qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/option.h"
  23#include "trace.h"
  24#include "qed.h"
  25#include "sysemu/block-backend.h"
  26#include "qapi/qmp/qdict.h"
  27#include "qapi/qobject-input-visitor.h"
  28#include "qapi/qapi-visit-block-core.h"
  29
  30static QemuOptsList qed_create_opts;
  31
  32static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  33                          const char *filename)
  34{
  35    const QEDHeader *header = (const QEDHeader *)buf;
  36
  37    if (buf_size < sizeof(*header)) {
  38        return 0;
  39    }
  40    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  41        return 0;
  42    }
  43    return 100;
  44}
  45
  46/**
  47 * Check whether an image format is raw
  48 *
  49 * @fmt:    Backing file format, may be NULL
  50 */
  51static bool qed_fmt_is_raw(const char *fmt)
  52{
  53    return fmt && strcmp(fmt, "raw") == 0;
  54}
  55
  56static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  57{
  58    cpu->magic = le32_to_cpu(le->magic);
  59    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  60    cpu->table_size = le32_to_cpu(le->table_size);
  61    cpu->header_size = le32_to_cpu(le->header_size);
  62    cpu->features = le64_to_cpu(le->features);
  63    cpu->compat_features = le64_to_cpu(le->compat_features);
  64    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  65    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  66    cpu->image_size = le64_to_cpu(le->image_size);
  67    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  68    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  69}
  70
  71static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  72{
  73    le->magic = cpu_to_le32(cpu->magic);
  74    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  75    le->table_size = cpu_to_le32(cpu->table_size);
  76    le->header_size = cpu_to_le32(cpu->header_size);
  77    le->features = cpu_to_le64(cpu->features);
  78    le->compat_features = cpu_to_le64(cpu->compat_features);
  79    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  80    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  81    le->image_size = cpu_to_le64(cpu->image_size);
  82    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  83    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  84}
  85
  86int qed_write_header_sync(BDRVQEDState *s)
  87{
  88    QEDHeader le;
  89    int ret;
  90
  91    qed_header_cpu_to_le(&s->header, &le);
  92    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  93    if (ret != sizeof(le)) {
  94        return ret;
  95    }
  96    return 0;
  97}
  98
  99/**
 100 * Update header in-place (does not rewrite backing filename or other strings)
 101 *
 102 * This function only updates known header fields in-place and does not affect
 103 * extra data after the QED header.
 104 *
 105 * No new allocating reqs can start while this function runs.
 106 */
 107static int coroutine_fn qed_write_header(BDRVQEDState *s)
 108{
 109    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 110     * the data following the header if an unrecognized compat feature is
 111     * active.  Therefore, first read the sectors containing the header, update
 112     * them, and write back.
 113     */
 114
 115    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 116    size_t len = nsectors * BDRV_SECTOR_SIZE;
 117    uint8_t *buf;
 118    int ret;
 119
 120    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 121
 122    buf = qemu_blockalign(s->bs, len);
 123
 124    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 125    if (ret < 0) {
 126        goto out;
 127    }
 128
 129    /* Update header */
 130    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 131
 132    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 133    if (ret < 0) {
 134        goto out;
 135    }
 136
 137    ret = 0;
 138out:
 139    qemu_vfree(buf);
 140    return ret;
 141}
 142
 143static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 144{
 145    uint64_t table_entries;
 146    uint64_t l2_size;
 147
 148    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 149    l2_size = table_entries * cluster_size;
 150
 151    return l2_size * table_entries;
 152}
 153
 154static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 155{
 156    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 157        cluster_size > QED_MAX_CLUSTER_SIZE) {
 158        return false;
 159    }
 160    if (cluster_size & (cluster_size - 1)) {
 161        return false; /* not power of 2 */
 162    }
 163    return true;
 164}
 165
 166static bool qed_is_table_size_valid(uint32_t table_size)
 167{
 168    if (table_size < QED_MIN_TABLE_SIZE ||
 169        table_size > QED_MAX_TABLE_SIZE) {
 170        return false;
 171    }
 172    if (table_size & (table_size - 1)) {
 173        return false; /* not power of 2 */
 174    }
 175    return true;
 176}
 177
 178static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 179                                    uint32_t table_size)
 180{
 181    if (image_size % BDRV_SECTOR_SIZE != 0) {
 182        return false; /* not multiple of sector size */
 183    }
 184    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 185        return false; /* image is too large */
 186    }
 187    return true;
 188}
 189
 190/**
 191 * Read a string of known length from the image file
 192 *
 193 * @file:       Image file
 194 * @offset:     File offset to start of string, in bytes
 195 * @n:          String length in bytes
 196 * @buf:        Destination buffer
 197 * @buflen:     Destination buffer length in bytes
 198 * @ret:        0 on success, -errno on failure
 199 *
 200 * The string is NUL-terminated.
 201 */
 202static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 203                           char *buf, size_t buflen)
 204{
 205    int ret;
 206    if (n >= buflen) {
 207        return -EINVAL;
 208    }
 209    ret = bdrv_pread(file, offset, buf, n);
 210    if (ret < 0) {
 211        return ret;
 212    }
 213    buf[n] = '\0';
 214    return 0;
 215}
 216
 217/**
 218 * Allocate new clusters
 219 *
 220 * @s:          QED state
 221 * @n:          Number of contiguous clusters to allocate
 222 * @ret:        Offset of first allocated cluster
 223 *
 224 * This function only produces the offset where the new clusters should be
 225 * written.  It updates BDRVQEDState but does not make any changes to the image
 226 * file.
 227 *
 228 * Called with table_lock held.
 229 */
 230static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 231{
 232    uint64_t offset = s->file_size;
 233    s->file_size += n * s->header.cluster_size;
 234    return offset;
 235}
 236
 237QEDTable *qed_alloc_table(BDRVQEDState *s)
 238{
 239    /* Honor O_DIRECT memory alignment requirements */
 240    return qemu_blockalign(s->bs,
 241                           s->header.cluster_size * s->header.table_size);
 242}
 243
 244/**
 245 * Allocate a new zeroed L2 table
 246 *
 247 * Called with table_lock held.
