qemu/hw/arm/stellaris.c
<<
>>
Prefs
   1/*
   2 * Luminary Micro Stellaris peripherals
   3 *
   4 * Copyright (c) 2006 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/sysbus.h"
  13#include "hw/ssi/ssi.h"
  14#include "hw/arm/boot.h"
  15#include "qemu/timer.h"
  16#include "hw/i2c/i2c.h"
  17#include "net/net.h"
  18#include "hw/boards.h"
  19#include "qemu/log.h"
  20#include "exec/address-spaces.h"
  21#include "sysemu/runstate.h"
  22#include "sysemu/sysemu.h"
  23#include "hw/arm/armv7m.h"
  24#include "hw/char/pl011.h"
  25#include "hw/input/gamepad.h"
  26#include "hw/irq.h"
  27#include "hw/watchdog/cmsdk-apb-watchdog.h"
  28#include "migration/vmstate.h"
  29#include "hw/misc/unimp.h"
  30#include "cpu.h"
  31
  32#define GPIO_A 0
  33#define GPIO_B 1
  34#define GPIO_C 2
  35#define GPIO_D 3
  36#define GPIO_E 4
  37#define GPIO_F 5
  38#define GPIO_G 6
  39
  40#define BP_OLED_I2C  0x01
  41#define BP_OLED_SSI  0x02
  42#define BP_GAMEPAD   0x04
  43
  44#define NUM_IRQ_LINES 64
  45
  46typedef const struct {
  47    const char *name;
  48    uint32_t did0;
  49    uint32_t did1;
  50    uint32_t dc0;
  51    uint32_t dc1;
  52    uint32_t dc2;
  53    uint32_t dc3;
  54    uint32_t dc4;
  55    uint32_t peripherals;
  56} stellaris_board_info;
  57
  58/* General purpose timer module.  */
  59
  60#define TYPE_STELLARIS_GPTM "stellaris-gptm"
  61#define STELLARIS_GPTM(obj) \
  62    OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
  63
  64typedef struct gptm_state {
  65    SysBusDevice parent_obj;
  66
  67    MemoryRegion iomem;
  68    uint32_t config;
  69    uint32_t mode[2];
  70    uint32_t control;
  71    uint32_t state;
  72    uint32_t mask;
  73    uint32_t load[2];
  74    uint32_t match[2];
  75    uint32_t prescale[2];
  76    uint32_t match_prescale[2];
  77    uint32_t rtc;
  78    int64_t tick[2];
  79    struct gptm_state *opaque[2];
  80    QEMUTimer *timer[2];
  81    /* The timers have an alternate output used to trigger the ADC.  */
  82    qemu_irq trigger;
  83    qemu_irq irq;
  84} gptm_state;
  85
  86static void gptm_update_irq(gptm_state *s)
  87{
  88    int level;
  89    level = (s->state & s->mask) != 0;
  90    qemu_set_irq(s->irq, level);
  91}
  92
  93static void gptm_stop(gptm_state *s, int n)
  94{
  95    timer_del(s->timer[n]);
  96}
  97
  98static void gptm_reload(gptm_state *s, int n, int reset)
  99{
 100    int64_t tick;
 101    if (reset)
 102        tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 103    else
 104        tick = s->tick[n];
 105
 106    if (s->config == 0) {
 107        /* 32-bit CountDown.  */
 108        uint32_t count;
 109        count = s->load[0] | (s->load[1] << 16);
 110        tick += (int64_t)count * system_clock_scale;
 111    } else if (s->config == 1) {
 112        /* 32-bit RTC.  1Hz tick.  */
 113        tick += NANOSECONDS_PER_SECOND;
 114    } else if (s->mode[n] == 0xa) {
 115        /* PWM mode.  Not implemented.  */
 116    } else {
 117        qemu_log_mask(LOG_UNIMP,
 118                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 119                      s->mode[n]);
 120        return;
 121    }
 122    s->tick[n] = tick;
 123    timer_mod(s->timer[n], tick);
 124}
 125
 126static void gptm_tick(void *opaque)
 127{
 128    gptm_state **p = (gptm_state **)opaque;
