175 int r;
1176
1177 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1178 data, true, int128_get64(section->size),
1179 match_data);
1180 if (r < 0) {
1181 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1182 __func__, strerror(-r), -r);
1183 abort();
1184 }
1185}
1186
1187static void kvm_io_ioeventfd_del(MemoryListener *listener,
1188 MemoryRegionSection *section,
1189 bool match_data, uint64_t data,
1190 EventNotifier *e)
1191
1192{
1193 int fd = event_notifier_get_fd(e);
1194 int r;
1195
1196 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1197 data, false, int128_get64(section->size),
1198 match_data);
1199 if (r < 0) {
1200 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1201 __func__, strerror(-r), -r);
1202 abort();
1203 }
1204}
1205
1206void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1207 AddressSpace *as, int as_id)
1208{
1209 int i;
1210
1211 qemu_mutex_init(&kml->slots_lock);
1212 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1213 kml->as_id = as_id;
1214
1215 for (i = 0; i < s->nr_slots; i++) {
1216 kml->slots[i].slot = i;
1217 }
1218
1219 kml->listener.region_add = kvm_region_add;
1220 kml->listener.region_del = kvm_region_del;
1221 kml->listener.log_start = kvm_log_start;
1222 kml->listener.log_stop = kvm_log_stop;
1223 kml->listener.log_sync = kvm_log_sync;
1224 kml->listener.log_clear = kvm_log_clear;
1225 kml->listener.priority = 10;
1226
1227 memory_listener_register(&kml->listener, as);
1228
1229 for (i = 0; i < s->nr_as; ++i) {
1230 if (!s->as[i].as) {
1231 s->as[i].as = as;
1232 s->as[i].ml = kml;
1233 break;
1234 }
1235 }
1236}
1237
1238static MemoryListener kvm_io_listener = {
1239 .eventfd_add = kvm_io_ioeventfd_add,
1240 .eventfd_del = kvm_io_ioeventfd_del,
1241 .priority = 10,
1242};
1243
1244int kvm_set_irq(KVMState *s, int irq, int level)
1245{
1246 struct kvm_irq_level event;
1247 int ret;
1248
1249 assert(kvm_async_interrupts_enabled());
1250
1251 event.level = level;
1252 event.irq = irq;
1253 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1254 if (ret < 0) {
1255 perror("kvm_set_irq");
1256 abort();
1257 }
1258
1259 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1260}
1261
1262#ifdef KVM_CAP_IRQ_ROUTING
1263typedef struct KVMMSIRoute {
1264 struct kvm_irq_routing_entry kroute;
1265 QTAILQ_ENTRY(KVMMSIRoute) entry;
1266} KVMMSIRoute;
1267
1268static void set_gsi(KVMState *s, unsigned int gsi)
1269{
1270 set_bit(gsi, s->used_gsi_bitmap);
1271}
1272
1273static void clear_gsi(KVMState *s, unsigned int gsi)
1274{
1275 clear_bit(gsi, s->used_gsi_bitmap);
1276}
1277
1278void kvm_init_irq_routing(KVMState *s)
1279{
1280 int gsi_count, i;
1281
1282 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1283 if (gsi_count > 0) {
1284
1285 s->used_gsi_bitmap = bitmap_new(gsi_count);
1286 s->gsi_count = gsi_count;
1287 }
1288
1289 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1290 s->nr_allocated_irq_routes = 0;
1291
1292 if (!kvm_direct_msi_allowed) {
1293 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1294 QTAILQ_INIT(&s->msi_hashtab[i]);
1295 }
1296 }
1297
1298 kvm_arch_init_irq_routing(s);
1299}
1300
1301void kvm_irqchip_commit_routes(KVMState *s)
1302{
1303 int ret;
1304
1305 if (kvm_gsi_direct_mapping()) {
1306 return;
1307 }
1308
1309 if (!kvm_gsi_routing_enabled()) {
1310 return;
1311 }
1312
1313 s->irq_routes->flags = 0;
1314 trace_kvm_irqchip_commit_routes();
1315 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1316 assert(ret == 0);
1317}
1318
1319static void kvm_add_routing_entry(KVMState *s,
1320 struct kvm_irq_routing_entry *entry)
1321{
1322 struct kvm_irq_routing_entry *new;
1323 int n, size;
1324
1325 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1326 n = s->nr_allocated_irq_routes * 2;
1327 if (n < 64) {
1328 n = 64;
1329 }
1330 size = sizeof(struct kvm_irq_routing);
1331 size += n * sizeof(*new);
1332 s->irq_routes = g_realloc(s->irq_routes, size);
1333 s->nr_allocated_irq_routes = n;
1334 }
1335 n = s->irq_routes->nr++;
1336 new = &s->irq_routes->entries[n];
1337
1338 *new = *entry;
1339
1340 set_gsi(s, entry->gsi);
1341}
1342
1343static int kvm_update_routing_entry(KVMState *s,
1344 struct kvm_irq_routing_entry *new_entry)
1345{
1346 struct kvm_irq_routing_entry *entry;
1347 int n;
1348
1349 for (n = 0; n < s->irq_routes->nr; n++) {
1350 entry = &s->irq_routes->entries[n];
1351 if (entry->gsi != new_entry->gsi) {
1352 continue;
1353 }
1354
1355 if(!memcmp(entry, new_entry, sizeof *entry)) {
1356 return 0;
1357 }
1358
1359 *entry = *new_entry;
1360
1361 return 0;
1362 }
1363
1364 return -ESRCH;
1365}
1366
1367void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1368{
1369 struct kvm_irq_routing_entry e = {};
1370
1371 assert(pin < s->gsi_count);
1372
1373 e.gsi = irq;
1374 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1375 e.flags = 0;
1376 e.u.irqchip.irqchip = irqchip;
1377 e.u.irqchip.pin = pin;
1378 kvm_add_routing_entry(s, &e);
1379}
1380
1381void kvm_irqchip_release_virq(KVMState *s, int virq)
1382{
1383 struct kvm_irq_routing_entry *e;
1384 int i;
1385
1386 if (kvm_gsi_direct_mapping()) {
1387 return;
1388 }
1389
1390 for (i = 0; i < s->irq_routes->nr; i++) {
1391 e = &s->irq_routes->entries[i];
1392 if (e->gsi == virq) {
1393 s->irq_routes->nr--;
1394 *e = s->irq_routes->entries[s->irq_routes->nr];
1395 }
1396 }