 248 */
 249static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 250{
 251    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 252
 253    l2_table->table = qed_alloc_table(s);
 254    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 255
 256    memset(l2_table->table->offsets, 0,
 257           s->header.cluster_size * s->header.table_size);
 258    return l2_table;
 259}
 260
 261static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 262{
 263    qemu_co_mutex_lock(&s->table_lock);
 264
 265    /* No reentrancy is allowed.  */
 266    assert(!s->allocating_write_reqs_plugged);
 267    if (s->allocating_acb != NULL) {
 268        /* Another allocating write came concurrently.  This cannot happen
 269         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 270         */
 271        qemu_co_mutex_unlock(&s->table_lock);
 272        return false;
 273    }
 274
 275    s->allocating_write_reqs_plugged = true;
 276    qemu_co_mutex_unlock(&s->table_lock);
 277    return true;
 278}
 279
 280static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 281{
 282    qemu_co_mutex_lock(&s->table_lock);
 283    assert(s->allocating_write_reqs_plugged);
 284    s->allocating_write_reqs_plugged = false;
 285    qemu_co_queue_next(&s->allocating_write_reqs);
 286    qemu_co_mutex_unlock(&s->table_lock);
 287}
 288
 289static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 290{
 291    BDRVQEDState *s = opaque;
 292    int ret;
 293
 294    trace_qed_need_check_timer_cb(s);
 295
 296    if (!qed_plug_allocating_write_reqs(s)) {
 297        return;
 298    }
 299
 300    /* Ensure writes are on disk before clearing flag */
 301    ret = bdrv_co_flush(s->bs->file->bs);
 302    if (ret < 0) {
 303        qed_unplug_allocating_write_reqs(s);
 304        return;
 305    }
 306
 307    s->header.features &= ~QED_F_NEED_CHECK;
 308    ret = qed_write_header(s);
 309    (void) ret;
 310
 311    qed_unplug_allocating_write_reqs(s);
 312
 313    ret = bdrv_co_flush(s->bs);
 314    (void) ret;
 315}
 316
 317static void qed_need_check_timer_cb(void *opaque)
 318{
 319    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 320    qemu_coroutine_enter(co);
 321}
 322
 323static void qed_start_need_check_timer(BDRVQEDState *s)
 324{
 325    trace_qed_start_need_check_timer(s);
 326
 327    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 328     * migration.
 329     */
 330    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 331                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 332}
 333
 334/* It's okay to call this multiple times or when no timer is started */
 335static void qed_cancel_need_check_timer(BDRVQEDState *s)
 336{
 337    trace_qed_cancel_need_check_timer(s);
 338    timer_del(s->need_check_timer);
 339}
 340
 341static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 342{
 343    BDRVQEDState *s = bs->opaque;
 344
 345    qed_cancel_need_check_timer(s);
 346    timer_free(s->need_check_timer);
 347}
 348
 349static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 350                                        AioContext *new_context)
 351{
 352    BDRVQEDState *s = bs->opaque;
 353
 354    s->need_check_timer = aio_timer_new(new_context,
 355                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 356                                        qed_need_check_timer_cb, s);
 357    if (s->header.features & QED_F_NEED_CHECK) {
 358        qed_start_need_check_timer(s);
 359    }
 360}
 361
 362static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 363{
 364    BDRVQEDState *s = bs->opaque;
 365
 366    /* Fire the timer immediately in order to start doing I/O as soon as the
 367     * header is flushed.
 368     */
 369    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 370        qed_cancel_need_check_timer(s);
 371        qed_need_check_timer_entry(s);
 372    }
 373}
 374
 375static void bdrv_qed_init_state(BlockDriverState *bs)
 376{
 377    BDRVQEDState *s = bs->opaque;
 378
 379    memset(s, 0, sizeof(BDRVQEDState));
 380    s->bs = bs;
 381    qemu_co_mutex_init(&s->table_lock);
 382    qemu_co_queue_init(&s->allocating_write_reqs);
 383}
 384
 385/* Called with table_lock held.  */
 386static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 387                                         int flags, Error **errp)
 388{
 389    BDRVQEDState *s = bs->opaque;
 390    QEDHeader le_header;
 391    int64_t file_size;
 392    int ret;
 393
 394    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 395    if (ret < 0) {
 396        return ret;
 397    }
 398    qed_header_le_to_cpu(&le_header, &s->header);
 399
 400    if (s->header.magic != QED_MAGIC) {
 401        error_setg(errp, "Image not in QED format");
 402        return -EINVAL;
 403    }
 404    if (s->header.features & ~QED_FEATURE_MASK) {
 405        /* image uses unsupported feature bits */
 406        error_setg(errp, "Unsupported QED features: %" PRIx64,
 407                   s->header.features & ~QED_FEATURE_MASK);
 408        return -ENOTSUP;
 409    }
 410    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 411        return -EINVAL;
 412    }
 413
 414    /* Round down file size to the last cluster */
 415    file_size = bdrv_getlength(bs->file->bs);
 416    if (file_size < 0) {
 417        return file_size;
 418    }
 419    s->file_size = qed_start_of_cluster(s, file_size);
 420
 421    if (!qed_is_table_size_valid(s->header.table_size)) {
 422        return -EINVAL;
 423    }
 424    if (!qed_is_image_size_valid(s->header.image_size,
 425                                 s->header.cluster_size,
 426                                 s->header.table_size)) {
 427        return -EINVAL;
 428    }
 429    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 430        return -EINVAL;
 431    }
 432
 433    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 434                      sizeof(uint64_t);
 435    s->l2_shift = ctz32(s->header.cluster_size);
 436    s->l2_mask = s->table_nelems - 1;
 437    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 438
 439    /* Header size calculation must not overflow uint32_t */
 440    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 441        return -EINVAL;
 442    }
 443
 444    if ((s->header.features & QED_F_BACKING_FILE)) {
 445        if ((uint64_t)s->header.backing_filename_offset +
 446            s->header.backing_filename_size >
 447            s->header.cluster_size * s->header.header_size) {
 448            return -EINVAL;
 449        }
 450
 451        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 452                              s->header.backing_filename_size,
 453                              bs->auto_backing_file,
 454                              sizeof(bs->auto_backing_file));
 455        if (ret < 0) {
 456            return ret;
 457        }
 458        pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 459                bs->auto_backing_file);
 460
 461        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 462            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 463        }
 464    }
 465
 466    /* Reset unknown autoclear feature bits.  This is a backwards
 467     * compatibility mechanism that allows images to be opened by older
 468     * programs, which "knock out" unknown feature bits.  When an image is
 469     * opened by a newer program again it can detect that the autoclear
 470     * feature is no longer valid.