 129    gptm_state *s;
 130    int n;
 131
 132    s = *p;
 133    n = p - s->opaque;
 134    if (s->config == 0) {
 135        s->state |= 1;
 136        if ((s->control & 0x20)) {
 137            /* Output trigger.  */
 138            qemu_irq_pulse(s->trigger);
 139        }
 140        if (s->mode[0] & 1) {
 141            /* One-shot.  */
 142            s->control &= ~1;
 143        } else {
 144            /* Periodic.  */
 145            gptm_reload(s, 0, 0);
 146        }
 147    } else if (s->config == 1) {
 148        /* RTC.  */
 149        uint32_t match;
 150        s->rtc++;
 151        match = s->match[0] | (s->match[1] << 16);
 152        if (s->rtc > match)
 153            s->rtc = 0;
 154        if (s->rtc == 0) {
 155            s->state |= 8;
 156        }
 157        gptm_reload(s, 0, 0);
 158    } else if (s->mode[n] == 0xa) {
 159        /* PWM mode.  Not implemented.  */
 160    } else {
 161        qemu_log_mask(LOG_UNIMP,
 162                      "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
 163                      s->mode[n]);
 164    }
 165    gptm_update_irq(s);
 166}
 167
 168static uint64_t gptm_read(void *opaque, hwaddr offset,
 169                          unsigned size)
 170{
 171    gptm_state *s = (gptm_state *)opaque;
 172
 173    switch (offset) {
 174    case 0x00: /* CFG */
 175        return s->config;
 176    case 0x04: /* TAMR */
 177        return s->mode[0];
 178    case 0x08: /* TBMR */
 179        return s->mode[1];
 180    case 0x0c: /* CTL */
 181        return s->control;
 182    case 0x18: /* IMR */
 183        return s->mask;
 184    case 0x1c: /* RIS */
 185        return s->state;
 186    case 0x20: /* MIS */
 187        return s->state & s->mask;
 188    case 0x24: /* CR */
 189        return 0;
 190    case 0x28: /* TAILR */
 191        return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
 192    case 0x2c: /* TBILR */
 193        return s->load[1];
 194    case 0x30: /* TAMARCHR */
 195        return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
 196    case 0x34: /* TBMATCHR */
 197        return s->match[1];
 198    case 0x38: /* TAPR */
 199        return s->prescale[0];
 200    case 0x3c: /* TBPR */
 201        return s->prescale[1];
 202    case 0x40: /* TAPMR */
 203        return s->match_prescale[0];
 204    case 0x44: /* TBPMR */
 205        return s->match_prescale[1];
 206    case 0x48: /* TAR */
 207        if (s->config == 1) {
 208            return s->rtc;
 209        }
 210        qemu_log_mask(LOG_UNIMP,
 211                      "GPTM: read of TAR but timer read not supported\n");
 212        return 0;
 213    case 0x4c: /* TBR */
 214        qemu_log_mask(LOG_UNIMP,
 215                      "GPTM: read of TBR but timer read not supported\n");
 216        return 0;
 217    default:
 218        qemu_log_mask(LOG_GUEST_ERROR,
 219                      "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
 220                      offset);
 221        return 0;
 222    }
 223}
 224
 225static void gptm_write(void *opaque, hwaddr offset,
 226                       uint64_t value, unsigned size)
 227{
 228    gptm_state *s = (gptm_state *)opaque;
 229    uint32_t oldval;
 230
 231    /* The timers should be disabled before changing the configuration.
