qemu/hw/arm/sbsa-ref.c
<<
>>
Prefs
   1/*
   2 * ARM SBSA Reference Platform emulation
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qapi/error.h"
  23#include "qemu/error-report.h"
  24#include "qemu/units.h"
  25#include "sysemu/device_tree.h"
  26#include "sysemu/numa.h"
  27#include "sysemu/runstate.h"
  28#include "sysemu/sysemu.h"
  29#include "exec/address-spaces.h"
  30#include "exec/hwaddr.h"
  31#include "kvm_arm.h"
  32#include "hw/arm/boot.h"
  33#include "hw/block/flash.h"
  34#include "hw/boards.h"
  35#include "hw/ide/internal.h"
  36#include "hw/ide/ahci_internal.h"
  37#include "hw/intc/arm_gicv3_common.h"
  38#include "hw/loader.h"
  39#include "hw/pci-host/gpex.h"
  40#include "hw/qdev-properties.h"
  41#include "hw/usb.h"
  42#include "net/net.h"
  43
  44#define RAMLIMIT_GB 8192
  45#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
  46
  47#define NUM_IRQS        256
  48#define NUM_SMMU_IRQS   4
  49#define NUM_SATA_PORTS  6
  50
  51#define VIRTUAL_PMU_IRQ        7
  52#define ARCH_GIC_MAINT_IRQ     9
  53#define ARCH_TIMER_VIRT_IRQ    11
  54#define ARCH_TIMER_S_EL1_IRQ   13
  55#define ARCH_TIMER_NS_EL1_IRQ  14
  56#define ARCH_TIMER_NS_EL2_IRQ  10
  57
  58enum {
  59    SBSA_FLASH,
  60    SBSA_MEM,
  61    SBSA_CPUPERIPHS,
  62    SBSA_GIC_DIST,
  63    SBSA_GIC_REDIST,
  64    SBSA_SMMU,
  65    SBSA_UART,
  66    SBSA_RTC,
  67    SBSA_PCIE,
  68    SBSA_PCIE_MMIO,
  69    SBSA_PCIE_MMIO_HIGH,
  70    SBSA_PCIE_PIO,
  71    SBSA_PCIE_ECAM,
  72    SBSA_GPIO,
  73    SBSA_SECURE_UART,
  74    SBSA_SECURE_UART_MM,
  75    SBSA_SECURE_MEM,
  76    SBSA_AHCI,
  77    SBSA_EHCI,
  78};
  79
  80typedef struct MemMapEntry {
  81    hwaddr base;
  82    hwaddr size;
  83} MemMapEntry;
  84
  85typedef struct {
  86    MachineState parent;
  87    struct arm_boot_info bootinfo;
  88    int smp_cpus;
  89    void *fdt;
  90    int fdt_size;
  91    int psci_conduit;
  92    PFlashCFI01 *flash[2];
  93} SBSAMachineState;
  94
  95#define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
  96#define SBSA_MACHINE(obj) \
  97    OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
  98
  99static const MemMapEntry sbsa_ref_memmap[] = {
 100    /* 512M boot ROM */
 101    [SBSA_FLASH] =              {          0, 0x20000000 },
 102    /* 512M secure memory */
 103    [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
 104    /* Space reserved for CPU peripheral devices */
 105    [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
 106    [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
 107    [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
 108    [SBSA_UART] =               { 0x60000000, 0x00001000 },
 109    [SBSA_RTC] =                { 0x60010000, 0x00001000 },
 110    [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
 111    [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
 112    [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
 113    [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
 114    /* Space here reserved for more SMMUs */
 115    [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
 116    [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
 117    /* Space here reserved for other devices */
 118    [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
 119    /* 32-bit address PCIE MMIO space */
 120    [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
 121    /* 256M PCIE ECAM space */
 122    [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
 123    /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
 124    [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
 125    [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
 126};
 127
 128static const int sbsa_ref_irqmap[] = {
 129    [SBSA_UART] = 1,
 130    [SBSA_RTC] = 2,
 131    [SBSA_PCIE] = 3, /* ... to 6 */
 132    [SBSA_GPIO] = 7,
 133    [SBSA_SECURE_UART] = 8,
 134    [SBSA_SECURE_UART_MM] = 9,
 135    [SBSA_AHCI] = 10,
 136    [SBSA_EHCI] = 11,
 137};
 138
 139/*
 140 * Firmware on this machine only uses ACPI table to load OS, these limited
 141 * device tree nodes are just to let firmware know the info which varies from
 142 * command line parameters, so it is not necessary to be fully compatible
 143 * with the kernel CPU and NUMA binding rules.
