qemu/hw/arm/armsse.c
<<
>>
Prefs
   1/*
   2 * Arm SSE (Subsystems for Embedded): IoTKit
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "qemu/module.h"
  15#include "qemu/bitops.h"
  16#include "qapi/error.h"
  17#include "trace.h"
  18#include "hw/sysbus.h"
  19#include "migration/vmstate.h"
  20#include "hw/registerfields.h"
  21#include "hw/arm/armsse.h"
  22#include "hw/arm/boot.h"
  23#include "hw/irq.h"
  24
  25/* Format of the System Information block SYS_CONFIG register */
  26typedef enum SysConfigFormat {
  27    IoTKitFormat,
  28    SSE200Format,
  29} SysConfigFormat;
  30
  31struct ARMSSEInfo {
  32    const char *name;
  33    int sram_banks;
  34    int num_cpus;
  35    uint32_t sys_version;
  36    uint32_t cpuwait_rst;
  37    SysConfigFormat sys_config_format;
  38    bool has_mhus;
  39    bool has_ppus;
  40    bool has_cachectrl;
  41    bool has_cpusecctrl;
  42    bool has_cpuid;
  43    Property *props;
  44};
  45
  46static Property iotkit_properties[] = {
  47    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
  48                     MemoryRegion *),
  49    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
  50    DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
  51    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
  52    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
  53    DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
  54    DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
  55    DEFINE_PROP_END_OF_LIST()
  56};
  57
  58static Property armsse_properties[] = {
  59    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
  60                     MemoryRegion *),
  61    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
  62    DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
  63    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
  64    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
  65    DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
  66    DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
  67    DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
  68    DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
  69    DEFINE_PROP_END_OF_LIST()
  70};
  71
  72static const ARMSSEInfo armsse_variants[] = {
  73    {
  74        .name = TYPE_IOTKIT,
  75        .sram_banks = 1,
  76        .num_cpus = 1,
  77        .sys_version = 0x41743,
  78        .cpuwait_rst = 0,
  79        .sys_config_format = IoTKitFormat,
  80        .has_mhus = false,
  81        .has_ppus = false,
  82        .has_cachectrl = false,
  83        .has_cpusecctrl = false,
  84        .has_cpuid = false,
  85        .props = iotkit_properties,
  86    },
  87    {
  88        .name = TYPE_SSE200,
  89        .sram_banks = 4,
  90        .num_cpus = 2,
  91        .sys_version = 0x22041743,
  92        .cpuwait_rst = 2,
  93        .sys_config_format = SSE200Format,
  94        .has_mhus = true,
  95        .has_ppus = true,
  96        .has_cachectrl = true,
  97        .has_cpusecctrl = true,
  98        .has_cpuid = true,
  99        .props = armsse_properties,
 100    },
 101};
 102
 103static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
 104{
 105    /* Return the SYS_CONFIG value for this SSE */
 106    uint32_t sys_config;
 107
 108    switch (info->sys_config_format) {
 109    case IoTKitFormat:
 110        sys_config = 0;
 111        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
 112        sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
 113        break;
 114    case SSE200Format:
 115        sys_config = 0;
 116        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
 117        sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
 118        sys_config = deposit32(sys_config, 24, 4, 2);
 119        if (info->num_cpus > 1) {
 120            sys_config = deposit32(sys_config, 10, 1, 1);
 121            sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
 122            sys_config = deposit32(sys_config, 28, 4, 2);
 123        }
 124        break;
 125    default:
 126        g_assert_not_reached();
 127    }
 128    return sys_config;
 129}
 130
 131/* Clock frequency in HZ of the 32KHz "slow clock" */
 132#define S32KCLK (32 * 1000)
 133
 134/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
 135static bool irq_is_common[32] = {
 136    [0 ... 5] = true,
 137    /* 6, 7: per-CPU MHU interrupts */
 138    [8 ... 12] = true,
 139    /* 13: per-CPU icache interrupt */
 140    /* 14: reserved */
 141    [15 ... 20] = true,
 142    /* 21: reserved */
 143    [22 ... 26] = true,
 144    /* 27: reserved */
 145    /* 28, 29: per-CPU CTI interrupts */
 146    /* 30, 31: reserved */
 147};
 148
 149/*
 150 * Create an alias region in @container of @size bytes starting at @base
 151 * which mirrors the memory starting at @orig.
 152 */
 153static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
 154                       const char *name, hwaddr base, hwaddr size, hwaddr orig)
 155{
 156    memory_region_init_alias(mr, NULL, name, container, orig, size);
 157    /* The alias is even lower priority than unimplemented_device regions */
 158    memory_region_add_subregion_overlap(container, base, mr, -1500);
 159}
 160
 161static void irq_status_forwarder(void *opaque, int n, int level)
 162{
 163    qemu_irq destirq = opaque;
 164
 165    qemu_set_irq(destirq, level);
 166}
 167
 168static void nsccfg_handler(void *opaque, int n, int level)
 169{
 170    ARMSSE *s = ARMSSE(opaque);
 171
 172    s->nsccfg = level;
 173}
 174
 175static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
 176{
 177    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
 178     * system using the ARMSSE has a collection of control lines which
 179     * are provided by the security controller and which we want to
 180     * expose as control lines on the ARMSSE device itself, so the
 181     * code using the ARMSSE can wire them up to the PPCs.