 471     */
 472    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 473        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 474        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 475
 476        ret = qed_write_header_sync(s);
 477        if (ret) {
 478            return ret;
 479        }
 480
 481        /* From here on only known autoclear feature bits are valid */
 482        bdrv_flush(bs->file->bs);
 483    }
 484
 485    s->l1_table = qed_alloc_table(s);
 486    qed_init_l2_cache(&s->l2_cache);
 487
 488    ret = qed_read_l1_table_sync(s);
 489    if (ret) {
 490        goto out;
 491    }
 492
 493    /* If image was not closed cleanly, check consistency */
 494    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 495        /* Read-only images cannot be fixed.  There is no risk of corruption
 496         * since write operations are not possible.  Therefore, allow
 497         * potentially inconsistent images to be opened read-only.  This can
 498         * aid data recovery from an otherwise inconsistent image.
 499         */
 500        if (!bdrv_is_read_only(bs->file->bs) &&
 501            !(flags & BDRV_O_INACTIVE)) {
 502            BdrvCheckResult result = {0};
 503
 504            ret = qed_check(s, &result, true);
 505            if (ret) {
 506                goto out;
 507            }
 508        }
 509    }
 510
 511    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 512
 513out:
 514    if (ret) {
 515        qed_free_l2_cache(&s->l2_cache);
 516        qemu_vfree(s->l1_table);
 517    }
 518    return ret;
 519}
 520
 521typedef struct QEDOpenCo {
 522    BlockDriverState *bs;
 523    QDict *options;
 524    int flags;
 525    Error **errp;
 526    int ret;
 527} QEDOpenCo;
 528
 529static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 530{
 531    QEDOpenCo *qoc = opaque;
 532    BDRVQEDState *s = qoc->bs->opaque;
 533
 534    qemu_co_mutex_lock(&s->table_lock);
 535    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 536    qemu_co_mutex_unlock(&s->table_lock);
 537}
 538
 539static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 540                         Error **errp)
 541{
 542    QEDOpenCo qoc = {
 543        .bs = bs,
 544        .options = options,
 545        .flags = flags,
 546        .errp = errp,
 547        .ret = -EINPROGRESS
 548    };
 549
 550    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
 551                               false, errp);
 552    if (!bs->file) {
 553        return -EINVAL;
 554    }
 555
 556    bdrv_qed_init_state(bs);
 557    if (qemu_in_coroutine()) {
 558        bdrv_qed_open_entry(&qoc);
 559    } else {
 560        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 561        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 562        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 563    }
 564    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 565    return qoc.ret;
 566}
 567
 568static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 569{
 570    BDRVQEDState *s = bs->opaque;
 571
 572    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 573}
 574
 575/* We have nothing to do for QED reopen, stubs just return
 576 * success */
 577static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 578                                   BlockReopenQueue *queue, Error **errp)
 579{
 580    return 0;
 581}
 582
 583static void bdrv_qed_close(BlockDriverState *bs)
 584{
 585    BDRVQEDState *s = bs->opaque;
 586
 587    bdrv_qed_detach_aio_context(bs);
 588
 589    /* Ensure writes reach stable storage */
 590    bdrv_flush(bs->file->bs);
 591
 592    /* Clean shutdown, no check required on next open */
 593    if (s->header.features & QED_F_NEED_CHECK) {
 594        s->header.features &= ~QED_F_NEED_CHECK;
 595        qed_write_header_sync(s);
 596    }
 597
 598    qed_free_l2_cache(&s->l2_cache);
 599    qemu_vfree(s->l1_table);
 600}
 601
 602static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 603                                           Error **errp)
 604{
 605    BlockdevCreateOptionsQed *qed_opts;
 606    BlockBackend *blk = NULL;
 607    BlockDriverState *bs = NULL;
 608
 609    QEDHeader header;
 610    QEDHeader le_header;
 611    uint8_t *l1_table = NULL;
 612    size_t l1_size;
 613    int ret = 0;
 614
 615    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 616    qed_opts = &opts->u.qed;
 617
 618    /* Validate options and set default values */
 619    if (!qed_opts->has_cluster_size) {
 620        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 621    }
 622    if (!qed_opts->has_table_size) {
 623        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 624    }
 625
 626    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 627        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 628                         "and power of 2",
 629                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 630        return -EINVAL;
 631    }
 632    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 633        error_setg(errp, "QED table size must be within range [%u, %u] "
 634                         "and power of 2",
 635                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 636        return -EINVAL;
 637    }
 638    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 639                                 qed_opts->table_size))
 640    {
 641        error_setg(errp, "QED image size must be a non-zero multiple of "
 642                         "cluster size and less than %" PRIu64 " bytes",
 643                   qed_max_image_size(qed_opts->cluster_size,
 644                                      qed_opts->table_size));
 645        return -EINVAL;
 646    }
 647
 648    /* Create BlockBackend to write to the image */
 649    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 650    if (bs == NULL) {
 651        return -EIO;
 652    }
 653
 654    blk = blk_new(bdrv_get_aio_context(bs),
 655                  BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
 656    ret = blk_insert_bs(blk, bs, errp);
 657    if (ret < 0) {
 658        goto out;
 659    }
 660    blk_set_allow_write_beyond_eof(blk, true);
 661
 662    /* Prepare image format */
 663    header = (QEDHeader) {
 664        .magic = QED_MAGIC,
 665        .cluster_size = qed_opts->cluster_size,
 666        .table_size = qed_opts->table_size,
 667        .header_size = 1,
 668        .features = 0,
 669        .compat_features = 0,
 670        .l1_table_offset = qed_opts->cluster_size,
 671        .image_size = qed_opts->size,
 672    };
 673
 674    l1_size = header.cluster_size * header.table_size;
 675
 676    /*
 677     * The QED format associates file length with allocation status,
 678     * so a new file (which is empty) must have a length of 0.