1397 clear_gsi(s, virq);
1398 kvm_arch_release_virq_post(virq);
1399 trace_kvm_irqchip_release_virq(virq);
1400}
1401
1402void kvm_irqchip_add_change_notifier(Notifier *n)
1403{
1404 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1405}
1406
1407void kvm_irqchip_remove_change_notifier(Notifier *n)
1408{
1409 notifier_remove(n);
1410}
1411
1412void kvm_irqchip_change_notify(void)
1413{
1414 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1415}
1416
1417static unsigned int kvm_hash_msi(uint32_t data)
1418{
1419
1420
1421 return data & 0xff;
1422}
1423
1424static void kvm_flush_dynamic_msi_routes(KVMState *s)
1425{
1426 KVMMSIRoute *route, *next;
1427 unsigned int hash;
1428
1429 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1430 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1431 kvm_irqchip_release_virq(s, route->kroute.gsi);
1432 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1433 g_free(route);
1434 }
1435 }
1436}
1437
1438static int kvm_irqchip_get_virq(KVMState *s)
1439{
1440 int next_virq;
1441
1442
1443
1444
1445
1446
1447
1448 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1449 kvm_flush_dynamic_msi_routes(s);
1450 }
1451
1452
1453 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1454 if (next_virq >= s->gsi_count) {
1455 return -ENOSPC;
1456 } else {
1457 return next_virq;
1458 }
1459}
1460
1461static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1462{
1463 unsigned int hash = kvm_hash_msi(msg.data);
1464 KVMMSIRoute *route;
1465
1466 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1467 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1468 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1469 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1470 return route;
1471 }
1472 }
1473 return NULL;
1474}
1475
1476int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1477{
1478 struct kvm_msi msi;
1479 KVMMSIRoute *route;
1480
1481 if (kvm_direct_msi_allowed) {
1482 msi.address_lo = (uint32_t)msg.address;
1483 msi.address_hi = msg.address >> 32;
1484 msi.data = le32_to_cpu(msg.data);
1485 msi.flags = 0;
1486 memset(msi.pad, 0, sizeof(msi.pad));
1487
1488 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1489 }
1490
1491 route = kvm_lookup_msi_route(s, msg);
1492 if (!route) {
1493 int virq;
1494
1495 virq = kvm_irqchip_get_virq(s);
1496 if (virq < 0) {
1497 return virq;
1498 }
1499
1500 route = g_malloc0(sizeof(KVMMSIRoute));
1501 route->kroute.gsi = virq;
1502 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1503 route->kroute.flags = 0;
1504 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1505 route->kroute.u.msi.address_hi = msg.address >> 32;
1506 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1507
1508 kvm_add_routing_entry(s, &route->kroute);
1509 kvm_irqchip_commit_routes(s);
1510
1511 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1512 entry);
1513 }
1514
1515 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1516
1517 return kvm_set_irq(s, route->kroute.gsi, 1);
1518}
1519
1520int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1521{
1522 struct kvm_irq_routing_entry kroute = {};
1523 int virq;
1524 MSIMessage msg = {0, 0};
1525
1526 if (pci_available && dev) {
1527 msg = pci_get_msi_message(dev, vector);
1528 }
1529
1530 if (kvm_gsi_direct_mapping()) {
1531 return kvm_arch_msi_data_to_gsi(msg.data);
1532 }
1533
1534 if (!kvm_gsi_routing_enabled()) {
1535 return -ENOSYS;
1536 }
1537
1538 virq = kvm_irqchip_get_virq(s);
1539 if (virq < 0) {
1540 return virq;
1541 }
1542
1543 kroute.gsi = virq;
1544 kroute.type = KVM_IRQ_ROUTING_MSI;
1545 kroute.flags = 0;
1546 kroute.u.msi.address_lo = (uint32_t)msg.address;
1547 kroute.u.msi.address_hi = msg.address >> 32;
1548 kroute.u.msi.data = le32_to_cpu(msg.data);
1549 if (pci_available && kvm_msi_devid_required()) {
1550 kroute.flags = KVM_MSI_VALID_DEVID;
1551 kroute.u.msi.devid = pci_requester_id(dev);
1552 }
1553 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1554 kvm_irqchip_release_virq(s, virq);
1555 return -EINVAL;
1556 }
1557
1558 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1559 vector, virq);
1560
1561 kvm_add_routing_entry(s, &kroute);
1562 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1563 kvm_irqchip_commit_routes(s);
1564
1565 return virq;
1566}
1567
1568int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1569 PCIDevice *dev)
1570{
1571 struct kvm_irq_routing_entry kroute = {};
1572
1573 if (kvm_gsi_direct_mapping()) {
1574 return 0;
1575 }
1576
1577 if (!kvm_irqchip_in_kernel()) {
1578 return -ENOSYS;
1579 }
1580
1581 kroute.gsi = virq;
1582 kroute.type = KVM_IRQ_ROUTING_MSI;
1583 kroute.flags = 0;
1584 kroute.u.msi.address_lo = (uint32_t)msg.address;
1585 kroute.u.msi.address_hi = msg.address >> 32;
1586 kroute.u.msi.data = le32_to_cpu(msg.data);
1587 if (pci_available && kvm_msi_devid_required()) {
1588 kroute.flags = KVM_MSI_VALID_DEVID;
1589 kroute.u.msi.devid = pci_requester_id(dev);
1590 }
1591 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1592 return -EINVAL;
1593 }
1594
1595 trace_kvm_irqchip_update_msi_route(virq);
1596
1597 return kvm_update_routing_entry(s, &kroute);
1598}
1599
1600static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1601 bool assign)
1602{
1603 struct kvm_irqfd irqfd = {
1604 .fd = fd,
1605 .gsi = virq,
1606 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1607 };