 232       We take advantage of this and defer everything until the timer
 233       is enabled.  */
 234    switch (offset) {
 235    case 0x00: /* CFG */
 236        s->config = value;
 237        break;
 238    case 0x04: /* TAMR */
 239        s->mode[0] = value;
 240        break;
 241    case 0x08: /* TBMR */
 242        s->mode[1] = value;
 243        break;
 244    case 0x0c: /* CTL */
 245        oldval = s->control;
 246        s->control = value;
 247        /* TODO: Implement pause.  */
 248        if ((oldval ^ value) & 1) {
 249            if (value & 1) {
 250                gptm_reload(s, 0, 1);
 251            } else {
 252                gptm_stop(s, 0);
 253            }
 254        }
 255        if (((oldval ^ value) & 0x100) && s->config >= 4) {
 256            if (value & 0x100) {
 257                gptm_reload(s, 1, 1);
 258            } else {
 259                gptm_stop(s, 1);
 260            }
 261        }
 262        break;
 263    case 0x18: /* IMR */
 264        s->mask = value & 0x77;
 265        gptm_update_irq(s);
 266        break;
 267    case 0x24: /* CR */
 268        s->state &= ~value;
 269        break;
 270    case 0x28: /* TAILR */
 271        s->load[0] = value & 0xffff;
 272        if (s->config < 4) {
 273            s->load[1] = value >> 16;
 274        }
 275        break;
 276    case 0x2c: /* TBILR */
 277        s->load[1] = value & 0xffff;
 278        break;
 279    case 0x30: /* TAMARCHR */
 280        s->match[0] = value & 0xffff;
 281        if (s->config < 4) {
 282            s->match[1] = value >> 16;
 283        }
 284        break;
 285    case 0x34: /* TBMATCHR */
 286        s->match[1] = value >> 16;
 287        break;
 288    case 0x38: /* TAPR */
 289        s->prescale[0] = value;
 290        break;
 291    case 0x3c: /* TBPR */
 292        s->prescale[1] = value;
 293        break;
 294    case 0x40: /* TAPMR */
 295        s->match_prescale[0] = value;
 296        break;
 297    case 0x44: /* TBPMR */
 298        s->match_prescale[0] = value;
 299        break;
 300    default:
 301        qemu_log_mask(LOG_GUEST_ERROR,
 302                      "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
 303                      offset);
 304    }
 305    gptm_update_irq(s);
 306}
 307
 308static const MemoryRegionOps gptm_ops = {
 309    .read = gptm_read,
 310    .write = gptm_write,
 311    .endianness = DEVICE_NATIVE_ENDIAN,
 312};
 313
 314static const VMStateDescription vmstate_stellaris_gptm = {
 315    .name = "stellaris_gptm",
 316    .version_id = 1,
 317    .minimum_version_id = 1,
 318    .fields = (VMStateField[]) {
 319        VMSTATE_UINT32(config, gptm_state),
 320        VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
 321        VMSTATE_UINT32(control, gptm_state),
 322        VMSTATE_UINT32(state, gptm_state),
 323        VMSTATE_UINT32(mask, gptm_state),
 324        VMSTATE_UNUSED(8),
 325        VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
 326        VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
 327        VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
 328        VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
 329        VMSTATE_UINT32(rtc, gptm_state),
 330        VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
 331        VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