 144 */
 145static void create_fdt(SBSAMachineState *sms)
 146{
 147    void *fdt = create_device_tree(&sms->fdt_size);
 148    const MachineState *ms = MACHINE(sms);
 149    int nb_numa_nodes = ms->numa_state->num_nodes;
 150    int cpu;
 151
 152    if (!fdt) {
 153        error_report("create_device_tree() failed");
 154        exit(1);
 155    }
 156
 157    sms->fdt = fdt;
 158
 159    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
 160    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 161    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 162
 163    if (ms->numa_state->have_numa_distance) {
 164        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 165        uint32_t *matrix = g_malloc0(size);
 166        int idx, i, j;
 167
 168        for (i = 0; i < nb_numa_nodes; i++) {
 169            for (j = 0; j < nb_numa_nodes; j++) {
 170                idx = (i * nb_numa_nodes + j) * 3;
 171                matrix[idx + 0] = cpu_to_be32(i);
 172                matrix[idx + 1] = cpu_to_be32(j);
 173                matrix[idx + 2] =
 174                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 175            }
 176        }
 177
 178        qemu_fdt_add_subnode(fdt, "/distance-map");
 179        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 180                         matrix, size);
 181        g_free(matrix);
 182    }
 183
 184    qemu_fdt_add_subnode(sms->fdt, "/cpus");
 185
 186    for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
 187        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 188        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 189        CPUState *cs = CPU(armcpu);
 190
 191        qemu_fdt_add_subnode(sms->fdt, nodename);
 192
 193        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 194            qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
 195                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 196        }
 197
 198        g_free(nodename);
 199    }
 200}
 201
 202#define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
 203
 204static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
 205                                        const char *name,
 206                                        const char *alias_prop_name)
 207{
 208    /*
 209     * Create a single flash device.  We use the same parameters as
 210     * the flash devices on the Versatile Express board.
 211     */
 212    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 213
 214    qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
 215    qdev_prop_set_uint8(dev, "width", 4);
 216    qdev_prop_set_uint8(dev, "device-width", 2);
 217    qdev_prop_set_bit(dev, "big-endian", false);
 218    qdev_prop_set_uint16(dev, "id0", 0x89);
 219    qdev_prop_set_uint16(dev, "id1", 0x18);
 220    qdev_prop_set_uint16(dev, "id2", 0x00);
 221    qdev_prop_set_uint16(dev, "id3", 0x00);
 222    qdev_prop_set_string(dev, "name", name);
 223    object_property_add_child(OBJECT(sms), name, OBJECT(dev),
 224                              &error_abort);
 225    object_property_add_alias(OBJECT(sms), alias_prop_name,
 226                              OBJECT(dev), "drive", &error_abort);
 227    return PFLASH_CFI01(dev);
 228}
 229
 230static void sbsa_flash_create(SBSAMachineState *sms)
 231{
 232    sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
 233    sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
 234}
 235
 236static void sbsa_flash_map1(PFlashCFI01 *flash,
 237                            hwaddr base, hwaddr size,
 238                            MemoryRegion *sysmem)
 239{
 240    DeviceState *dev = DEVICE(flash);
 241
 242    assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
 243    assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
 244    qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
 245    qdev_init_nofail(dev);
 246
 247    memory_region_add_subregion(sysmem, base,
 248                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
 249                                                       0));
 250}
 251
 252static void sbsa_flash_map(SBSAMachineState *sms,
 253                           MemoryRegion *sysmem,
 254                           MemoryRegion *secure_sysmem)
 255{
 256    /*
 257     * Map two flash devices to fill the SBSA_FLASH space in the memmap.