 679     */
 680    ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, errp);
 681    if (ret < 0) {
 682        goto out;
 683    }
 684
 685    if (qed_opts->has_backing_file) {
 686        header.features |= QED_F_BACKING_FILE;
 687        header.backing_filename_offset = sizeof(le_header);
 688        header.backing_filename_size = strlen(qed_opts->backing_file);
 689
 690        if (qed_opts->has_backing_fmt) {
 691            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 692            if (qed_fmt_is_raw(backing_fmt)) {
 693                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 694            }
 695        }
 696    }
 697
 698    qed_header_cpu_to_le(&header, &le_header);
 699    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 700    if (ret < 0) {
 701        goto out;
 702    }
 703    ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
 704                     header.backing_filename_size, 0);
 705    if (ret < 0) {
 706        goto out;
 707    }
 708
 709    l1_table = g_malloc0(l1_size);
 710    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 711    if (ret < 0) {
 712        goto out;
 713    }
 714
 715    ret = 0; /* success */
 716out:
 717    g_free(l1_table);
 718    blk_unref(blk);
 719    bdrv_unref(bs);
 720    return ret;
 721}
 722
 723static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
 724                                                QemuOpts *opts,
 725                                                Error **errp)
 726{
 727    BlockdevCreateOptions *create_options = NULL;
 728    QDict *qdict;
 729    Visitor *v;
 730    BlockDriverState *bs = NULL;
 731    Error *local_err = NULL;
 732    int ret;
 733
 734    static const QDictRenames opt_renames[] = {
 735        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 736        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 737        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 738        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 739        { NULL, NULL },
 740    };
 741
 742    /* Parse options and convert legacy syntax */
 743    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 744
 745    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 746        ret = -EINVAL;
 747        goto fail;
 748    }
 749
 750    /* Create and open the file (protocol layer) */
 751    ret = bdrv_create_file(filename, opts, &local_err);
 752    if (ret < 0) {
 753        error_propagate(errp, local_err);
 754        goto fail;
 755    }
 756
 757    bs = bdrv_open(filename, NULL, NULL,
 758                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 759    if (bs == NULL) {
 760        ret = -EIO;
 761        goto fail;
 762    }
 763
 764    /* Now get the QAPI type BlockdevCreateOptions */
 765    qdict_put_str(qdict, "driver", "qed");
 766    qdict_put_str(qdict, "file", bs->node_name);
 767
 768    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 769    if (!v) {
 770        ret = -EINVAL;
 771        goto fail;
 772    }
 773
 774    visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
 775    visit_free(v);
 776
 777    if (local_err) {
 778        error_propagate(errp, local_err);
 779        ret = -EINVAL;
 780        goto fail;
 781    }
 782
 783    /* Silently round up size */
 784    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 785    create_options->u.qed.size =
 786        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 787
 788    /* Create the qed image (format layer) */
 789    ret = bdrv_qed_co_create(create_options, errp);
 790
 791fail:
 792    qobject_unref(qdict);
 793    bdrv_unref(bs);
 794    qapi_free_BlockdevCreateOptions(create_options);
 795    return ret;
 796}
 797
 798static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 799                                                 bool want_zero,
 800                                                 int64_t pos, int64_t bytes,
 801                                                 int64_t *pnum, int64_t *map,
 802                                                 BlockDriverState **file)
 803{
 804    BDRVQEDState *s = bs->opaque;
 805    size_t len = MIN(bytes, SIZE_MAX);
 806    int status;
 807    QEDRequest request = { .l2_table = NULL };
 808    uint64_t offset;
 809    int ret;
 810
 811    qemu_co_mutex_lock(&s->table_lock);
 812    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 813
 814    *pnum = len;
 815    switch (ret) {
 816    case QED_CLUSTER_FOUND:
 817        *map = offset | qed_offset_into_cluster(s, pos);
 818        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 819        *file = bs->file->bs;
 820        break;
 821    case QED_CLUSTER_ZERO:
 822        status = BDRV_BLOCK_ZERO;
 823        break;
 824    case QED_CLUSTER_L2:
 825    case QED_CLUSTER_L1:
 826        status = 0;
 827        break;
 828    default:
 829        assert(ret < 0);
 830        status = ret;
 831        break;
 832    }
 833
 834    qed_unref_l2_cache_entry(request.l2_table);
 835    qemu_co_mutex_unlock(&s->table_lock);
 836
 837    return status;
 838}
 839
 840static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 841{
 842    return acb->bs->opaque;
 843}
 844
 845/**
 846 * Read from the backing file or zero-fill if no backing file
 847 *
 848 * @s:              QED state
 849 * @pos:            Byte position in device
 850 * @qiov:           Destination I/O vector
 851 * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
 852 * @cb:             Completion function
 853 * @opaque:         User data for completion function
 854 *
 855 * This function reads qiov->size bytes starting at pos from the backing file.
 856 * If there is no backing file then zeroes are read.
 857 */
 858static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 859                                              QEMUIOVector *qiov,
 860                                              QEMUIOVector **backing_qiov)
 861{
 862    uint64_t backing_length = 0;
 863    size_t size;
 864    int ret;
 865
 866    /* If there is a backing file, get its length.  Treat the absence of a
 867     * backing file like a zero length backing file.