 332        VMSTATE_END_OF_LIST()
 333    }
 334};
 335
 336static void stellaris_gptm_init(Object *obj)
 337{
 338    DeviceState *dev = DEVICE(obj);
 339    gptm_state *s = STELLARIS_GPTM(obj);
 340    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 341
 342    sysbus_init_irq(sbd, &s->irq);
 343    qdev_init_gpio_out(dev, &s->trigger, 1);
 344
 345    memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
 346                          "gptm", 0x1000);
 347    sysbus_init_mmio(sbd, &s->iomem);
 348
 349    s->opaque[0] = s->opaque[1] = s;
 350    s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
 351    s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
 352}
 353
 354
 355/* System controller.  */
 356
 357typedef struct {
 358    MemoryRegion iomem;
 359    uint32_t pborctl;
 360    uint32_t ldopctl;
 361    uint32_t int_status;
 362    uint32_t int_mask;
 363    uint32_t resc;
 364    uint32_t rcc;
 365    uint32_t rcc2;
 366    uint32_t rcgc[3];
 367    uint32_t scgc[3];
 368    uint32_t dcgc[3];
 369    uint32_t clkvclr;
 370    uint32_t ldoarst;
 371    uint32_t user0;
 372    uint32_t user1;
 373    qemu_irq irq;
 374    stellaris_board_info *board;
 375} ssys_state;
 376
 377static void ssys_update(ssys_state *s)
 378{
 379  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
 380}
 381
 382static uint32_t pllcfg_sandstorm[16] = {
 383    0x31c0, /* 1 Mhz */
 384    0x1ae0, /* 1.8432 Mhz */
 385    0x18c0, /* 2 Mhz */
 386    0xd573, /* 2.4576 Mhz */
 387    0x37a6, /* 3.57954 Mhz */
 388    0x1ae2, /* 3.6864 Mhz */
 389    0x0c40, /* 4 Mhz */
 390    0x98bc, /* 4.906 Mhz */
 391    0x935b, /* 4.9152 Mhz */
 392    0x09c0, /* 5 Mhz */
 393    0x4dee, /* 5.12 Mhz */
 394    0x0c41, /* 6 Mhz */
 395    0x75db, /* 6.144 Mhz */
 396    0x1ae6, /* 7.3728 Mhz */
 397    0x0600, /* 8 Mhz */
 398    0x585b /* 8.192 Mhz */
 399};
 400
 401static uint32_t pllcfg_fury[16] = {
 402    0x3200, /* 1 Mhz */
 403    0x1b20, /* 1.8432 Mhz */
 404    0x1900, /* 2 Mhz */
 405    0xf42b, /* 2.4576 Mhz */
 406    0x37e3, /* 3.57954 Mhz */
 407    0x1b21, /* 3.6864 Mhz */
 408    0x0c80, /* 4 Mhz */
 409    0x98ee, /* 4.906 Mhz */
 410    0xd5b4, /* 4.9152 Mhz */
 411    0x0a00, /* 5 Mhz */
 412    0x4e27, /* 5.12 Mhz */
 413    0x1902, /* 6 Mhz */
 414    0xec1c, /* 6.144 Mhz */
 415    0x1b23, /* 7.3728 Mhz */
 416    0x0640, /* 8 Mhz */
 417    0xb11c /* 8.192 Mhz */
 418};
 419
 420#define DID0_VER_MASK        0x70000000
 421#define DID0_VER_0           0x00000000
 422#define DID0_VER_1           0x10000000
 423
 424#define DID0_CLASS_MASK      0x00FF0000
 425#define DID0_CLASS_SANDSTORM 0x00000000
 426#define DID0_CLASS_FURY      0x00010000
 427
 428static int ssys_board_class(const ssys_state *s)
 429{
 430    uint32_t did0 = s->board->did0;
 431    switch (did0 & DID0_VER_MASK) {
 432    case DID0_VER_0:
 433        return DID0_CLASS_SANDSTORM;
 434    case DID0_VER_1:
 435        switch (did0 & DID0_CLASS_MASK) {
 436        case DID0_CLASS_SANDSTORM:
 437        case DID0_CLASS_FURY:
 438            return did0 & DID0_CLASS_MASK;
 439        }
 440        /* for unknown classes, fall through */
 441    default:
 442        /* This can only happen if the hardwired constant did0 value
 443         * in this board's stellaris_board_info struct is wrong.