 182     */
 183    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
 184    DeviceState *armssedev = DEVICE(s);
 185    DeviceState *dev_secctl = DEVICE(&s->secctl);
 186    DeviceState *dev_splitter = DEVICE(splitter);
 187    char *name;
 188
 189    name = g_strdup_printf("%s_nonsec", ppcname);
 190    qdev_pass_gpios(dev_secctl, armssedev, name);
 191    g_free(name);
 192    name = g_strdup_printf("%s_ap", ppcname);
 193    qdev_pass_gpios(dev_secctl, armssedev, name);
 194    g_free(name);
 195    name = g_strdup_printf("%s_irq_enable", ppcname);
 196    qdev_pass_gpios(dev_secctl, armssedev, name);
 197    g_free(name);
 198    name = g_strdup_printf("%s_irq_clear", ppcname);
 199    qdev_pass_gpios(dev_secctl, armssedev, name);
 200    g_free(name);
 201
 202    /* irq_status is a little more tricky, because we need to
 203     * split it so we can send it both to the security controller
 204     * and to our OR gate for the NVIC interrupt line.
 205     * Connect up the splitter's outputs, and create a GPIO input
 206     * which will pass the line state to the input splitter.
 207     */
 208    name = g_strdup_printf("%s_irq_status", ppcname);
 209    qdev_connect_gpio_out(dev_splitter, 0,
 210                          qdev_get_gpio_in_named(dev_secctl,
 211                                                 name, 0));
 212    qdev_connect_gpio_out(dev_splitter, 1,
 213                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
 214    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
 215    qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
 216                                        s->irq_status_in[ppcnum], name, 1);
 217    g_free(name);
 218}
 219
 220static void armsse_forward_sec_resp_cfg(ARMSSE *s)
 221{
 222    /* Forward the 3rd output from the splitter device as a
 223     * named GPIO output of the armsse object.
 224     */
 225    DeviceState *dev = DEVICE(s);
 226    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
 227
 228    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
 229    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
 230                                           s->sec_resp_cfg, 1);
 231    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
 232}
 233
 234static void armsse_init(Object *obj)
 235{
 236    ARMSSE *s = ARMSSE(obj);
 237    ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
 238    const ARMSSEInfo *info = asc->info;
 239    int i;
 240
 241    assert(info->sram_banks <= MAX_SRAM_BANKS);
 242    assert(info->num_cpus <= SSE_MAX_CPUS);
 243
 244    memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
 245
 246    for (i = 0; i < info->num_cpus; i++) {
 247        /*
 248         * We put each CPU in its own cluster as they are logically
 249         * distinct and may be configured differently.
 250         */
 251        char *name;
 252
 253        name = g_strdup_printf("cluster%d", i);
 254        object_initialize_child(obj, name, &s->cluster[i],
 255                                sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
 256                                &error_abort, NULL);
 257        qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
 258        g_free(name);
 259
 260        name = g_strdup_printf("armv7m%d", i);
 261        sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
 262                              &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
 263        qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
 264                             ARM_CPU_TYPE_NAME("cortex-m33"));
 265        g_free(name);
 266        name = g_strdup_printf("arm-sse-cpu-container%d", i);
 267        memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
 268        g_free(name);
 269        if (i > 0) {
 270            name = g_strdup_printf("arm-sse-container-alias%d", i);
 271            memory_region_init_alias(&s->container_alias[i - 1], obj,
 272                                     name, &s->container, 0, UINT64_MAX);
 273            g_free(name);
 274        }
 275    }
 276
 277    sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
 278                          TYPE_IOTKIT_SECCTL);
 279    sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
 280                          TYPE_TZ_PPC);
 281    sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
 282                          TYPE_TZ_PPC);
 283    for (i = 0; i < info->sram_banks; i++) {
 284        char *name = g_strdup_printf("mpc%d", i);
 285        sysbus_init_child_obj(obj, name, &s->mpc[i],
 286                              sizeof(s->mpc[i]), TYPE_TZ_MPC);
 287        g_free(name);
 288    }
 289    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
 290                            sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
 291                            &error_abort, NULL);
 292
 293    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
 294        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
 295        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
 296
 297        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 298                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 299        g_free(name);
 300    }
 301    sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
 302                          TYPE_CMSDK_APB_TIMER);
 303    sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
 304                          TYPE_CMSDK_APB_TIMER);
 305    sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
 306                          TYPE_CMSDK_APB_TIMER);
 307    sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
 308                          TYPE_CMSDK_APB_DUALTIMER);
 309    sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
 310                          sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
 311    sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
 312                          sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
 313    sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
 314                          sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
 315    sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
 316                          sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
 317    sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
 318                          sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
 319    if (info->has_mhus) {
 320        sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
 321                              TYPE_ARMSSE_MHU);