1608
1609 if (rfd != -1) {
1610 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1611 irqfd.resamplefd = rfd;
1612 }
1613
1614 if (!kvm_irqfds_enabled()) {
1615 return -ENOSYS;
1616 }
1617
1618 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1619}
1620
1621int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1622{
1623 struct kvm_irq_routing_entry kroute = {};
1624 int virq;
1625
1626 if (!kvm_gsi_routing_enabled()) {
1627 return -ENOSYS;
1628 }
1629
1630 virq = kvm_irqchip_get_virq(s);
1631 if (virq < 0) {
1632 return virq;
1633 }
1634
1635 kroute.gsi = virq;
1636 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1637 kroute.flags = 0;
1638 kroute.u.adapter.summary_addr = adapter->summary_addr;
1639 kroute.u.adapter.ind_addr = adapter->ind_addr;
1640 kroute.u.adapter.summary_offset = adapter->summary_offset;
1641 kroute.u.adapter.ind_offset = adapter->ind_offset;
1642 kroute.u.adapter.adapter_id = adapter->adapter_id;
1643
1644 kvm_add_routing_entry(s, &kroute);
1645
1646 return virq;
1647}
1648
1649int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1650{
1651 struct kvm_irq_routing_entry kroute = {};
1652 int virq;
1653
1654 if (!kvm_gsi_routing_enabled()) {
1655 return -ENOSYS;
1656 }
1657 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1658 return -ENOSYS;
1659 }
1660 virq = kvm_irqchip_get_virq(s);
1661 if (virq < 0) {
1662 return virq;
1663 }
1664
1665 kroute.gsi = virq;
1666 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1667 kroute.flags = 0;
1668 kroute.u.hv_sint.vcpu = vcpu;
1669 kroute.u.hv_sint.sint = sint;
1670
1671 kvm_add_routing_entry(s, &kroute);
1672 kvm_irqchip_commit_routes(s);
1673
1674 return virq;
1675}
1676
1677#else
1678
1679void kvm_init_irq_routing(KVMState *s)
1680{
1681}
1682
1683void kvm_irqchip_release_virq(KVMState *s, int virq)
1684{
1685}
1686
1687int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1688{
1689 abort();
1690}
1691
1692int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1693{
1694 return -ENOSYS;
1695}
1696
1697int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1698{
1699 return -ENOSYS;
1700}
1701
1702int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1703{
1704 return -ENOSYS;
1705}
1706
1707static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1708{
1709 abort();
1710}
1711
1712int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1713{
1714 return -ENOSYS;
1715}
1716#endif
1717
1718int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1719 EventNotifier *rn, int virq)
1720{
1721 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1722 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1723}
1724
1725int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1726 int virq)
1727{
1728 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1729 false);
1730}
1731
1732int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1733 EventNotifier *rn, qemu_irq irq)
1734{
1735 gpointer key, gsi;
1736 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1737
1738 if (!found) {
1739 return -ENXIO;
1740 }
1741 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1742}
1743
1744int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1745 qemu_irq irq)
1746{
1747 gpointer key, gsi;
1748 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1749
1750 if (!found) {
1751 return -ENXIO;
1752 }
1753 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1754}
1755
1756void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1757{
1758 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1759}
1760
1761static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1762{
1763 int ret;
1764
1765 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1766 ;
1767 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1768 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1769 if (ret < 0) {
1770 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1771 exit(1);
1772 }
1773 } else {
1774 return;
1775 }
1776
1777
1778
1779 ret = kvm_arch_irqchip_create(machine, s);
1780 if (ret == 0) {
1781 if (machine_kernel_irqchip_split(machine)) {
1782 perror("Split IRQ chip mode not supported.");
1783 exit(1);
1784 } else {
1785 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1786 }
1787 }
1788 if (ret < 0) {
1789 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1790 exit(1);
1791 }
1792
1793 kvm_kernel_irqchip = true;
1794
1795
1796
1797 kvm_async_interrupts_allowed = true;
1798 kvm_halt_in_kernel_allowed = true;
1799
1800 kvm_init_irq_routing(s);
1801
1802 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1803}
1804
1805
1806
1807
1808
1809static int kvm_recommended_vcpus(KVMState *s)
1810{
1811 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1812 return (ret) ? ret : 4;
1813}
1814
1815static int kvm_max_vcpus(KVMState *s)
1816{
1817 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1818 return (ret) ? ret : kvm_recommended_vcpus(s);
1819}
1820
1821static int kvm_max_vcpu_id(KVMState *s)
1822{
1823 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1824 return (ret) ? ret : kvm_max_vcpus(s);
1825}
1826
1827bool kvm_vcpu_id_is_valid(int vcpu_id)
1828{
1829 KVMState *s = KVM_STATE(current_machine->accelerator);
1830 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1831}
1832
1833static int kvm_init(MachineState *ms)
1834{