 444         */
 445        g_assert_not_reached();
 446    }
 447}
 448
 449static uint64_t ssys_read(void *opaque, hwaddr offset,
 450                          unsigned size)
 451{
 452    ssys_state *s = (ssys_state *)opaque;
 453
 454    switch (offset) {
 455    case 0x000: /* DID0 */
 456        return s->board->did0;
 457    case 0x004: /* DID1 */
 458        return s->board->did1;
 459    case 0x008: /* DC0 */
 460        return s->board->dc0;
 461    case 0x010: /* DC1 */
 462        return s->board->dc1;
 463    case 0x014: /* DC2 */
 464        return s->board->dc2;
 465    case 0x018: /* DC3 */
 466        return s->board->dc3;
 467    case 0x01c: /* DC4 */
 468        return s->board->dc4;
 469    case 0x030: /* PBORCTL */
 470        return s->pborctl;
 471    case 0x034: /* LDOPCTL */
 472        return s->ldopctl;
 473    case 0x040: /* SRCR0 */
 474        return 0;
 475    case 0x044: /* SRCR1 */
 476        return 0;
 477    case 0x048: /* SRCR2 */
 478        return 0;
 479    case 0x050: /* RIS */
 480        return s->int_status;
 481    case 0x054: /* IMC */
 482        return s->int_mask;
 483    case 0x058: /* MISC */
 484        return s->int_status & s->int_mask;
 485    case 0x05c: /* RESC */
 486        return s->resc;
 487    case 0x060: /* RCC */
 488        return s->rcc;
 489    case 0x064: /* PLLCFG */
 490        {
 491            int xtal;
 492            xtal = (s->rcc >> 6) & 0xf;
 493            switch (ssys_board_class(s)) {
 494            case DID0_CLASS_FURY:
 495                return pllcfg_fury[xtal];
 496            case DID0_CLASS_SANDSTORM:
 497                return pllcfg_sandstorm[xtal];
 498            default:
 499                g_assert_not_reached();
 500            }
 501        }
 502    case 0x070: /* RCC2 */
 503        return s->rcc2;
 504    case 0x100: /* RCGC0 */
 505        return s->rcgc[0];
 506    case 0x104: /* RCGC1 */
 507        return s->rcgc[1];
 508    case 0x108: /* RCGC2 */
 509        return s->rcgc[2];
 510    case 0x110: /* SCGC0 */
 511        return s->scgc[0];
 512    case 0x114: /* SCGC1 */
 513        return s->scgc[1];
 514    case 0x118: /* SCGC2 */
 515        return s->scgc[2];
 516    case 0x120: /* DCGC0 */
 517        return s->dcgc[0];
 518    case 0x124: /* DCGC1 */
 519        return s->dcgc[1];
 520    case 0x128: /* DCGC2 */
 521        return s->dcgc[2];
 522    case 0x150: /* CLKVCLR */
 523        return s->clkvclr;
 524    case 0x160: /* LDOARST */
 525        return s->ldoarst;
 526    case 0x1e0: /* USER0 */
 527        return s->user0;
 528    case 0x1e4: /* USER1 */
 529        return s->user1;
 530    default:
 531        qemu_log_mask(LOG_GUEST_ERROR,
 532                      "SSYS: read at bad offset 0x%x\n", (int)offset);
 533        return 0;
 534    }
 535}
 536
 537static bool ssys_use_rcc2(ssys_state *s)
 538{
 539    return (s->rcc2 >> 31) & 0x1;
 540}
 541
 542/*
 543 * Caculate the sys. clock period in ms.