 868     */
 869    if (s->bs->backing) {
 870        int64_t l = bdrv_getlength(s->bs->backing->bs);
 871        if (l < 0) {
 872            return l;
 873        }
 874        backing_length = l;
 875    }
 876
 877    /* Zero all sectors if reading beyond the end of the backing file */
 878    if (pos >= backing_length ||
 879        pos + qiov->size > backing_length) {
 880        qemu_iovec_memset(qiov, 0, 0, qiov->size);
 881    }
 882
 883    /* Complete now if there are no backing file sectors to read */
 884    if (pos >= backing_length) {
 885        return 0;
 886    }
 887
 888    /* If the read straddles the end of the backing file, shorten it */
 889    size = MIN((uint64_t)backing_length - pos, qiov->size);
 890
 891    assert(*backing_qiov == NULL);
 892    *backing_qiov = g_new(QEMUIOVector, 1);
 893    qemu_iovec_init(*backing_qiov, qiov->niov);
 894    qemu_iovec_concat(*backing_qiov, qiov, 0, size);
 895
 896    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 897    ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
 898    if (ret < 0) {
 899        return ret;
 900    }
 901    return 0;
 902}
 903
 904/**
 905 * Copy data from backing file into the image
 906 *
 907 * @s:          QED state
 908 * @pos:        Byte position in device
 909 * @len:        Number of bytes
 910 * @offset:     Byte offset in image file
 911 */
 912static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 913                                                   uint64_t pos, uint64_t len,
 914                                                   uint64_t offset)
 915{
 916    QEMUIOVector qiov;
 917    QEMUIOVector *backing_qiov = NULL;
 918    int ret;
 919
 920    /* Skip copy entirely if there is no work to do */
 921    if (len == 0) {
 922        return 0;
 923    }
 924
 925    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 926
 927    ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
 928
 929    if (backing_qiov) {
 930        qemu_iovec_destroy(backing_qiov);
 931        g_free(backing_qiov);
 932        backing_qiov = NULL;
 933    }
 934
 935    if (ret) {
 936        goto out;
 937    }
 938
 939    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 940    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 941    if (ret < 0) {
 942        goto out;
 943    }
 944    ret = 0;
 945out:
 946    qemu_vfree(qemu_iovec_buf(&qiov));
 947    return ret;
 948}
 949
 950/**
 951 * Link one or more contiguous clusters into a table
 952 *
 953 * @s:              QED state
 954 * @table:          L2 table
 955 * @index:          First cluster index
 956 * @n:              Number of contiguous clusters
 957 * @cluster:        First cluster offset
 958 *
 959 * The cluster offset may be an allocated byte offset in the image file, the
 960 * zero cluster marker, or the unallocated cluster marker.
 961 *
 962 * Called with table_lock held.
 963 */
 964static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 965                                             int index, unsigned int n,
 966                                             uint64_t cluster)
 967{
 968    int i;
 969    for (i = index; i < index + n; i++) {
 970        table->offsets[i] = cluster;
 971        if (!qed_offset_is_unalloc_cluster(cluster) &&
 972            !qed_offset_is_zero_cluster(cluster)) {
 973            cluster += s->header.cluster_size;
 974        }
 975    }
 976}
 977
 978/* Called with table_lock held.  */
 979static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 980{
 981    BDRVQEDState *s = acb_to_s(acb);
 982
 983    /* Free resources */
 984    qemu_iovec_destroy(&acb->cur_qiov);
 985    qed_unref_l2_cache_entry(acb->request.l2_table);
 986
 987    /* Free the buffer we may have allocated for zero writes */
 988    if (acb->flags & QED_AIOCB_ZERO) {
 989        qemu_vfree(acb->qiov->iov[0].iov_base);
 990        acb->qiov->iov[0].iov_base = NULL;
 991    }
 992
 993    /* Start next allocating write request waiting behind this one.  Note that
 994     * requests enqueue themselves when they first hit an unallocated cluster
 995     * but they wait until the entire request is finished before waking up the
 996     * next request in the queue.  This ensures that we don't cycle through
 997     * requests multiple times but rather finish one at a time completely.
 998     */
 999    if (acb == s->allocating_acb) {
1000        s->allocating_acb = NULL;
1001        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
1002            qemu_co_queue_next(&s->allocating_write_reqs);
1003        } else if (s->header.features & QED_F_NEED_CHECK) {
1004            qed_start_need_check_timer(s);
1005        }
1006    }
1007}
1008
1009/**
1010 * Update L1 table with new L2 table offset and write it out
1011 *
1012 * Called with table_lock held.
1013 */
1014static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1015{
1016    BDRVQEDState *s = acb_to_s(acb);
1017    CachedL2Table *l2_table = acb->request.l2_table;
1018    uint64_t l2_offset = l2_table->offset;
1019    int index, ret;
1020
1021    index = qed_l1_index(s, acb->cur_pos);
1022    s->l1_table->offsets[index] = l2_table->offset;
1023
1024    ret = qed_write_l1_table(s, index, 1);
1025
1026    /* Commit the current L2 table to the cache */
1027    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1028
1029    /* This is guaranteed to succeed because we just committed the entry to the
1030     * cache.
1031     */
1032    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1033    assert(acb->request.l2_table != NULL);
1034
1035    return ret;
1036}
1037
1038
1039/**
1040 * Update L2 table with new cluster offsets and write them out
1041 *
1042 * Called with table_lock held.
1043 */
1044static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1045{
1046    BDRVQEDState *s = acb_to_s(acb);
1047    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1048    int index, ret;
1049
1050    if (need_alloc) {
1051        qed_unref_l2_cache_entry(acb->request.l2_table);
1052        acb->request.l2_table = qed_new_l2_table(s);
1053    }
1054
1055    index = qed_l2_index(s, acb->cur_pos);
1056    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1057                         offset);
1058
1059    if (need_alloc) {
1060        /* Write out the whole new L2 table */
1061        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1062        if (ret) {
1063            return ret;
1064        }
1065        return qed_aio_write_l1_update(acb);
1066    } else {
1067        /* Write out only the updated part of the L2 table */
1068        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1069                                 false);
1070        if (ret) {
1071            return ret;
1072        }
1073    }
1074    return 0;
1075}
1076
1077/**
1078 * Write data to the image file
1079 *
1080 * Called with table_lock *not* held.