 322        sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
 323                              TYPE_ARMSSE_MHU);
 324    }
 325    if (info->has_ppus) {
 326        for (i = 0; i < info->num_cpus; i++) {
 327            char *name = g_strdup_printf("CPU%dCORE_PPU", i);
 328            int ppuidx = CPU0CORE_PPU + i;
 329
 330            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
 331                                  sizeof(s->ppu[ppuidx]),
 332                                  TYPE_UNIMPLEMENTED_DEVICE);
 333            g_free(name);
 334        }
 335        sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
 336                              sizeof(s->ppu[DBG_PPU]),
 337                              TYPE_UNIMPLEMENTED_DEVICE);
 338        for (i = 0; i < info->sram_banks; i++) {
 339            char *name = g_strdup_printf("RAM%d_PPU", i);
 340            int ppuidx = RAM0_PPU + i;
 341
 342            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
 343                                  sizeof(s->ppu[ppuidx]),
 344                                  TYPE_UNIMPLEMENTED_DEVICE);
 345            g_free(name);
 346        }
 347    }
 348    if (info->has_cachectrl) {
 349        for (i = 0; i < info->num_cpus; i++) {
 350            char *name = g_strdup_printf("cachectrl%d", i);
 351
 352            sysbus_init_child_obj(obj, name, &s->cachectrl[i],
 353                                  sizeof(s->cachectrl[i]),
 354                                  TYPE_UNIMPLEMENTED_DEVICE);
 355            g_free(name);
 356        }
 357    }
 358    if (info->has_cpusecctrl) {
 359        for (i = 0; i < info->num_cpus; i++) {
 360            char *name = g_strdup_printf("cpusecctrl%d", i);
 361
 362            sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
 363                                  sizeof(s->cpusecctrl[i]),
 364                                  TYPE_UNIMPLEMENTED_DEVICE);
 365            g_free(name);
 366        }
 367    }
 368    if (info->has_cpuid) {
 369        for (i = 0; i < info->num_cpus; i++) {
 370            char *name = g_strdup_printf("cpuid%d", i);
 371
 372            sysbus_init_child_obj(obj, name, &s->cpuid[i],
 373                                  sizeof(s->cpuid[i]),
 374                                  TYPE_ARMSSE_CPUID);
 375            g_free(name);
 376        }
 377    }
 378    object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
 379                            sizeof(s->nmi_orgate), TYPE_OR_IRQ,
 380                            &error_abort, NULL);
 381    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
 382                            sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
 383                            &error_abort, NULL);
 384    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
 385                            sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
 386                            &error_abort, NULL);
 387    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
 388        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
 389        SplitIRQ *splitter = &s->ppc_irq_splitter[i];
 390
 391        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 392                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 393        g_free(name);
 394    }
 395    if (info->num_cpus > 1) {
 396        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
 397            if (irq_is_common[i]) {
 398                char *name = g_strdup_printf("cpu-irq-splitter%d", i);
 399                SplitIRQ *splitter = &s->cpu_irq_splitter[i];
 400
 401                object_initialize_child(obj, name, splitter, sizeof(*splitter),
 402                                        TYPE_SPLIT_IRQ, &error_abort, NULL);
 403                g_free(name);
 404            }
 405        }
 406    }
 407}
 408
 409static void armsse_exp_irq(void *opaque, int n, int level)
 410{
 411    qemu_irq *irqarray = opaque;
 412
 413    qemu_set_irq(irqarray[n], level);
 414}
 415
 416static void armsse_mpcexp_status(void *opaque, int n, int level)
 417{
 418    ARMSSE *s = ARMSSE(opaque);
 419    qemu_set_irq(s->mpcexp_status_in[n], level);
 420}
 421
 422static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
 423{
 424    /*
 425     * Return a qemu_irq which can be used to signal IRQ n to
 426     * all CPUs in the SSE.
 427     */
 428    ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
 429    const ARMSSEInfo *info = asc->info;
 430
 431    assert(irq_is_common[irqno]);
 432
 433    if (info->num_cpus == 1) {
 434        /* Only one CPU -- just connect directly to it */
 435        return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
 436    } else {
 437        /* Connect to the splitter which feeds all CPUs */
 438        return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
 439    }
 440}
 441
 442static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
 443{
 444    /* Map a PPU unimplemented device stub */
 445    DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
 446
 447    qdev_prop_set_string(dev, "name", name);
 448    qdev_prop_set_uint64(dev, "size", 0x1000);
 449    qdev_init_nofail(dev);
 450    sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
 451}
 452
 453static void armsse_realize(DeviceState *dev, Error **errp)
 454{
 455    ARMSSE *s = ARMSSE(dev);
 456    ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
 457    const ARMSSEInfo *info = asc->info;
 458    int i;
 459    MemoryRegion *mr;
 460    Error *err = NULL;
 461    SysBusDevice *sbd_apb_ppc0;
 462    SysBusDevice *sbd_secctl;
 463    DeviceState *dev_apb_ppc0;
 464    DeviceState *dev_apb_ppc1;
 465    DeviceState *dev_secctl;
 466    DeviceState *dev_splitter;
 467    uint32_t addr_width_max;
 468
 469    if (!s->board_memory) {
 470        error_setg(errp, "memory property was not set");
 471        return;
 472    }
 473
 474    if (!s->mainclk_frq) {
 475        error_setg(errp, "MAINCLK property was not set");
 476        return;
 477    }
 478
 479    /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
 480    assert(is_power_of_2(info->sram_banks));
 481    addr_width_max = 24 - ctz32(info->sram_banks);
 482    if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
 483        error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
 484                   addr_width_max);
 485        return;
 486    }
 487
 488    /* Handling of which devices should be available only to secure
 489     * code is usually done differently for M profile than for A profile.