1835 MachineClass *mc = MACHINE_GET_CLASS(ms);
1836 static const char upgrade_note[] =
1837 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1838 "(see http://sourceforge.net/projects/kvm).\n";
1839 struct {
1840 const char *name;
1841 int num;
1842 } num_cpus[] = {
1843 { "SMP", ms->smp.cpus },
1844 { "hotpluggable", ms->smp.max_cpus },
1845 { NULL, }
1846 }, *nc = num_cpus;
1847 int soft_vcpus_limit, hard_vcpus_limit;
1848 KVMState *s;
1849 const KVMCapabilityInfo *missing_cap;
1850 int ret;
1851 int type = 0;
1852 const char *kvm_type;
1853
1854 s = KVM_STATE(ms->accelerator);
1855
1856
1857
1858
1859
1860
1861
1862 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1863
1864 s->sigmask_len = 8;
1865
1866#ifdef KVM_CAP_SET_GUEST_DEBUG
1867 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1868#endif
1869 QLIST_INIT(&s->kvm_parked_vcpus);
1870 s->vmfd = -1;
1871 s->fd = qemu_open("/dev/kvm", O_RDWR);
1872 if (s->fd == -1) {
1873 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1874 ret = -errno;
1875 goto err;
1876 }
1877
1878 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1879 if (ret < KVM_API_VERSION) {
1880 if (ret >= 0) {
1881 ret = -EINVAL;
1882 }
1883 fprintf(stderr, "kvm version too old\n");
1884 goto err;
1885 }
1886
1887 if (ret > KVM_API_VERSION) {
1888 ret = -EINVAL;
1889 fprintf(stderr, "kvm version not supported\n");
1890 goto err;
1891 }
1892
1893 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1894 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1895
1896
1897 if (!s->nr_slots) {
1898 s->nr_slots = 32;
1899 }
1900
1901 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1902 if (s->nr_as <= 1) {
1903 s->nr_as = 1;
1904 }
1905 s->as = g_new0(struct KVMAs, s->nr_as);
1906
1907 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1908 if (mc->kvm_type) {
1909 type = mc->kvm_type(ms, kvm_type);
1910 } else if (kvm_type) {
1911 ret = -EINVAL;
1912 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1913 goto err;
1914 }
1915
1916 do {
1917 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1918 } while (ret == -EINTR);
1919
1920 if (ret < 0) {
1921 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1922 strerror(-ret));
1923
1924#ifdef TARGET_S390X
1925 if (ret == -EINVAL) {
1926 fprintf(stderr,
1927 "Host kernel setup problem detected. Please verify:\n");
1928 fprintf(stderr, "- for kernels supporting the switch_amode or"
1929 " user_mode parameters, whether\n");
1930 fprintf(stderr,
1931 " user space is running in primary address space\n");
1932 fprintf(stderr,
1933 "- for kernels supporting the vm.allocate_pgste sysctl, "
1934 "whether it is enabled\n");
1935 }
1936#endif
1937 goto err;
1938 }
1939
1940 s->vmfd = ret;
1941
1942
1943 soft_vcpus_limit = kvm_recommended_vcpus(s);
1944 hard_vcpus_limit = kvm_max_vcpus(s);
1945
1946 while (nc->name) {
1947 if (nc->num > soft_vcpus_limit) {
1948 warn_report("Number of %s cpus requested (%d) exceeds "
1949 "the recommended cpus supported by KVM (%d)",
1950 nc->name, nc->num, soft_vcpus_limit);
1951
1952 if (nc->num > hard_vcpus_limit) {
1953 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1954 "the maximum cpus supported by KVM (%d)\n",
1955 nc->name, nc->num, hard_vcpus_limit);
1956 exit(1);
1957 }
1958 }
1959 nc++;
1960 }
1961
1962 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1963 if (!missing_cap) {
1964 missing_cap =
1965 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1966 }
1967 if (missing_cap) {
1968 ret = -EINVAL;
1969 fprintf(stderr, "kvm does not support %s\n%s",
1970 missing_cap->name, upgrade_note);
1971 goto err;
1972 }
1973
1974 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1975 s->coalesced_pio = s->coalesced_mmio &&
1976 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1977
1978 s->manual_dirty_log_protect =
1979 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1980 if (s->manual_dirty_log_protect) {
1981 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1982 if (ret) {
1983 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1984 "but failed. Falling back to the legacy mode. ");
1985 s->manual_dirty_log_protect = false;
1986 }
1987 }
1988
1989#ifdef KVM_CAP_VCPU_EVENTS
1990 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1991#endif
1992
1993 s->robust_singlestep =
1994 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1995
1996#ifdef KVM_CAP_DEBUGREGS
1997 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1998#endif
1999
2000 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2001
2002#ifdef KVM_CAP_IRQ_ROUTING
2003 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2004#endif
2005
2006 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2007
2008 s->irq_set_ioctl = KVM_IRQ_LINE;
2009 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2010 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2011 }
2012
2013 kvm_readonly_mem_allowed =
2014 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2015
2016 kvm_eventfds_allowed =
2017 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2018
2019 kvm_irqfds_allowed =
2020 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2021
2022 kvm_resamplefds_allowed =
2023 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2024
2025 kvm_vm_attributes_allowed =
2026 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2027
2028 kvm_ioeventfd_any_length_allowed =