 544 */
 545static void ssys_calculate_system_clock(ssys_state *s)
 546{
 547    if (ssys_use_rcc2(s)) {
 548        system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
 549    } else {
 550        system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
 551    }
 552}
 553
 554static void ssys_write(void *opaque, hwaddr offset,
 555                       uint64_t value, unsigned size)
 556{
 557    ssys_state *s = (ssys_state *)opaque;
 558
 559    switch (offset) {
 560    case 0x030: /* PBORCTL */
 561        s->pborctl = value & 0xffff;
 562        break;
 563    case 0x034: /* LDOPCTL */
 564        s->ldopctl = value & 0x1f;
 565        break;
 566    case 0x040: /* SRCR0 */
 567    case 0x044: /* SRCR1 */
 568    case 0x048: /* SRCR2 */
 569        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
 570        break;
 571    case 0x054: /* IMC */
 572        s->int_mask = value & 0x7f;
 573        break;
 574    case 0x058: /* MISC */
 575        s->int_status &= ~value;
 576        break;
 577    case 0x05c: /* RESC */
 578        s->resc = value & 0x3f;
 579        break;
 580    case 0x060: /* RCC */
 581        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 582            /* PLL enable.  */
 583            s->int_status |= (1 << 6);
 584        }
 585        s->rcc = value;
 586        ssys_calculate_system_clock(s);
 587        break;
 588    case 0x070: /* RCC2 */
 589        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 590            break;
 591        }
 592
 593        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 594            /* PLL enable.  */
 595            s->int_status |= (1 << 6);
 596        }
 597        s->rcc2 = value;
 598        ssys_calculate_system_clock(s);
 599        break;
 600    case 0x100: /* RCGC0 */
 601        s->rcgc[0] = value;
 602        break;
 603    case 0x104: /* RCGC1 */
 604        s->rcgc[1] = value;
 605        break;
 606    case 0x108: /* RCGC2 */
 607        s->rcgc[2] = value;
 608        break;
 609    case 0x110: /* SCGC0 */
 610        s->scgc[0] = value;
 611        break;
 612    case 0x114: /* SCGC1 */
 613        s->scgc[1] = value;
 614        break;
 615    case 0x118: /* SCGC2 */
 616        s->scgc[2] = value;
 617        break;
 618    case 0x120: /* DCGC0 */
 619        s->dcgc[0] = value;
 620        break;
 621    case 0x124: /* DCGC1 */
 622        s->dcgc[1] = value;
 623        break;
 624    case 0x128: /* DCGC2 */
 625        s->dcgc[2] = value;
 626        break;
 627    case 0x150: /* CLKVCLR */
 628        s->clkvclr = value;
 629        break;
 630    case 0x160: /* LDOARST */
 631        s->ldoarst = value;
 632        break;
 633    default:
 634        qemu_log_mask(LOG_GUEST_ERROR,
 635                      "SSYS: write at bad offset 0x%x\n", (int)offset);
 636    }
 637    ssys_update(s);
 638}
 639
 640static const MemoryRegionOps ssys_ops = {
 641    .read = ssys_read,
 642    .write = ssys_write,
 643    .endianness = DEVICE_NATIVE_ENDIAN,
 644};
 645
 646static void ssys_reset(void *opaque)
 647{
 648    ssys_state *s = (ssys_state *)opaque;
 649
 650    s->pborctl = 0x7ffd;
 651    s->rcc = 0x078e3ac0;
 652
 653    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 654        s->rcc2 = 0;
 655    } else {
 656        s->rcc2 = 0x07802810;
 657    }
 658    s->rcgc[0] = 1;
 659    s->scgc[0] = 1;
 660    s->dcgc[0] = 1;
 661    ssys_calculate_system_clock(s);
 662}
 663
 664static int stellaris_sys_post_load(void *opaque, int version_id)
 665{
 666    ssys_state *s = opaque;
 667
 668    ssys_calculate_system_clock(s);
 669
 670    return 0;
 671}
 672
 673static const VMStateDescription vmstate_stellaris_sys = {
 674    .name = "stellaris_sys",
 675    .version_id = 2,
 676    .minimum_version_id = 1,
 677    .post_load = stellaris_sys_post_load,
 678    .fields = (VMStateField[]) {
 679        VMSTATE_UINT32(pborctl, ssys_state),