 490     * Instead of putting some devices only into the secure address space,
 491     * devices exist in both address spaces but with hard-wired security
 492     * permissions that will cause the CPU to fault for non-secure accesses.
 493     *
 494     * The ARMSSE has an IDAU (Implementation Defined Access Unit),
 495     * which specifies hard-wired security permissions for different
 496     * areas of the physical address space. For the ARMSSE IDAU, the
 497     * top 4 bits of the physical address are the IDAU region ID, and
 498     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
 499     * region, otherwise it is an S region.
 500     *
 501     * The various devices and RAMs are generally all mapped twice,
 502     * once into a region that the IDAU defines as secure and once
 503     * into a non-secure region. They sit behind either a Memory
 504     * Protection Controller (for RAM) or a Peripheral Protection
 505     * Controller (for devices), which allow a more fine grained
 506     * configuration of whether non-secure accesses are permitted.
 507     *
 508     * (The other place that guest software can configure security
 509     * permissions is in the architected SAU (Security Attribution
 510     * Unit), which is entirely inside the CPU. The IDAU can upgrade
 511     * the security attributes for a region to more restrictive than
 512     * the SAU specifies, but cannot downgrade them.)
 513     *
 514     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
 515     * 0x20000000..0x2007ffff  32KB FPGA block RAM
 516     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
 517     * 0x40000000..0x4000ffff  base peripheral region 1
 518     * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
 519     * 0x40020000..0x4002ffff  system control element peripherals
 520     * 0x40080000..0x400fffff  base peripheral region 2
 521     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
 522     */
 523
 524    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
 525
 526    for (i = 0; i < info->num_cpus; i++) {
 527        DeviceState *cpudev = DEVICE(&s->armv7m[i]);
 528        Object *cpuobj = OBJECT(&s->armv7m[i]);
 529        int j;
 530        char *gpioname;
 531
 532        qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
 533        /*
 534         * In real hardware the initial Secure VTOR is set from the INITSVTOR*
 535         * registers in the IoT Kit System Control Register block. In QEMU
 536         * we set the initial value here, and also the reset value of the
 537         * sysctl register, from this object's QOM init-svtor property.
 538         * If the guest changes the INITSVTOR* registers at runtime then the
 539         * code in iotkit-sysctl.c will update the CPU init-svtor property
 540         * (which will then take effect on the next CPU warm-reset).
 541         *
 542         * Note that typically a board using the SSE-200 will have a system
 543         * control processor whose boot firmware initializes the INITSVTOR*
 544         * registers before powering up the CPUs. QEMU doesn't emulate
 545         * the control processor, so instead we behave in the way that the
 546         * firmware does: the initial value should be set by the board code
 547         * (using the init-svtor property on the ARMSSE object) to match
 548         * whatever its firmware does.
 549         */
 550        qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
 551        /*
 552         * CPUs start powered down if the corresponding bit in the CPUWAIT
 553         * register is 1. In real hardware the CPUWAIT register reset value is
 554         * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
 555         * CPUWAIT1_RST parameters), but since all the boards we care about
 556         * start CPU0 and leave CPU1 powered off, we hard-code that in
 557         * info->cpuwait_rst for now. We can add QOM properties for this
 558         * later if necessary.
 559         */
 560        if (extract32(info->cpuwait_rst, i, 1)) {
 561            object_property_set_bool(cpuobj, true, "start-powered-off", &err);
 562            if (err) {
 563                error_propagate(errp, err);
 564                return;
 565            }
 566        }
 567        if (!s->cpu_fpu[i]) {
 568            object_property_set_bool(cpuobj, false, "vfp", &err);
 569            if (err) {
 570                error_propagate(errp, err);
 571                return;
 572            }
 573        }
 574        if (!s->cpu_dsp[i]) {
 575            object_property_set_bool(cpuobj, false, "dsp", &err);
 576            if (err) {
 577                error_propagate(errp, err);
 578                return;
 579            }
 580        }
 581
 582        if (i > 0) {
 583            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
 584                                                &s->container_alias[i - 1], -1);
 585        } else {
 586            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
 587                                                &s->container, -1);
 588        }
 589        object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
 590                                 "memory", &err);
 591        if (err) {
 592            error_propagate(errp, err);
 593            return;
 594        }
 595        object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
 596        if (err) {
 597            error_propagate(errp, err);
 598            return;
 599        }
 600        object_property_set_bool(cpuobj, true, "realized", &err);
 601        if (err) {
 602            error_propagate(errp, err);
 603            return;
 604        }
 605        /*
 606         * The cluster must be realized after the armv7m container, as
 607         * the container's CPU object is only created on realize, and the
 608         * CPU must exist and have been parented into the cluster before
 609         * the cluster is realized.