2029 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2030
2031 kvm_state = s;
2032
2033
2034
2035
2036
2037 if (ms->memory_encryption) {
2038 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2039 if (!kvm_state->memcrypt_handle) {
2040 ret = -1;
2041 goto err;
2042 }
2043
2044 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2045 }
2046
2047 ret = kvm_arch_init(ms, s);
2048 if (ret < 0) {
2049 goto err;
2050 }
2051
2052 if (machine_kernel_irqchip_allowed(ms)) {
2053 kvm_irqchip_create(ms, s);
2054 }
2055
2056 if (kvm_eventfds_allowed) {
2057 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2058 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2059 }
2060 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2061 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2062
2063 kvm_memory_listener_register(s, &s->memory_listener,
2064 &address_space_memory, 0);
2065 memory_listener_register(&kvm_io_listener,
2066 &address_space_io);
2067 memory_listener_register(&kvm_coalesced_pio_listener,
2068 &address_space_io);
2069
2070 s->many_ioeventfds = kvm_check_many_ioeventfds();
2071
2072 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2073 if (!s->sync_mmu) {
2074 qemu_balloon_inhibit(true);
2075 }
2076
2077 return 0;
2078
2079err:
2080 assert(ret < 0);
2081 if (s->vmfd >= 0) {
2082 close(s->vmfd);
2083 }
2084 if (s->fd != -1) {
2085 close(s->fd);
2086 }
2087 g_free(s->memory_listener.slots);
2088
2089 return ret;
2090}
2091
2092void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2093{
2094 s->sigmask_len = sigmask_len;
2095}
2096
2097static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2098 int size, uint32_t count)
2099{
2100 int i;
2101 uint8_t *ptr = data;
2102
2103 for (i = 0; i < count; i++) {
2104 address_space_rw(&address_space_io, port, attrs,
2105 ptr, size,
2106 direction == KVM_EXIT_IO_OUT);
2107 ptr += size;
2108 }
2109}
2110
2111static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2112{
2113 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2114 run->internal.suberror);
2115
2116 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2117 int i;
2118
2119 for (i = 0; i < run->internal.ndata; ++i) {
2120 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2121 i, (uint64_t)run->internal.data[i]);
2122 }
2123 }
2124 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2125 fprintf(stderr, "emulation failure\n");
2126 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2127 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2128 return EXCP_INTERRUPT;
2129 }
2130 }
2131
2132
2133
2134 return -1;
2135}
2136
2137void kvm_flush_coalesced_mmio_buffer(void)
2138{
2139 KVMState *s = kvm_state;
2140
2141 if (s->coalesced_flush_in_progress) {
2142 return;
2143 }
2144
2145 s->coalesced_flush_in_progress = true;
2146
2147 if (s->coalesced_mmio_ring) {
2148 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2149 while (ring->first != ring->last) {
2150 struct kvm_coalesced_mmio *ent;
2151
2152 ent = &ring->coalesced_mmio[ring->first];
2153
2154 if (ent->pio == 1) {
2155 address_space_rw(&address_space_io, ent->phys_addr,
2156 MEMTXATTRS_UNSPECIFIED, ent->data,
2157 ent->len, true);
2158 } else {
2159 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2160 }
2161 smp_wmb();
2162 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2163 }
2164 }
2165
2166 s->coalesced_flush_in_progress = false;
2167}
2168
2169static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2170{
2171 if (!cpu->vcpu_dirty) {
2172 kvm_arch_get_registers(cpu);
2173 cpu->vcpu_dirty = true;
2174 }
2175}
2176
2177void kvm_cpu_synchronize_state(CPUState *cpu)
2178{
2179 if (!cpu->vcpu_dirty) {
2180 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2181 }
2182}
2183
2184static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2185{
2186 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2187 cpu->vcpu_dirty = false;
2188}
2189
2190void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2191{
2192 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2193}
2194
2195static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2196{
2197 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2198 cpu->vcpu_dirty = false;
2199}
2200
2201void kvm_cpu_synchronize_post_init(CPUState *cpu)
2202{
2203 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2204}
2205
2206static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2207{
2208 cpu->vcpu_dirty = true;
2209}
2210
2211void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2212{
2213 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2214}
2215
2216#ifdef KVM_HAVE_MCE_INJECTION
2217static __thread void *pending_sigbus_addr;
2218static __thread int pending_sigbus_code;
2219static __thread bool have_sigbus_pending;
2220#endif
2221
2222static void kvm_cpu_kick(CPUState *cpu)
2223{
2224 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2225}
2226
2227static void kvm_cpu_kick_self(void)
2228{
2229 if (kvm_immediate_exit) {
2230 kvm_cpu_kick(current_cpu);
2231 } else {
2232 qemu_cpu_kick_self();
2233 }
2234}
2235
2236static void kvm_eat_signals(CPUState *cpu)
2237{
2238 struct timespec ts = { 0, 0 };
2239 siginfo_t siginfo;
2240 sigset_t waitset;
2241 sigset_t chkset;
2242 int r;
2243
2244 if (kvm_immediate_exit) {
2245 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2246
2247