 258     * sysmem is the system memory space. secure_sysmem is the secure view
 259     * of the system, and the first flash device should be made visible only
 260     * there. The second flash device is visible to both secure and nonsecure.
 261     */
 262    hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
 263    hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
 264
 265    sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
 266                    secure_sysmem);
 267    sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
 268                    sysmem);
 269}
 270
 271static bool sbsa_firmware_init(SBSAMachineState *sms,
 272                               MemoryRegion *sysmem,
 273                               MemoryRegion *secure_sysmem)
 274{
 275    int i;
 276    BlockBackend *pflash_blk0;
 277
 278    /* Map legacy -drive if=pflash to machine properties */
 279    for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
 280        pflash_cfi01_legacy_drive(sms->flash[i],
 281                                  drive_get(IF_PFLASH, 0, i));
 282    }
 283
 284    sbsa_flash_map(sms, sysmem, secure_sysmem);
 285
 286    pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
 287
 288    if (bios_name) {
 289        char *fname;
 290        MemoryRegion *mr;
 291        int image_size;
 292
 293        if (pflash_blk0) {
 294            error_report("The contents of the first flash device may be "
 295                         "specified with -bios or with -drive if=pflash... "
 296                         "but you cannot use both options at once");
 297            exit(1);
 298        }
 299
 300        /* Fall back to -bios */
 301
 302        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 303        if (!fname) {
 304            error_report("Could not find ROM image '%s'", bios_name);
 305            exit(1);
 306        }
 307        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
 308        image_size = load_image_mr(fname, mr);
 309        g_free(fname);
 310        if (image_size < 0) {
 311            error_report("Could not load ROM image '%s'", bios_name);
 312            exit(1);
 313        }
 314    }
 315
 316    return pflash_blk0 || bios_name;
 317}
 318
 319static void create_secure_ram(SBSAMachineState *sms,
 320                              MemoryRegion *secure_sysmem)
 321{
 322    MemoryRegion *secram = g_new(MemoryRegion, 1);
 323    hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
 324    hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
 325
 326    memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
 327                           &error_fatal);
 328    memory_region_add_subregion(secure_sysmem, base, secram);
 329}
 330
 331static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
 332{
 333    unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
 334    DeviceState *gicdev;
 335    SysBusDevice *gicbusdev;
 336    const char *gictype;
 337    uint32_t redist0_capacity, redist0_count;
 338    int i;
 339
 340    gictype = gicv3_class_name();
 341
 342    gicdev = qdev_create(NULL, gictype);
 343    qdev_prop_set_uint32(gicdev, "revision", 3);
 344    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 345    /*
 346     * Note that the num-irq property counts both internal and external
 347     * interrupts; there are always 32 of the former (mandated by GIC spec).
 348     */
 349    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 350    qdev_prop_set_bit(gicdev, "has-security-extensions", true);
 351
 352    redist0_capacity =
 353                sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
 354    redist0_count = MIN(smp_cpus, redist0_capacity);
 355
 356    qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
 357    qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 358
 359    qdev_init_nofail(gicdev);
 360    gicbusdev = SYS_BUS_DEVICE(gicdev);
 361    sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
 362    sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
 363
 364    /*
 365     * Wire the outputs from each CPU's generic timer and the GICv3
 366     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 367     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 368     */
 369    for (i = 0; i < smp_cpus; i++) {
 370        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 371        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 372        int irq;
 373        /*
 374         * Mapping from the output timer irq lines from the CPU to the
 375         * GIC PPI inputs used for this board.