 610         */
 611        object_property_set_bool(OBJECT(&s->cluster[i]),
 612                                 true, "realized", &err);
 613        if (err) {
 614            error_propagate(errp, err);
 615            return;
 616        }
 617
 618        /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
 619        s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
 620        for (j = 0; j < s->exp_numirq; j++) {
 621            s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
 622        }
 623        if (i == 0) {
 624            gpioname = g_strdup("EXP_IRQ");
 625        } else {
 626            gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
 627        }
 628        qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
 629                                            s->exp_irqs[i],
 630                                            gpioname, s->exp_numirq);
 631        g_free(gpioname);
 632    }
 633
 634    /* Wire up the splitters that connect common IRQs to all CPUs */
 635    if (info->num_cpus > 1) {
 636        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
 637            if (irq_is_common[i]) {
 638                Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
 639                DeviceState *devs = DEVICE(splitter);
 640                int cpunum;
 641
 642                object_property_set_int(splitter, info->num_cpus,
 643                                        "num-lines", &err);
 644                if (err) {
 645                    error_propagate(errp, err);
 646                    return;
 647                }
 648                object_property_set_bool(splitter, true, "realized", &err);
 649                if (err) {
 650                    error_propagate(errp, err);
 651                    return;
 652                }
 653                for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
 654                    DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
 655
 656                    qdev_connect_gpio_out(devs, cpunum,
 657                                          qdev_get_gpio_in(cpudev, i));
 658                }
 659            }
 660        }
 661    }
 662
 663    /* Set up the big aliases first */
 664    make_alias(s, &s->alias1, &s->container, "alias 1",
 665               0x10000000, 0x10000000, 0x00000000);
 666    make_alias(s, &s->alias2, &s->container,
 667               "alias 2", 0x30000000, 0x10000000, 0x20000000);
 668    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
 669     * a few extra devices that only appear there (generally the
 670     * control interfaces for the protection controllers).
 671     * We implement this by mapping those devices over the top of this
 672     * alias MR at a higher priority. Some of the devices in this range
 673     * are per-CPU, so we must put this alias in the per-cpu containers.
 674     */
 675    for (i = 0; i < info->num_cpus; i++) {
 676        make_alias(s, &s->alias3[i], &s->cpu_container[i],
 677                   "alias 3", 0x50000000, 0x10000000, 0x40000000);
 678    }
 679
 680    /* Security controller */
 681    object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
 682    if (err) {
 683        error_propagate(errp, err);
 684        return;
 685    }
 686    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
 687    dev_secctl = DEVICE(&s->secctl);
 688    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
 689    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
 690
 691    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
 692    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
 693
 694    /* The sec_resp_cfg output from the security controller must be split into
 695     * multiple lines, one for each of the PPCs within the ARMSSE and one
 696     * that will be an output from the ARMSSE to the system.
 697     */
 698    object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
 699                            "num-lines", &err);
 700    if (err) {
 701        error_propagate(errp, err);
 702        return;
 703    }
 704    object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
 705                             "realized", &err);
 706    if (err) {
 707        error_propagate(errp, err);
 708        return;
 709    }
 710    dev_splitter = DEVICE(&s->sec_resp_splitter);
 711    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
 712                                qdev_get_gpio_in(dev_splitter, 0));
 713
 714    /* Each SRAM bank lives behind its own Memory Protection Controller */
 715    for (i = 0; i < info->sram_banks; i++) {
 716        char *ramname = g_strdup_printf("armsse.sram%d", i);
 717        SysBusDevice *sbd_mpc;
 718        uint32_t sram_bank_size = 1 << s->sram_addr_width;
 719
 720        memory_region_init_ram(&s->sram[i], NULL, ramname,
 721                               sram_bank_size, &err);
 722        g_free(ramname);
 723        if (err) {
 724            error_propagate(errp, err);
 725            return;
 726        }
 727        object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
 728                                 "downstream", &err);
 729        if (err) {
 730            error_propagate(errp, err);
 731            return;
 732        }
 733        object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
 734        if (err) {
 735            error_propagate(errp, err);
 736            return;
 737        }
 738        /* Map the upstream end of the MPC into the right place... */
 739        sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
 740        memory_region_add_subregion(&s->container,
 741                                    0x20000000 + i * sram_bank_size,
 742                                    sysbus_mmio_get_region(sbd_mpc, 1));
 743        /* ...and its register interface */
 744        memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
 745                                    sysbus_mmio_get_region(sbd_mpc, 0));
 746    }
 747
 748    /* We must OR together lines from the MPC splitters to go to the NVIC */
 749    object_property_set_int(OBJECT(&s->mpc_irq_orgate),
 750                            IOTS_NUM_EXP_MPC + info->sram_banks,
 751                            "num-lines", &err);
 752    if (err) {
 753        error_propagate(errp, err);
 754        return;
 755    }
 756    object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
 757                             "realized", &err);
 758    if (err) {
 759        error_propagate(errp, err);
 760        return;
 761    }
 762    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
 763                          armsse_get_common_irq_in(s, 9));
 764
 765    /* Devices behind APB PPC0:
 766     *   0x40000000: timer0
 767     *   0x40001000: timer1
 768     *   0x40002000: dual timer
 769     *   0x40003000: MHU0 (SSE-200 only)
 770     *   0x40004000: MHU1 (SSE-200 only)
 771     * We must configure and realize each downstream device and connect
 772     * it to the appropriate PPC port; then we can realize the PPC and
 773     * map its upstream ends to the right place in the container.