1081 */
1082static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1083{
1084    BDRVQEDState *s = acb_to_s(acb);
1085    uint64_t offset = acb->cur_cluster +
1086                      qed_offset_into_cluster(s, acb->cur_pos);
1087
1088    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1089
1090    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1091    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1092                           &acb->cur_qiov, 0);
1093}
1094
1095/**
1096 * Populate untouched regions of new data cluster
1097 *
1098 * Called with table_lock held.
1099 */
1100static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1101{
1102    BDRVQEDState *s = acb_to_s(acb);
1103    uint64_t start, len, offset;
1104    int ret;
1105
1106    qemu_co_mutex_unlock(&s->table_lock);
1107
1108    /* Populate front untouched region of new data cluster */
1109    start = qed_start_of_cluster(s, acb->cur_pos);
1110    len = qed_offset_into_cluster(s, acb->cur_pos);
1111
1112    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1113    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1114    if (ret < 0) {
1115        goto out;
1116    }
1117
1118    /* Populate back untouched region of new data cluster */
1119    start = acb->cur_pos + acb->cur_qiov.size;
1120    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1121    offset = acb->cur_cluster +
1122             qed_offset_into_cluster(s, acb->cur_pos) +
1123             acb->cur_qiov.size;
1124
1125    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1126    ret = qed_copy_from_backing_file(s, start, len, offset);
1127    if (ret < 0) {
1128        goto out;
1129    }
1130
1131    ret = qed_aio_write_main(acb);
1132    if (ret < 0) {
1133        goto out;
1134    }
1135
1136    if (s->bs->backing) {
1137        /*
1138         * Flush new data clusters before updating the L2 table
1139         *
1140         * This flush is necessary when a backing file is in use.  A crash
1141         * during an allocating write could result in empty clusters in the
1142         * image.  If the write only touched a subregion of the cluster,
1143         * then backing image sectors have been lost in the untouched
1144         * region.  The solution is to flush after writing a new data
1145         * cluster and before updating the L2 table.
1146         */
1147        ret = bdrv_co_flush(s->bs->file->bs);
1148    }
1149
1150out:
1151    qemu_co_mutex_lock(&s->table_lock);
1152    return ret;
1153}
1154
1155/**
1156 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1157 */
1158static bool qed_should_set_need_check(BDRVQEDState *s)
1159{
1160    /* The flush before L2 update path ensures consistency */
1161    if (s->bs->backing) {
1162        return false;
1163    }
1164
1165    return !(s->header.features & QED_F_NEED_CHECK);
1166}
1167
1168/**
1169 * Write new data cluster
1170 *
1171 * @acb:        Write request
1172 * @len:        Length in bytes
1173 *
1174 * This path is taken when writing to previously unallocated clusters.
1175 *
1176 * Called with table_lock held.
1177 */
1178static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1179{
1180    BDRVQEDState *s = acb_to_s(acb);
1181    int ret;
1182
1183    /* Cancel timer when the first allocating request comes in */
1184    if (s->allocating_acb == NULL) {
1185        qed_cancel_need_check_timer(s);
1186    }
1187
1188    /* Freeze this request if another allocating write is in progress */
1189    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1190        if (s->allocating_acb != NULL) {
1191            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1192            assert(s->allocating_acb == NULL);
1193        }
1194        s->allocating_acb = acb;
1195        return -EAGAIN; /* start over with looking up table entries */
1196    }
1197
1198    acb->cur_nclusters = qed_bytes_to_clusters(s,
1199            qed_offset_into_cluster(s, acb->cur_pos) + len);
1200    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1201
1202    if (acb->flags & QED_AIOCB_ZERO) {
1203        /* Skip ahead if the clusters are already zero */
1204        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1205            return 0;
1206        }
1207        acb->cur_cluster = 1;
1208    } else {
1209        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1210    }
1211
1212    if (qed_should_set_need_check(s)) {
1213        s->header.features |= QED_F_NEED_CHECK;
1214        ret = qed_write_header(s);
1215        if (ret < 0) {
1216            return ret;
1217        }
1218    }
1219
1220    if (!(acb->flags & QED_AIOCB_ZERO)) {
1221        ret = qed_aio_write_cow(acb);
1222        if (ret < 0) {
1223            return ret;
1224        }
1225    }
1226
1227    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1228}
1229
1230/**
1231 * Write data cluster in place
1232 *
1233 * @acb:        Write request
1234 * @offset:     Cluster offset in bytes
1235 * @len:        Length in bytes
1236 *
1237 * This path is taken when writing to already allocated clusters.
1238 *
1239 * Called with table_lock held.
1240 */
1241static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1242                                              size_t len)
1243{
1244    BDRVQEDState *s = acb_to_s(acb);
1245    int r;
1246
1247    qemu_co_mutex_unlock(&s->table_lock);
1248
1249    /* Allocate buffer for zero writes */
1250    if (acb->flags & QED_AIOCB_ZERO) {
1251        struct iovec *iov = acb->qiov->iov;
1252
1253        if (!iov->iov_base) {
1254            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1255            if (iov->iov_base == NULL) {
1256                r = -ENOMEM;
1257                goto out;
1258            }
1259            memset(iov->iov_base, 0, iov->iov_len);
1260        }
1261    }
1262
1263    /* Calculate the I/O vector */
1264    acb->cur_cluster = offset;
1265    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1266
1267    /* Do the actual write.  */
1268    r = qed_aio_write_main(acb);
1269out:
1270    qemu_co_mutex_lock(&s->table_lock);
1271    return r;
1272}
1273
1274/**
1275 * Write data cluster
1276 *
1277 * @opaque:     Write request
1278 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1279 * @offset:     Cluster offset in bytes
1280 * @len:        Length in bytes
1281 *
1282 * Called with table_lock held.