 376         */
 377        const int timer_irq[] = {
 378            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 379            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 380            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 381            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 382        };
 383
 384        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 385            qdev_connect_gpio_out(cpudev, irq,
 386                                  qdev_get_gpio_in(gicdev,
 387                                                   ppibase + timer_irq[irq]));
 388        }
 389
 390        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 391                                    qdev_get_gpio_in(gicdev, ppibase
 392                                                     + ARCH_GIC_MAINT_IRQ));
 393        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 394                                    qdev_get_gpio_in(gicdev, ppibase
 395                                                     + VIRTUAL_PMU_IRQ));
 396
 397        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 398        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 399                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 400        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 401                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 402        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 403                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 404    }
 405
 406    for (i = 0; i < NUM_IRQS; i++) {
 407        pic[i] = qdev_get_gpio_in(gicdev, i);
 408    }
 409}
 410
 411static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
 412                        MemoryRegion *mem, Chardev *chr)
 413{
 414    hwaddr base = sbsa_ref_memmap[uart].base;
 415    int irq = sbsa_ref_irqmap[uart];
 416    DeviceState *dev = qdev_create(NULL, "pl011");
 417    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 418
 419    qdev_prop_set_chr(dev, "chardev", chr);
 420    qdev_init_nofail(dev);
 421    memory_region_add_subregion(mem, base,
 422                                sysbus_mmio_get_region(s, 0));
 423    sysbus_connect_irq(s, 0, pic[irq]);
 424}
 425
 426static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
 427{
 428    hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
 429    int irq = sbsa_ref_irqmap[SBSA_RTC];
 430
 431    sysbus_create_simple("pl031", base, pic[irq]);
 432}
 433
 434static DeviceState *gpio_key_dev;
 435static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
 436{
 437    /* use gpio Pin 3 for power button event */
 438    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 439}
 440
 441static Notifier sbsa_ref_powerdown_notifier = {
 442    .notify = sbsa_ref_powerdown_req
 443};
 444
 445static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
 446{
 447    DeviceState *pl061_dev;
 448    hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
 449    int irq = sbsa_ref_irqmap[SBSA_GPIO];
 450
 451    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 452
 453    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 454                                        qdev_get_gpio_in(pl061_dev, 3));
 455
 456    /* connect powerdown request */
 457    qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
 458}
 459
 460static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
 461{
 462    hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
 463    int irq = sbsa_ref_irqmap[SBSA_AHCI];
 464    DeviceState *dev;
 465    DriveInfo *hd[NUM_SATA_PORTS];
 466    SysbusAHCIState *sysahci;
 467    AHCIState *ahci;
 468    int i;
 469
 470    dev = qdev_create(NULL, "sysbus-ahci");
 471    qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
 472    qdev_init_nofail(dev);
 473    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
 474    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
 475
 476    sysahci = SYSBUS_AHCI(dev);
 477    ahci = &sysahci->ahci;
 478    ide_drive_get(hd, ARRAY_SIZE(hd));
 479    for (i = 0; i < ahci->ports; i++) {
 480        if (hd[i] == NULL) {
 481            continue;
 482        }
 483        ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
 484    }
 485}
 486
 487static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
 488{
 489    hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
 490    int irq = sbsa_ref_irqmap[SBSA_EHCI];
 491
 492    sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
 493}
 494
 495static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
 496                        PCIBus *bus)
 497{
 498    hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
 499    int irq =  sbsa_ref_irqmap[SBSA_SMMU];
 500    DeviceState *dev;
 501    int i;
 502
 503    dev = qdev_create(NULL, "arm-smmuv3");
 504
 505    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
 506                             &error_abort);
 507    qdev_init_nofail(dev);