 774     */
 775    qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
 776    object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
 777    if (err) {
 778        error_propagate(errp, err);
 779        return;
 780    }
 781    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
 782                       armsse_get_common_irq_in(s, 3));
 783    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
 784    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
 785    if (err) {
 786        error_propagate(errp, err);
 787        return;
 788    }
 789
 790    qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
 791    object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
 792    if (err) {
 793        error_propagate(errp, err);
 794        return;
 795    }
 796    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
 797                       armsse_get_common_irq_in(s, 4));
 798    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
 799    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
 800    if (err) {
 801        error_propagate(errp, err);
 802        return;
 803    }
 804
 805
 806    qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
 807    object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
 808    if (err) {
 809        error_propagate(errp, err);
 810        return;
 811    }
 812    sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
 813                       armsse_get_common_irq_in(s, 5));
 814    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
 815    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
 816    if (err) {
 817        error_propagate(errp, err);
 818        return;
 819    }
 820
 821    if (info->has_mhus) {
 822        /*
 823         * An SSE-200 with only one CPU should have only one MHU created,
 824         * with the region where the second MHU usually is being RAZ/WI.
 825         * We don't implement that SSE-200 config; if we want to support
 826         * it then this code needs to be enhanced to handle creating the
 827         * RAZ/WI region instead of the second MHU.
 828         */
 829        assert(info->num_cpus == ARRAY_SIZE(s->mhu));
 830
 831        for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
 832            char *port;
 833            int cpunum;
 834            SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
 835
 836            object_property_set_bool(OBJECT(&s->mhu[i]), true,
 837                                     "realized", &err);
 838            if (err) {
 839                error_propagate(errp, err);
 840                return;
 841            }
 842            port = g_strdup_printf("port[%d]", i + 3);
 843            mr = sysbus_mmio_get_region(mhu_sbd, 0);
 844            object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
 845                                     port, &err);
 846            g_free(port);
 847            if (err) {
 848                error_propagate(errp, err);
 849                return;
 850            }
 851
 852            /*
 853             * Each MHU has an irq line for each CPU:
 854             *  MHU 0 irq line 0 -> CPU 0 IRQ 6
 855             *  MHU 0 irq line 1 -> CPU 1 IRQ 6
 856             *  MHU 1 irq line 0 -> CPU 0 IRQ 7
 857             *  MHU 1 irq line 1 -> CPU 1 IRQ 7
 858             */
 859            for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
 860                DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
 861
 862                sysbus_connect_irq(mhu_sbd, cpunum,
 863                                   qdev_get_gpio_in(cpudev, 6 + i));
 864            }
 865        }
 866    }
 867
 868    object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
 869    if (err) {
 870        error_propagate(errp, err);
 871        return;
 872    }
 873
 874    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
 875    dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
 876
 877    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
 878    memory_region_add_subregion(&s->container, 0x40000000, mr);
 879    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
 880    memory_region_add_subregion(&s->container, 0x40001000, mr);
 881    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
 882    memory_region_add_subregion(&s->container, 0x40002000, mr);
 883    if (info->has_mhus) {
 884        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
 885        memory_region_add_subregion(&s->container, 0x40003000, mr);
 886        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
 887        memory_region_add_subregion(&s->container, 0x40004000, mr);
 888    }
 889    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
 890        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
 891                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 892                                                           "cfg_nonsec", i));
 893        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
 894                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 895                                                           "cfg_ap", i));
 896    }
 897    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
 898                                qdev_get_gpio_in_named(dev_apb_ppc0,
 899                                                       "irq_enable", 0));
 900    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
 901                                qdev_get_gpio_in_named(dev_apb_ppc0,
 902                                                       "irq_clear", 0));
 903    qdev_connect_gpio_out(dev_splitter, 0,
 904                          qdev_get_gpio_in_named(dev_apb_ppc0,
 905                                                 "cfg_sec_resp", 0));
 906
 907    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
 908     * ones) are sent individually to the security controller, and also
 909     * ORed together to give a single combined PPC interrupt to the NVIC.