1283 */
1284static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1285                                           uint64_t offset, size_t len)
1286{
1287    QEDAIOCB *acb = opaque;
1288
1289    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1290
1291    acb->find_cluster_ret = ret;
1292
1293    switch (ret) {
1294    case QED_CLUSTER_FOUND:
1295        return qed_aio_write_inplace(acb, offset, len);
1296
1297    case QED_CLUSTER_L2:
1298    case QED_CLUSTER_L1:
1299    case QED_CLUSTER_ZERO:
1300        return qed_aio_write_alloc(acb, len);
1301
1302    default:
1303        g_assert_not_reached();
1304    }
1305}
1306
1307/**
1308 * Read data cluster
1309 *
1310 * @opaque:     Read request
1311 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1312 * @offset:     Cluster offset in bytes
1313 * @len:        Length in bytes
1314 *
1315 * Called with table_lock held.
1316 */
1317static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1318                                          uint64_t offset, size_t len)
1319{
1320    QEDAIOCB *acb = opaque;
1321    BDRVQEDState *s = acb_to_s(acb);
1322    BlockDriverState *bs = acb->bs;
1323    int r;
1324
1325    qemu_co_mutex_unlock(&s->table_lock);
1326
1327    /* Adjust offset into cluster */
1328    offset += qed_offset_into_cluster(s, acb->cur_pos);
1329
1330    trace_qed_aio_read_data(s, acb, ret, offset, len);
1331
1332    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1333
1334    /* Handle zero cluster and backing file reads, otherwise read
1335     * data cluster directly.
1336     */
1337    if (ret == QED_CLUSTER_ZERO) {
1338        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1339        r = 0;
1340    } else if (ret != QED_CLUSTER_FOUND) {
1341        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1342                                  &acb->backing_qiov);
1343    } else {
1344        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1345        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1346                           &acb->cur_qiov, 0);
1347    }
1348
1349    qemu_co_mutex_lock(&s->table_lock);
1350    return r;
1351}
1352
1353/**
1354 * Begin next I/O or complete the request
1355 */
1356static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1357{
1358    BDRVQEDState *s = acb_to_s(acb);
1359    uint64_t offset;
1360    size_t len;
1361    int ret;
1362
1363    qemu_co_mutex_lock(&s->table_lock);
1364    while (1) {
1365        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1366
1367        if (acb->backing_qiov) {
1368            qemu_iovec_destroy(acb->backing_qiov);
1369            g_free(acb->backing_qiov);
1370            acb->backing_qiov = NULL;
1371        }
1372
1373        acb->qiov_offset += acb->cur_qiov.size;
1374        acb->cur_pos += acb->cur_qiov.size;
1375        qemu_iovec_reset(&acb->cur_qiov);
1376
1377        /* Complete request */
1378        if (acb->cur_pos >= acb->end_pos) {
1379            ret = 0;
1380            break;
1381        }
1382
1383        /* Find next cluster and start I/O */
1384        len = acb->end_pos - acb->cur_pos;
1385        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1386        if (ret < 0) {
1387            break;
1388        }
1389
1390        if (acb->flags & QED_AIOCB_WRITE) {
1391            ret = qed_aio_write_data(acb, ret, offset, len);
1392        } else {
1393            ret = qed_aio_read_data(acb, ret, offset, len);
1394        }
1395
1396        if (ret < 0 && ret != -EAGAIN) {
1397            break;
1398        }
1399    }
1400
1401    trace_qed_aio_complete(s, acb, ret);
1402    qed_aio_complete(acb);
1403    qemu_co_mutex_unlock(&s->table_lock);
1404    return ret;
1405}
1406
1407static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1408                                       QEMUIOVector *qiov, int nb_sectors,
1409                                       int flags)
1410{
1411    QEDAIOCB acb = {
1412        .bs         = bs,
1413        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1414        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1415        .qiov       = qiov,
1416        .flags      = flags,
1417    };
1418    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1419
1420    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1421
1422    /* Start request */
1423    return qed_aio_next_io(&acb);
1424}
1425
1426static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1427                                          int64_t sector_num, int nb_sectors,
1428                                          QEMUIOVector *qiov)
1429{
1430    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1431}
1432
1433static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1434                                           int64_t sector_num, int nb_sectors,
1435                                           QEMUIOVector *qiov, int flags)
1436{
1437    assert(!flags);
1438    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1439}
1440
1441static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1442                                                  int64_t offset,
1443                                                  int bytes,
1444                                                  BdrvRequestFlags flags)
1445{
1446    BDRVQEDState *s = bs->opaque;
1447
1448    /*
1449     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1450     * then it will be allocated during request processing.
1451     */
1452    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1453
1454    /* Fall back if the request is not aligned */
1455    if (qed_offset_into_cluster(s, offset) ||
1456        qed_offset_into_cluster(s, bytes)) {
1457        return -ENOTSUP;
1458    }
1459
1460    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1461                          bytes >> BDRV_SECTOR_BITS,
1462                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1463}
1464
1465static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1466                                             int64_t offset,
1467                                             bool exact,
1468                                             PreallocMode prealloc,
1469                                             Error **errp)
1470{
1471    BDRVQEDState *s = bs->opaque;
1472    uint64_t old_image_size;
1473    int ret;
1474
1475    if (prealloc != PREALLOC_MODE_OFF) {
1476        error_setg(errp, "Unsupported preallocation mode '%s'",
1477                   PreallocMode_str(prealloc));
1478        return -ENOTSUP;
1479    }
1480
1481    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1482                                 s->header.table_size)) {
1483        error_setg(errp, "Invalid image size specified");
1484        return -EINVAL;
1485    }
1486
1487    if ((uint64_t)offset < s->header.image_size) {
1488        error_setg(errp, "Shrinking images is currently not supported");
1489        return -ENOTSUP;
1490    }
1491
1492    old_image_size = s->header.image_size;
1493    s->header.image_size = offset;
1494    ret = qed_write_header_sync(s);
1495    if (ret < 0) {
1496        s->header.image_size = old_image_size;
1497        error_setg_errno(errp, -ret, "Failed to update the image size");
1498    }
1499    return ret;
1500}
1501
1502static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1503{
1504    BDRVQEDState *s = bs->opaque;
1505    return s->header.image_size;
1506}
1507
1508static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1509{
1510    BDRVQEDState *s = bs->opaque;
1511
1512    memset(bdi, 0, sizeof(*bdi));
1513    bdi->cluster_size = s->header.cluster_size;
1514    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1515    bdi->unallocated_blocks_are_zero = true;
1516    return 0;
1517}
1518
1519static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1520                                        const char *backing_file,
1521                                        const char *backing_fmt)
1522{
1523    BDRVQEDState *s = bs->opaque;
1524    QEDHeader new_header, le_header;
1525    void *buffer;
1526    size_t buffer_len, backing_file_len;
1527    int ret;
1528
1529    /* Refuse to set backing filename if unknown compat feature bits are
1530     * active.  If the image uses an unknown compat feature then we may not
1531     * know the layout of data following the header structure and cannot safely
1532     * add a new string.