 508    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
 509    for (i = 0; i < NUM_SMMU_IRQS; i++) {
 510        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 511    }
 512}
 513
 514static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
 515{
 516    hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
 517    hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
 518    hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
 519    hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
 520    hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
 521    hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
 522    hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
 523    int irq = sbsa_ref_irqmap[SBSA_PCIE];
 524    MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
 525    MemoryRegion *ecam_alias, *ecam_reg;
 526    DeviceState *dev;
 527    PCIHostState *pci;
 528    int i;
 529
 530    dev = qdev_create(NULL, TYPE_GPEX_HOST);
 531    qdev_init_nofail(dev);
 532
 533    /* Map ECAM space */
 534    ecam_alias = g_new0(MemoryRegion, 1);
 535    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 536    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 537                             ecam_reg, 0, size_ecam);
 538    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 539
 540    /* Map the MMIO space */
 541    mmio_alias = g_new0(MemoryRegion, 1);
 542    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 543    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 544                             mmio_reg, base_mmio, size_mmio);
 545    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 546
 547    /* Map the MMIO_HIGH space */
 548    mmio_alias_high = g_new0(MemoryRegion, 1);
 549    memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
 550                             mmio_reg, base_mmio_high, size_mmio_high);
 551    memory_region_add_subregion(get_system_memory(), base_mmio_high,
 552                                mmio_alias_high);
 553
 554    /* Map IO port space */
 555    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 556
 557    for (i = 0; i < GPEX_NUM_IRQS; i++) {
 558        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 559        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
 560    }
 561
 562    pci = PCI_HOST_BRIDGE(dev);
 563    if (pci->bus) {
 564        for (i = 0; i < nb_nics; i++) {
 565            NICInfo *nd = &nd_table[i];
 566
 567            if (!nd->model) {
 568                nd->model = g_strdup("e1000e");
 569            }
 570
 571            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
 572        }
 573    }
 574
 575    pci_create_simple(pci->bus, -1, "VGA");
 576
 577    create_smmu(sms, pic, pci->bus);
 578}
 579
 580static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
 581{
 582    const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
 583                                                 bootinfo);
 584
 585    *fdt_size = board->fdt_size;
 586    return board->fdt;
 587}
 588
 589static void sbsa_ref_init(MachineState *machine)
 590{
 591    unsigned int smp_cpus = machine->smp.cpus;
 592    unsigned int max_cpus = machine->smp.max_cpus;
 593    SBSAMachineState *sms = SBSA_MACHINE(machine);
 594    MachineClass *mc = MACHINE_GET_CLASS(machine);
 595    MemoryRegion *sysmem = get_system_memory();
 596    MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
 597    MemoryRegion *ram = g_new(MemoryRegion, 1);
 598    bool firmware_loaded;
 599    const CPUArchIdList *possible_cpus;
 600    int n, sbsa_max_cpus;
 601    qemu_irq pic[NUM_IRQS];
 602
 603    if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
 604        error_report("sbsa-ref: CPU type other than the built-in "
 605                     "cortex-a57 not supported");
 606        exit(1);
 607    }
 608
 609    if (kvm_enabled()) {
 610        error_report("sbsa-ref: KVM is not supported for this machine");
 611        exit(1);
 612    }
 613
 614    /*
 615     * The Secure view of the world is the same as the NonSecure,
 616     * but with a few extra devices. Create it as a container region
 617     * containing the system memory at low priority; any secure-only
 618     * devices go in at higher priority and take precedence.
 619     */
 620    memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
 621                       UINT64_MAX);
 622    memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
 623
 624    firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
 625
 626    if (machine->kernel_filename && firmware_loaded) {
 627        error_report("sbsa-ref: No fw_cfg device on this machine, "
 628                     "so -kernel option is not supported when firmware loaded, "
 629                     "please load OS from hard disk instead");
 630        exit(1);
 631    }
 632
 633    /*
 634     * This machine has EL3 enabled, external firmware should supply PSCI
 635     * implementation, so the QEMU's internal PSCI is disabled.