2248
2249 smp_wmb();
2250 return;
2251 }
2252
2253 sigemptyset(&waitset);
2254 sigaddset(&waitset, SIG_IPI);
2255
2256 do {
2257 r = sigtimedwait(&waitset, &siginfo, &ts);
2258 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2259 perror("sigtimedwait");
2260 exit(1);
2261 }
2262
2263 r = sigpending(&chkset);
2264 if (r == -1) {
2265 perror("sigpending");
2266 exit(1);
2267 }
2268 } while (sigismember(&chkset, SIG_IPI));
2269}
2270
2271int kvm_cpu_exec(CPUState *cpu)
2272{
2273 struct kvm_run *run = cpu->kvm_run;
2274 int ret, run_ret;
2275
2276 DPRINTF("kvm_cpu_exec()\n");
2277
2278 if (kvm_arch_process_async_events(cpu)) {
2279 atomic_set(&cpu->exit_request, 0);
2280 return EXCP_HLT;
2281 }
2282
2283 qemu_mutex_unlock_iothread();
2284 cpu_exec_start(cpu);
2285
2286 do {
2287 MemTxAttrs attrs;
2288
2289 if (cpu->vcpu_dirty) {
2290 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2291 cpu->vcpu_dirty = false;
2292 }
2293
2294 kvm_arch_pre_run(cpu, run);
2295 if (atomic_read(&cpu->exit_request)) {
2296 DPRINTF("interrupt exit requested\n");
2297
2298
2299
2300
2301
2302 kvm_cpu_kick_self();
2303 }
2304
2305
2306
2307
2308 smp_rmb();
2309
2310 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2311
2312 attrs = kvm_arch_post_run(cpu, run);
2313
2314#ifdef KVM_HAVE_MCE_INJECTION
2315 if (unlikely(have_sigbus_pending)) {
2316 qemu_mutex_lock_iothread();
2317 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2318 pending_sigbus_addr);
2319 have_sigbus_pending = false;
2320 qemu_mutex_unlock_iothread();
2321 }
2322#endif
2323
2324 if (run_ret < 0) {
2325 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2326 DPRINTF("io window exit\n");
2327 kvm_eat_signals(cpu);
2328 ret = EXCP_INTERRUPT;
2329 break;
2330 }
2331 fprintf(stderr, "error: kvm run failed %s\n",
2332 strerror(-run_ret));
2333#ifdef TARGET_PPC
2334 if (run_ret == -EBUSY) {
2335 fprintf(stderr,
2336 "This is probably because your SMT is enabled.\n"
2337 "VCPU can only run on primary threads with all "
2338 "secondary threads offline.\n");
2339 }
2340#endif
2341 ret = -1;
2342 break;
2343 }
2344
2345 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2346 switch (run->exit_reason) {
2347 case KVM_EXIT_IO:
2348 DPRINTF("handle_io\n");
2349
2350 kvm_handle_io(run->io.port, attrs,
2351 (uint8_t *)run + run->io.data_offset,
2352 run->io.direction,
2353 run->io.size,
2354 run->io.count);
2355 ret = 0;
2356 break;
2357 case KVM_EXIT_MMIO:
2358 DPRINTF("handle_mmio\n");
2359
2360 address_space_rw(&address_space_memory,
2361 run->mmio.phys_addr, attrs,
2362 run->mmio.data,
2363 run->mmio.len,
2364 run->mmio.is_write);
2365 ret = 0;
2366 break;
2367 case KVM_EXIT_IRQ_WINDOW_OPEN:
2368 DPRINTF("irq_window_open\n");
2369 ret = EXCP_INTERRUPT;
2370 break;
2371 case KVM_EXIT_SHUTDOWN:
2372 DPRINTF("shutdown\n");
2373 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2374 ret = EXCP_INTERRUPT;
2375 break;
2376 case KVM_EXIT_UNKNOWN:
2377 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2378 (uint64_t)run->hw.hardware_exit_reason);
2379 ret = -1;
2380 break;
2381 case KVM_EXIT_INTERNAL_ERROR:
2382 ret = kvm_handle_internal_error(cpu, run);
2383 break;
2384 case KVM_EXIT_SYSTEM_EVENT:
2385 switch (run->system_event.type) {
2386 case KVM_SYSTEM_EVENT_SHUTDOWN:
2387 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2388 ret = EXCP_INTERRUPT;
2389 break;
2390 case KVM_SYSTEM_EVENT_RESET:
2391 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2392 ret = EXCP_INTERRUPT;
2393 break;
2394 case KVM_SYSTEM_EVENT_CRASH:
2395 kvm_cpu_synchronize_state(cpu);
2396 qemu_mutex_lock_iothread();
2397 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2398 qemu_mutex_unlock_iothread();
2399 ret = 0;
2400 break;
2401 default:
2402 DPRINTF("kvm_arch_handle_exit\n");
2403 ret = kvm_arch_handle_exit(cpu, run);
2404 break;
2405 }
2406 break;
2407 default:
2408 DPRINTF("kvm_arch_handle_exit\n");
2409 ret = kvm_arch_handle_exit(cpu, run);
2410 break;
2411 }
2412 } while (ret == 0);
2413
2414 cpu_exec_end(cpu);
2415 qemu_mutex_lock_iothread();
2416
2417 if (ret < 0) {
2418 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2419 vm_stop(RUN_STATE_INTERNAL_ERROR);
2420 }
2421
2422 atomic_set(&cpu->exit_request, 0);
2423 return ret;
2424}
2425
2426int kvm_ioctl(KVMState *s, int type, ...)
2427{
2428 int ret;
2429 void *arg;
2430 va_list ap;
2431
2432 va_start(ap, type);
2433 arg = va_arg(ap, void *);
2434 va_end(ap);
2435
2436 trace_kvm_ioctl(type, arg);
2437 ret = ioctl(s->fd, type, arg);
2438 if (ret == -1) {
2439 ret = -errno;
2440 }
2441 return ret;
2442}
2443
2444int kvm_vm_ioctl(KVMState *s, int type, ...)
2445{
2446 int ret;
2447 void *arg;
2448 va_list ap;
2449
2450 va_start(ap, type);
2451 arg = va_arg(ap, void *);
2452 va_end(ap);
2453
2454 trace_kvm_vm_ioctl(type, arg);
2455 ret = ioctl(s->vmfd, type, arg);
2456 if (ret == -1) {
2457 ret = -errno;
2458 }
2459 return ret;
2460}
2461
2462int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2463{
2464 int ret;
2465 void *arg;
2466 va_list ap;
2467
2468 va_start(ap, type);
2469 arg = va_arg(ap, void *);
2470 va_end(ap);
2471
2472 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2473 ret = ioctl(cpu->kvm_fd, type, arg);
2474 if (ret == -1) {
2475 ret = -errno;
2476 }
2477 return ret;
2478}
2479
2480int kvm_device_ioctl(int fd, int type, ...)