 910     */
 911    object_property_set_int(OBJECT(&s->ppc_irq_orgate),
 912                            NUM_PPCS, "num-lines", &err);
 913    if (err) {
 914        error_propagate(errp, err);
 915        return;
 916    }
 917    object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
 918                             "realized", &err);
 919    if (err) {
 920        error_propagate(errp, err);
 921        return;
 922    }
 923    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
 924                          armsse_get_common_irq_in(s, 10));
 925
 926    /*
 927     * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
 928     * private per-CPU region (all these devices are SSE-200 only):
 929     *  0x50010000: L1 icache control registers
 930     *  0x50011000: CPUSECCTRL (CPU local security control registers)
 931     *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
 932     */
 933    if (info->has_cachectrl) {
 934        for (i = 0; i < info->num_cpus; i++) {
 935            char *name = g_strdup_printf("cachectrl%d", i);
 936            MemoryRegion *mr;
 937
 938            qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
 939            g_free(name);
 940            qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
 941            object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
 942                                     "realized", &err);
 943            if (err) {
 944                error_propagate(errp, err);
 945                return;
 946            }
 947
 948            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
 949            memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
 950        }
 951    }
 952    if (info->has_cpusecctrl) {
 953        for (i = 0; i < info->num_cpus; i++) {
 954            char *name = g_strdup_printf("CPUSECCTRL%d", i);
 955            MemoryRegion *mr;
 956
 957            qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
 958            g_free(name);
 959            qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
 960            object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
 961                                     "realized", &err);
 962            if (err) {
 963                error_propagate(errp, err);
 964                return;
 965            }
 966
 967            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
 968            memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
 969        }
 970    }
 971    if (info->has_cpuid) {
 972        for (i = 0; i < info->num_cpus; i++) {
 973            MemoryRegion *mr;
 974
 975            qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
 976            object_property_set_bool(OBJECT(&s->cpuid[i]), true,
 977                                     "realized", &err);
 978            if (err) {
 979                error_propagate(errp, err);
 980                return;
 981            }
 982
 983            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
 984            memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
 985        }
 986    }
 987
 988    /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
 989    /* Devices behind APB PPC1:
 990     *   0x4002f000: S32K timer
 991     */
 992    qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
 993    object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
 994    if (err) {
 995        error_propagate(errp, err);
 996        return;
 997    }
 998    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
 999                       armsse_get_common_irq_in(s, 2));
1000    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
1001    object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
1002    if (err) {
1003        error_propagate(errp, err);
1004        return;
1005    }
1006
1007    object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
1008    if (err) {
1009        error_propagate(errp, err);
1010        return;
1011    }
1012    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1013    memory_region_add_subregion(&s->container, 0x4002f000, mr);
1014
1015    dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1016    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1017                                qdev_get_gpio_in_named(dev_apb_ppc1,
1018                                                       "cfg_nonsec", 0));
1019    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1020                                qdev_get_gpio_in_named(dev_apb_ppc1,
1021                                                       "cfg_ap", 0));
1022    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1023                                qdev_get_gpio_in_named(dev_apb_ppc1,
1024                                                       "irq_enable", 0));
1025    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1026                                qdev_get_gpio_in_named(dev_apb_ppc1,
1027                                                       "irq_clear", 0));
1028    qdev_connect_gpio_out(dev_splitter, 1,
1029                          qdev_get_gpio_in_named(dev_apb_ppc1,
1030                                                 "cfg_sec_resp", 0));
1031
1032    object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1033                            "SYS_VERSION", &err);
1034    if (err) {
1035        error_propagate(errp, err);
1036        return;
1037    }
1038    object_property_set_int(OBJECT(&s->sysinfo),
1039                            armsse_sys_config_value(s, info),
1040                            "SYS_CONFIG", &err);
1041    if (err) {
1042        error_propagate(errp, err);
1043        return;
1044    }
1045    object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1046    if (err) {
1047        error_propagate(errp, err);
1048        return;
1049    }
1050    /* System information registers */
1051    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1052    /* System control registers */
1053    object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1054                            "SYS_VERSION", &err);
1055    object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1056                            "CPUWAIT_RST", &err);
1057    object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1058                            "INITSVTOR0_RST", &err);
1059    object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1060                            "INITSVTOR1_RST", &err);
1061    object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1062    if (err) {
1063        error_propagate(errp, err);
1064        return;
1065    }
1066    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1067
1068    if (info->has_ppus) {
1069        /* CPUnCORE_PPU for each CPU */
1070        for (i = 0; i < info->num_cpus; i++) {
1071            char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1072
1073            map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1074            /*
1075             * We don't support CPU debug so don't create the
1076             * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1077             */
1078            g_free(name);
1079        }
1080        map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1081
1082        for (i = 0; i < info->sram_banks; i++) {
1083            char *name = g_strdup_printf("RAM%d_PPU", i);
1084
1085            map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1086            g_free(name);
1087        }
1088    }
1089
1090    /* This OR gate wires together outputs from the secure watchdogs to NMI */
1091    object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1092    if (err) {
1093        error_propagate(errp, err);
1094        return;
1095    }
1096    object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1097    if (err) {
1098        error_propagate(errp, err);
1099        return;
1100    }
1101    qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1102                          qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1103
1104    qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1105    object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1106    if (err) {