 680        VMSTATE_UINT32(ldopctl, ssys_state),
 681        VMSTATE_UINT32(int_mask, ssys_state),
 682        VMSTATE_UINT32(int_status, ssys_state),
 683        VMSTATE_UINT32(resc, ssys_state),
 684        VMSTATE_UINT32(rcc, ssys_state),
 685        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
 686        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
 687        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
 688        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
 689        VMSTATE_UINT32(clkvclr, ssys_state),
 690        VMSTATE_UINT32(ldoarst, ssys_state),
 691        VMSTATE_END_OF_LIST()
 692    }
 693};
 694
 695static int stellaris_sys_init(uint32_t base, qemu_irq irq,
 696                              stellaris_board_info * board,
 697                              uint8_t *macaddr)
 698{
 699    ssys_state *s;
 700
 701    s = g_new0(ssys_state, 1);
 702    s->irq = irq;
 703    s->board = board;
 704    /* Most devices come preprogrammed with a MAC address in the user data. */
 705    s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
 706    s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
 707
 708    memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
 709    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
 710    ssys_reset(s);
 711    vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
 712    return 0;
 713}
 714
 715
 716/* I2C controller.  */
 717
 718#define TYPE_STELLARIS_I2C "stellaris-i2c"
 719#define STELLARIS_I2C(obj) \
 720    OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
 721
 722typedef struct {
 723    SysBusDevice parent_obj;
 724
 725    I2CBus *bus;
 726    qemu_irq irq;
 727    MemoryRegion iomem;
 728    uint32_t msa;
 729    uint32_t mcs;
 730    uint32_t mdr;
 731    uint32_t mtpr;
 732    uint32_t mimr;
 733    uint32_t mris;
 734    uint32_t mcr;
 735} stellaris_i2c_state;
 736
 737#define STELLARIS_I2C_MCS_BUSY    0x01
 738#define STELLARIS_I2C_MCS_ERROR   0x02
 739#define STELLARIS_I2C_MCS_ADRACK  0x04
 740#define STELLARIS_I2C_MCS_DATACK  0x08
 741#define STELLARIS_I2C_MCS_ARBLST  0x10
 742#define STELLARIS_I2C_MCS_IDLE    0x20
 743#define STELLARIS_I2C_MCS_BUSBSY  0x40
 744
 745static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
 746                                   unsigned size)
 747{
 748    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 749
 750    switch (offset) {
 751    case 0x00: /* MSA */
 752        return s->msa;
 753    case 0x04: /* MCS */
 754        /* We don't emulate timing, so the controller is never busy.  */
 755        return s->mcs | STELLARIS_I2C_MCS_IDLE;
 756    case 0x08: /* MDR */
 757        return s->mdr;
 758    case 0x0c: /* MTPR */
 759        return s->mtpr;
 760    case 0x10: /* MIMR */
 761        return s->mimr;
 762    case 0x14: /* MRIS */
 763        return s->mris;
 764    case 0x18: /* MMIS */
 765        return s->mris & s->mimr;
 766    case 0x20: /* MCR */
 767        return s->mcr;
 768    default:
 769        qemu_log_mask(LOG_GUEST_ERROR,
 770                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
 771        return 0;
 772    }
 773}
 774
 775static void stellaris_i2c_update(stellaris_i2c_state *s)
 776{
 777    int level;
 778
 779    level = (s->mris & s->mimr) != 0;
 780    qemu_set_irq(s->irq, level);
 781}
 782
 783static void stellaris_i2c_write(void *opaque, hwaddr offset,
 784                                uint64_t value, unsigned size)
 785{
 786    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 787
 788    switch (offset) {
 789    case 0x00: /* MSA */
 790        s->msa = value & 0xff;
 791        break;
 792    case 0x04: /* MCS */
 793        if ((s->mcr & 0x10) == 0) {
 794            /* Disabled.  Do nothing.  */
 795            break;
 796        }
 797        /* Grab the bus if this is starting a transfer.  */