1533     */
1534    if (backing_file && (s->header.compat_features &
1535                         ~QED_COMPAT_FEATURE_MASK)) {
1536        return -ENOTSUP;
1537    }
1538
1539    memcpy(&new_header, &s->header, sizeof(new_header));
1540
1541    new_header.features &= ~(QED_F_BACKING_FILE |
1542                             QED_F_BACKING_FORMAT_NO_PROBE);
1543
1544    /* Adjust feature flags */
1545    if (backing_file) {
1546        new_header.features |= QED_F_BACKING_FILE;
1547
1548        if (qed_fmt_is_raw(backing_fmt)) {
1549            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1550        }
1551    }
1552
1553    /* Calculate new header size */
1554    backing_file_len = 0;
1555
1556    if (backing_file) {
1557        backing_file_len = strlen(backing_file);
1558    }
1559
1560    buffer_len = sizeof(new_header);
1561    new_header.backing_filename_offset = buffer_len;
1562    new_header.backing_filename_size = backing_file_len;
1563    buffer_len += backing_file_len;
1564
1565    /* Make sure we can rewrite header without failing */
1566    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1567        return -ENOSPC;
1568    }
1569
1570    /* Prepare new header */
1571    buffer = g_malloc(buffer_len);
1572
1573    qed_header_cpu_to_le(&new_header, &le_header);
1574    memcpy(buffer, &le_header, sizeof(le_header));
1575    buffer_len = sizeof(le_header);
1576
1577    if (backing_file) {
1578        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1579        buffer_len += backing_file_len;
1580    }
1581
1582    /* Write new header */
1583    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1584    g_free(buffer);
1585    if (ret == 0) {
1586        memcpy(&s->header, &new_header, sizeof(new_header));
1587    }
1588    return ret;
1589}
1590
1591static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1592                                                      Error **errp)
1593{
1594    BDRVQEDState *s = bs->opaque;
1595    Error *local_err = NULL;
1596    int ret;
1597
1598    bdrv_qed_close(bs);
1599
1600    bdrv_qed_init_state(bs);
1601    qemu_co_mutex_lock(&s->table_lock);
1602    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1603    qemu_co_mutex_unlock(&s->table_lock);
1604    if (local_err) {
1605        error_propagate_prepend(errp, local_err,
1606                                "Could not reopen qed layer: ");
1607        return;
1608    } else if (ret < 0) {
1609        error_setg_errno(errp, -ret, "Could not reopen qed layer");
1610        return;
1611    }
1612}
1613
1614static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1615                                          BdrvCheckResult *result,
1616                                          BdrvCheckMode fix)
1617{
1618    BDRVQEDState *s = bs->opaque;
1619    int ret;
1620
1621    qemu_co_mutex_lock(&s->table_lock);
1622    ret = qed_check(s, result, !!fix);
1623    qemu_co_mutex_unlock(&s->table_lock);
1624
1625    return ret;
1626}
1627
1628static QemuOptsList qed_create_opts = {
1629    .name = "qed-create-opts",
1630    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1631    .desc = {
1632        {
1633            .name = BLOCK_OPT_SIZE,
1634            .type = QEMU_OPT_SIZE,
1635            .help = "Virtual disk size"
1636        },
1637        {
1638            .name = BLOCK_OPT_BACKING_FILE,
1639            .type = QEMU_OPT_STRING,
1640            .help = "File name of a base image"
1641        },
1642        {
1643            .name = BLOCK_OPT_BACKING_FMT,
1644            .type = QEMU_OPT_STRING,
1645            .help = "Image format of the base image"
1646        },
1647        {
1648            .name = BLOCK_OPT_CLUSTER_SIZE,
1649            .type = QEMU_OPT_SIZE,
1650            .help = "Cluster size (in bytes)",
1651            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1652        },
1653        {
1654            .name = BLOCK_OPT_TABLE_SIZE,
1655            .type = QEMU_OPT_SIZE,
1656            .help = "L1/L2 table size (in clusters)"
1657        },
1658        { /* end of list */ }
1659    }
1660};
1661
1662static BlockDriver bdrv_qed = {
1663    .format_name              = "qed",
1664    .instance_size            = sizeof(BDRVQEDState),
1665    .create_opts              = &qed_create_opts,
1666    .supports_backing         = true,
1667
1668    .bdrv_probe               = bdrv_qed_probe,
1669    .bdrv_open                = bdrv_qed_open,
1670    .bdrv_close               = bdrv_qed_close,
1671    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1672    .bdrv_child_perm          = bdrv_format_default_perms,
1673    .bdrv_co_create           = bdrv_qed_co_create,
1674    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1675    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1676    .bdrv_has_zero_init_truncate = bdrv_has_zero_init_1,
1677    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1678    .bdrv_co_readv            = bdrv_qed_co_readv,
1679    .bdrv_co_writev           = bdrv_qed_co_writev,
1680    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1681    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1682    .bdrv_getlength           = bdrv_qed_getlength,
1683    .bdrv_get_info            = bdrv_qed_get_info,
1684    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1685    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1686    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1687    .bdrv_co_check            = bdrv_qed_co_check,
1688    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1689    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1690    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1691};
1692
1693static void bdrv_qed_init(void)
1694{
1695    bdrv_register(&bdrv_qed);
1696}
1697
1698block_init(bdrv_qed_init);
1699