1107        error_propagate(errp, err);
1108        return;
1109    }
1110    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1111                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1112    sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1113
1114    /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1115
1116    qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1117    object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1118    if (err) {
1119        error_propagate(errp, err);
1120        return;
1121    }
1122    sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1123                       armsse_get_common_irq_in(s, 1));
1124    sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1125
1126    qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1127    object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1128    if (err) {
1129        error_propagate(errp, err);
1130        return;
1131    }
1132    sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1133                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1134    sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1135
1136    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1137        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1138
1139        object_property_set_int(splitter, 2, "num-lines", &err);
1140        if (err) {
1141            error_propagate(errp, err);
1142            return;
1143        }
1144        object_property_set_bool(splitter, true, "realized", &err);
1145        if (err) {
1146            error_propagate(errp, err);
1147            return;
1148        }
1149    }
1150
1151    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1152        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1153
1154        armsse_forward_ppc(s, ppcname, i);
1155        g_free(ppcname);
1156    }
1157
1158    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1159        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1160
1161        armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1162        g_free(ppcname);
1163    }
1164
1165    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1166        /* Wire up IRQ splitter for internal PPCs */
1167        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1168        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1169                                         i - NUM_EXTERNAL_PPCS);
1170        TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1171
1172        qdev_connect_gpio_out(devs, 0,
1173                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1174        qdev_connect_gpio_out(devs, 1,
1175                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1176        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1177                                    qdev_get_gpio_in(devs, 0));
1178        g_free(gpioname);
1179    }
1180
1181    /* Wire up the splitters for the MPC IRQs */
1182    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1183        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1184        DeviceState *dev_splitter = DEVICE(splitter);
1185
1186        object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1187        if (err) {
1188            error_propagate(errp, err);
1189            return;
1190        }
1191        object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1192        if (err) {
1193            error_propagate(errp, err);
1194            return;
1195        }
1196
1197        if (i < IOTS_NUM_EXP_MPC) {
1198            /* Splitter input is from GPIO input line */
1199            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1200            qdev_connect_gpio_out(dev_splitter, 0,
1201                                  qdev_get_gpio_in_named(dev_secctl,
1202                                                         "mpcexp_status", i));
1203        } else {
1204            /* Splitter input is from our own MPC */
1205            qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1206                                        "irq", 0,
1207                                        qdev_get_gpio_in(dev_splitter, 0));
1208            qdev_connect_gpio_out(dev_splitter, 0,
1209                                  qdev_get_gpio_in_named(dev_secctl,
1210                                                         "mpc_status", 0));
1211        }
1212
1213        qdev_connect_gpio_out(dev_splitter, 1,
1214                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1215    }
1216    /* Create GPIO inputs which will pass the line state for our
1217     * mpcexp_irq inputs to the correct splitter devices.
1218     */
1219    qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1220                            IOTS_NUM_EXP_MPC);
1221
1222    armsse_forward_sec_resp_cfg(s);
1223
1224    /* Forward the MSC related signals */
1225    qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1226    qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1227    qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1228    qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1229                                armsse_get_common_irq_in(s, 11));
1230
1231    /*
1232     * Expose our container region to the board model; this corresponds
1233     * to the AHB Slave Expansion ports which allow bus master devices
1234     * (eg DMA controllers) in the board model to make transactions into
1235     * devices in the ARMSSE.
1236     */
1237    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1238
1239    system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1240}
1241
1242static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1243                              int *iregion, bool *exempt, bool *ns, bool *nsc)
1244{
1245    /*
1246     * For ARMSSE systems the IDAU responses are simple logical functions
1247     * of the address bits. The NSC attribute is guest-adjustable via the
1248     * NSCCFG register in the security controller.
1249     */
1250    ARMSSE *s = ARMSSE(ii);
1251    int region = extract32(address, 28, 4);
1252
1253    *ns = !(region & 1);
1254    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1255    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1256    *exempt = (address & 0xeff00000) == 0xe0000000;
1257    *iregion = region;
1258}
1259
1260static const VMStateDescription armsse_vmstate = {
1261    .name = "iotkit",
1262    .version_id = 1,
1263    .minimum_version_id = 1,
1264    .fields = (VMStateField[]) {
1265        VMSTATE_UINT32(nsccfg, ARMSSE),
1266        VMSTATE_END_OF_LIST()
1267    }
1268};
1269
1270static void armsse_reset(DeviceState *dev)
1271{
1272    ARMSSE *s = ARMSSE(dev);
1273
1274    s->nsccfg = 0;
1275}
1276
1277static void armsse_class_init(ObjectClass *klass, void *data)
1278{
1279    DeviceClass *dc = DEVICE_CLASS(klass);
1280    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1281    ARMSSEClass *asc = ARMSSE_CLASS(klass);
1282    const ARMSSEInfo *info = data;
1283
1284    dc->realize = armsse_realize;
1285    dc->vmsd = &armsse_vmstate;
1286    dc->props = info->props;
1287    dc->reset = armsse_reset;
1288    iic->check = armsse_idau_check;
1289    asc->info = info;
1290}
1291
1292static const TypeInfo armsse_info = {
1293    .name = TYPE_ARMSSE,
1294    .parent = TYPE_SYS_BUS_DEVICE,
1295    .instance_size = sizeof(ARMSSE),
1296    .instance_init = armsse_init,
1297    .abstract = true,
1298    .interfaces = (InterfaceInfo[]) {
1299        { TYPE_IDAU_INTERFACE },
1300        { }
1301    }
1302};
1303
1304static void armsse_register_types(void)
1305{
1306    int i;
1307
1308    type_register_static(&armsse_info);
1309
1310    for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1311        TypeInfo ti = {
1312            .name = armsse_variants[i].name,
1313            .parent = TYPE_ARMSSE,
1314            .class_init = armsse_class_init,
1315            .class_data = (void *)&armsse_variants[i],
1316        };
1317        type_register(&ti);
1318    }
1319}
1320
1321type_init(armsse_register_types);
1322