 636     */
 637    sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
 638
 639    sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
 640
 641    if (max_cpus > sbsa_max_cpus) {
 642        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
 643                     "supported by machine 'sbsa-ref' (%d)",
 644                     max_cpus, sbsa_max_cpus);
 645        exit(1);
 646    }
 647
 648    sms->smp_cpus = smp_cpus;
 649
 650    if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
 651        error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
 652        exit(1);
 653    }
 654
 655    possible_cpus = mc->possible_cpu_arch_ids(machine);
 656    for (n = 0; n < possible_cpus->len; n++) {
 657        Object *cpuobj;
 658        CPUState *cs;
 659
 660        if (n >= smp_cpus) {
 661            break;
 662        }
 663
 664        cpuobj = object_new(possible_cpus->cpus[n].type);
 665        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
 666                                "mp-affinity", NULL);
 667
 668        cs = CPU(cpuobj);
 669        cs->cpu_index = n;
 670
 671        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
 672                          &error_fatal);
 673
 674        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
 675            object_property_set_int(cpuobj,
 676                                    sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
 677                                    "reset-cbar", &error_abort);
 678        }
 679
 680        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
 681                                 &error_abort);
 682
 683        object_property_set_link(cpuobj, OBJECT(secure_sysmem),
 684                                 "secure-memory", &error_abort);
 685
 686        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
 687        object_unref(cpuobj);
 688    }
 689
 690    memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
 691                                         machine->ram_size);
 692    memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
 693
 694    create_fdt(sms);
 695
 696    create_secure_ram(sms, secure_sysmem);
 697
 698    create_gic(sms, pic);
 699
 700    create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
 701    create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
 702    /* Second secure UART for RAS and MM from EL0 */
 703    create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
 704
 705    create_rtc(sms, pic);
 706
 707    create_gpio(sms, pic);
 708
 709    create_ahci(sms, pic);
 710
 711    create_ehci(sms, pic);
 712
 713    create_pcie(sms, pic);
 714
 715    sms->bootinfo.ram_size = machine->ram_size;
 716    sms->bootinfo.nb_cpus = smp_cpus;
 717    sms->bootinfo.board_id = -1;
 718    sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
 719    sms->bootinfo.get_dtb = sbsa_ref_dtb;
 720    sms->bootinfo.firmware_loaded = firmware_loaded;
 721    arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
 722}
 723
 724static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
 725{
 726    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
 727    return arm_cpu_mp_affinity(idx, clustersz);
 728}
 729
 730static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
 731{
 732    unsigned int max_cpus = ms->smp.max_cpus;
 733    SBSAMachineState *sms = SBSA_MACHINE(ms);
 734    int n;
 735
 736    if (ms->possible_cpus) {
 737        assert(ms->possible_cpus->len == max_cpus);
 738        return ms->possible_cpus;
 739    }
 740
 741    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 742                                  sizeof(CPUArchId) * max_cpus);
 743    ms->possible_cpus->len = max_cpus;
 744    for (n = 0; n < ms->possible_cpus->len; n++) {
 745        ms->possible_cpus->cpus[n].type = ms->cpu_type;
 746        ms->possible_cpus->cpus[n].arch_id =
 747            sbsa_ref_cpu_mp_affinity(sms, n);
 748        ms->possible_cpus->cpus[n].props.has_thread_id = true;
 749        ms->possible_cpus->cpus[n].props.thread_id = n;
 750    }
 751    return ms->possible_cpus;
 752}
 753
 754static CpuInstanceProperties
 755sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 756{
 757    MachineClass *mc = MACHINE_GET_CLASS(ms);
 758    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 759
 760    assert(cpu_index < possible_cpus->len);
 761    return possible_cpus->cpus[cpu_index].props;
 762}
 763
 764static int64_t
 765sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
 766{
 767    return idx % ms->numa_state->num_nodes;
 768}
 769
 770static void sbsa_ref_instance_init(Object *obj)
 771{
 772    SBSAMachineState *sms = SBSA_MACHINE(obj);
 773
 774    sbsa_flash_create(sms);
 775}
 776
 777static void sbsa_ref_class_init(ObjectClass *oc, void *data)
 778{
 779    MachineClass *mc = MACHINE_CLASS(oc);
 780
 781    mc->init = sbsa_ref_init;
 782    mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
 783    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
 784    mc->max_cpus = 512;
 785    mc->pci_allow_0_address = true;
 786    mc->minimum_page_bits = 12;
 787    mc->block_default_type = IF_IDE;
 788    mc->no_cdrom = 1;
 789    mc->default_ram_size = 1 * GiB;
 790    mc->default_cpus = 4;
 791    mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
 792    mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
 793    mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
 794    mc->numa_mem_supported = true;
 795}
 796
 797static const TypeInfo sbsa_ref_info = {
 798    .name          = TYPE_SBSA_MACHINE,
 799    .parent        = TYPE_MACHINE,
 800    .instance_init = sbsa_ref_instance_init,
 801    .class_init    = sbsa_ref_class_init,
 802    .instance_size = sizeof(SBSAMachineState),
 803};
 804
 805static void sbsa_ref_machine_init(void)
 806{
 807    type_register_static(&sbsa_ref_info);
 808}
 809
 810type_init(sbsa_ref_machine_init);
 811