2481{
2482 int ret;
2483 void *arg;
2484 va_list ap;
2485
2486 va_start(ap, type);
2487 arg = va_arg(ap, void *);
2488 va_end(ap);
2489
2490 trace_kvm_device_ioctl(fd, type, arg);
2491 ret = ioctl(fd, type, arg);
2492 if (ret == -1) {
2493 ret = -errno;
2494 }
2495 return ret;
2496}
2497
2498int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2499{
2500 int ret;
2501 struct kvm_device_attr attribute = {
2502 .group = group,
2503 .attr = attr,
2504 };
2505
2506 if (!kvm_vm_attributes_allowed) {
2507 return 0;
2508 }
2509
2510 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2511
2512 return ret ? 0 : 1;
2513}
2514
2515int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2516{
2517 struct kvm_device_attr attribute = {
2518 .group = group,
2519 .attr = attr,
2520 .flags = 0,
2521 };
2522
2523 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2524}
2525
2526int kvm_device_access(int fd, int group, uint64_t attr,
2527 void *val, bool write, Error **errp)
2528{
2529 struct kvm_device_attr kvmattr;
2530 int err;
2531
2532 kvmattr.flags = 0;
2533 kvmattr.group = group;
2534 kvmattr.attr = attr;
2535 kvmattr.addr = (uintptr_t)val;
2536
2537 err = kvm_device_ioctl(fd,
2538 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2539 &kvmattr);
2540 if (err < 0) {
2541 error_setg_errno(errp, -err,
2542 "KVM_%s_DEVICE_ATTR failed: Group %d "
2543 "attr 0x%016" PRIx64,
2544 write ? "SET" : "GET", group, attr);
2545 }
2546 return err;
2547}
2548
2549bool kvm_has_sync_mmu(void)
2550{
2551 return kvm_state->sync_mmu;
2552}
2553
2554int kvm_has_vcpu_events(void)
2555{
2556 return kvm_state->vcpu_events;
2557}
2558
2559int kvm_has_robust_singlestep(void)
2560{
2561 return kvm_state->robust_singlestep;
2562}
2563
2564int kvm_has_debugregs(void)
2565{
2566 return kvm_state->debugregs;
2567}
2568
2569int kvm_max_nested_state_length(void)
2570{
2571 return kvm_state->max_nested_state_len;
2572}
2573
2574int kvm_has_many_ioeventfds(void)
2575{
2576 if (!kvm_enabled()) {
2577 return 0;
2578 }
2579 return kvm_state->many_ioeventfds;
2580}
2581
2582int kvm_has_gsi_routing(void)
2583{
2584#ifdef KVM_CAP_IRQ_ROUTING
2585 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2586#else
2587 return false;
2588#endif
2589}
2590
2591int kvm_has_intx_set_mask(void)
2592{
2593 return kvm_state->intx_set_mask;
2594}
2595
2596bool kvm_arm_supports_user_irq(void)
2597{
2598 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2599}
2600
2601#ifdef KVM_CAP_SET_GUEST_DEBUG
2602struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2603 target_ulong pc)
2604{
2605 struct kvm_sw_breakpoint *bp;
2606
2607 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2608 if (bp->pc == pc) {
2609 return bp;
2610 }
2611 }
2612 return NULL;
2613}
2614
2615int kvm_sw_breakpoints_active(CPUState *cpu)
2616{
2617 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2618}
2619
2620struct kvm_set_guest_debug_data {
2621 struct kvm_guest_debug dbg;
2622 int err;
2623};
2624
2625static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2626{
2627 struct kvm_set_guest_debug_data *dbg_data =
2628 (struct kvm_set_guest_debug_data *) data.host_ptr;
2629
2630 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2631 &dbg_data->dbg);
2632}
2633
2634int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2635{
2636 struct kvm_set_guest_debug_data data;
2637
2638 data.dbg.control = reinject_trap;
2639
2640 if (cpu->singlestep_enabled) {
2641 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2642 }
2643 kvm_arch_update_guest_debug(cpu, &data.dbg);
2644
2645 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2646 RUN_ON_CPU_HOST_PTR(&data));
2647 return data.err;
2648}
2649
2650int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2651 target_ulong len, int type)
2652{
2653 struct kvm_sw_breakpoint *bp;
2654 int err;
2655
2656 if (type == GDB_BREAKPOINT_SW) {
2657 bp = kvm_find_sw_breakpoint(cpu, addr);
2658 if (bp) {
2659 bp->use_count++;
2660 return 0;
2661 }
2662
2663 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2664 bp->pc = addr;
2665 bp->use_count = 1;
2666 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2667 if (err) {
2668 g_free(bp);
2669 return err;
2670 }
2671
2672 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2673 } else {
2674 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2675 if (err) {
2676 return err;
2677 }
2678 }
2679
2680 CPU_FOREACH(cpu) {
2681 err = kvm_update_guest_debug(cpu, 0);
2682 if (err) {
2683 return err;
2684 }
2685 }
2686 return 0;
2687}
2688
2689int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2690 target_ulong len, int type)
2691{
2692 struct kvm_sw_breakpoint *bp;
2693 int err;
2694
2695 if (type == GDB_BREAKPOINT_SW) {
2696 bp = kvm_find_sw_breakpoint(cpu, addr);
2697 if (!bp) {
2698 return -ENOENT;
2699 }
2700
2701 if (bp->use_count > 1) {
2702 bp->use_count--;
2703 return 0;
2704 }
2705
2706 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2707 if (err) {
2708 return err;
2709 }
2710
2711 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2712 g_free(bp);
2713 } else {
2714 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2715 if (err) {
2716 return err;
2717 }
2718 }
2719
2720 CPU_FOREACH(cpu) {
2721 err = kvm_update_guest_debug(cpu, 0);
2722 if (err) {
2723 return err;
2724 }
2725 }
2726 return 0;
2727}
2728
2729void kvm_remove_all_breakpoints(CPUState *cpu)
2730{
2731 struct kvm_sw_breakpoint *bp, *next;
2732 KVMState *s = cpu->kvm_state;
2733 CPUState *tmpcpu;
2734
2735 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2736 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2737
2738 CPU_FOREACH(tmpcpu) {
2739 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2740 break;
2741 }
2742 }
2743 }
2744 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2745 g_free(bp);
2746 }
2747 kvm_arch_remove_all_hw_breakpoints();
2748
2749 CPU_FOREACH(cpu) {
2750 kvm_update_guest_debug(cpu, 0);
2751 }
2752}
2753
2754#else
2755
2756int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2757{
2758 return -EINVAL;
2759}
2760
2761int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2762 target_ulong len, int type)
2763{
2764 return -EINVAL;
2765}
2766
2767int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2768 target_ulong len, int type)
2769{
2770 return -EINVAL;
2771}
2772
2773void kvm_remove_all_breakpoints(CPUState *cpu)
2774{
2775}
2776#endif
2777
2778static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2779{
2780 KVMState *s = kvm_state;
2781 struct kvm_signal_mask *sigmask;
2782 int r;
2783
2784 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2785
2786 sigmask->len = s->sigmask_len;
2787 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2788 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2789 g_free(sigmask);
2790
2791 return r;
2792}
2793
2794static void kvm_ipi_signal(int sig)
2795{
2796 if (current_cpu) {
2797 assert(kvm_immediate_exit);
2798 kvm_cpu_kick(current_cpu);
2799 }
2800}
2801
2802void kvm_init_cpu_signals(CPUState *cpu)
2803{
2804 int r;
2805 sigset_t set;
2806 struct sigaction sigact;
2807
2808 memset(&sigact, 0, sizeof(sigact));
2809 sigact.sa_handler = kvm_ipi_signal;
2810 sigaction(SIG_IPI, &sigact, NULL);
2811
2812 pthread_sigmask(SIG_BLOCK, NULL, &set);
2813#if defined KVM_HAVE_MCE_INJECTION
2814 sigdelset(&set, SIGBUS);
2815 pthread_sigmask(SIG_SETMASK, &set, NULL);
2816#endif
2817 sigdelset(&set, SIG_IPI);
2818 if (kvm_immediate_exit) {
2819 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2820 } else {
2821 r = kvm_set_signal_mask(cpu, &set);
2822 }
2823 if (r) {
2824 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2825 exit(1);
2826 }
2827}
2828
2829
2830int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2831{
2832#ifdef KVM_HAVE_MCE_INJECTION
2833 if (have_sigbus_pending) {
2834 return 1;
2835 }
2836 have_sigbus_pending = true;
2837 pending_sigbus_addr = addr;
2838 pending_sigbus_code = code;
2839 atomic_set(&cpu->exit_request, 1);
2840 return 0;
2841#else
2842 return 1;
2843#endif
2844}
2845
2846
2847int kvm_on_sigbus(int code, void *addr)
2848{
2849#ifdef KVM_HAVE_MCE_INJECTION
2850
2851
2852
2853
2854 assert(code != BUS_MCEERR_AR);
2855 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2856 return 0;
2857#else
2858 return 1;
2859#endif
2860}
2861
2862int kvm_create_device(KVMState *s, uint64_t type, bool test)
2863{
2864 int ret;
2865 struct kvm_create_device create_dev;
2866
2867 create_dev.type = type;
2868 create_dev.fd = -1;
2869 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2870
2871 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2872 return -ENOTSUP;
2873 }
2874
2875 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2876 if (ret) {
2877 return ret;
2878 }
2879
2880 return test ? 0 : create_dev.fd;
2881}
2882
2883bool kvm_device_supported(int vmfd, uint64_t type)
2884{
2885 struct kvm_create_device create_dev = {
2886 .type = type,
2887 .fd = -1,
2888 .flags = KVM_CREATE_DEVICE_TEST,
2889 };
2890
2891 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2892 return false;
2893 }
2894
2895 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2896}
2897
2898int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2899{
2900 struct kvm_one_reg reg;
2901 int r;
2902
2903 reg.id = id;
2904 reg.addr = (uintptr_t) source;
2905 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
2906 if (r) {
2907 trace_kvm_failed_reg_set(id, strerror(-r));
2908 }
2909 return r;
2910}
2911
2912int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2913{
2914 struct kvm_one_reg reg;
2915 int r;
2916
2917 reg.id = id;
2918 reg.addr = (uintptr_t) target;
2919 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
2920 if (r) {
2921 trace_kvm_failed_reg_get(id, strerror(-r));
2922 }
2923 return r;
2924}
2925
2926static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2927 hwaddr start_addr, hwaddr size)
2928{
2929 KVMState *kvm = KVM_STATE(ms->accelerator);
2930 int i;
2931
2932 for (i = 0; i < kvm->nr_as; ++i) {
2933 if (kvm->as[i].as == as && kvm->as[i].ml) {
2934 size = MIN(kvm_max_slot_size, size);
2935 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2936 start_addr, size);
2937 }
2938 }
2939
2940 return false;
2941}
2942
2943static void kvm_accel_class_init(ObjectClass *oc, void *data)
2944{
2945 AccelClass *ac = ACCEL_CLASS(oc);
2946 ac->name = "KVM";
2947 ac->init_machine = kvm_init;
2948 ac->has_memory = kvm_accel_has_memory;
2949 ac->allowed = &kvm_allowed;
2950}
2951
2952static const TypeInfo kvm_accel_type = {
2953 .name = TYPE_KVM_ACCEL,
2954 .parent = TYPE_ACCEL,
2955 .class_init = kvm_accel_class_init,
2956 .instance_size = sizeof(KVMState),
2957};
2958
2959static void kvm_type_init(void)
2960{
2961 type_register_static(&kvm_accel_type);
2962}
2963
2964type_init(kvm_type_init);
2965