 798        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 799            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
 800                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
 801            } else {
 802                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
 803                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
 804            }
 805        }
 806        /* If we don't have the bus then indicate an error.  */
 807        if (!i2c_bus_busy(s->bus)
 808                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 809            s->mcs |= STELLARIS_I2C_MCS_ERROR;
 810            break;
 811        }
 812        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
 813        if (value & 1) {
 814            /* Transfer a byte.  */
 815            /* TODO: Handle errors.  */
 816            if (s->msa & 1) {
 817                /* Recv */
 818                s->mdr = i2c_recv(s->bus);
 819            } else {
 820                /* Send */
 821                i2c_send(s->bus, s->mdr);
 822            }
 823            /* Raise an interrupt.  */
 824            s->mris |= 1;
 825        }
 826        if (value & 4) {
 827            /* Finish transfer.  */
 828            i2c_end_transfer(s->bus);
 829            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
 830        }
 831        break;
 832    case 0x08: /* MDR */
 833        s->mdr = value & 0xff;
 834        break;
 835    case 0x0c: /* MTPR */
 836        s->mtpr = value & 0xff;
 837        break;
 838    case 0x10: /* MIMR */
 839        s->mimr = 1;
 840        break;
 841    case 0x1c: /* MICR */
 842        s->mris &= ~value;
 843        break;
 844    case 0x20: /* MCR */
 845        if (value & 1) {
 846            qemu_log_mask(LOG_UNIMP,
 847                          "stellaris_i2c: Loopback not implemented\n");
 848        }
 849        if (value & 0x20) {
 850            qemu_log_mask(LOG_UNIMP,
 851                          "stellaris_i2c: Slave mode not implemented\n");
 852        }
 853        s->mcr = value & 0x31;
 854        break;
 855    default:
 856        qemu_log_mask(LOG_GUEST_ERROR,
 857                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
 858    }
 859    stellaris_i2c_update(s);
 860}
 861
 862static void stellaris_i2c_reset(stellaris_i2c_state *s)
 863{
 864    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
 865        i2c_end_transfer(s->bus);
 866
 867    s->msa = 0;
 868    s->mcs = 0;
 869    s->mdr = 0;
 870    s->mtpr = 1;
 871    s->mimr = 0;
 872    s->mris = 0;
 873    s->mcr = 0;
 874    stellaris_i2c_update(s);
 875}
 876
 877static const MemoryRegionOps stellaris_i2c_ops = {
 878    .read = stellaris_i2c_read,
 879    .write = stellaris_i2c_write,
 880    .endianness = DEVICE_NATIVE_ENDIAN,
 881};
 882
 883static const VMStateDescription vmstate_stellaris_i2c = {
 884    .name = "stellaris_i2c",
 885    .version_id = 1,
 886    .minimum_version_id = 1,
 887    .fields = (VMStateField[]) {
 888        VMSTATE_UINT32(msa, stellaris_i2c_state),
 889        VMSTATE_UINT32(mcs, stellaris_i2c_state),
 890        VMSTATE_UINT32(mdr, stellaris_i2c_state),
 891        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
 892        VMSTATE_UINT32(mimr, stellaris_i2c_state),
 893        VMSTATE_UINT32(mris, stellaris_i2c_state),
 894        VMSTATE_UINT32(mcr, stellaris_i2c_state),
 895        VMSTATE_END_OF_LIST()
 896    }
 897};
 898
 899static void stellaris_i2c_init(Object *obj)
 900{
 901    DeviceState *dev = DEVICE(obj);
 902    stellaris_i2c_state *s = STELLARIS_I2C(obj);
 903    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 904    I2CBus *bus;
 905
 906    sysbus_init_irq(sbd, &s->irq);
 907    bus = i2c_init_bus(dev, "i2c");
 908    s->bus = bus;
 909
 910    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
 911                          "i2c", 0x1000);
 912    sysbus_init_mmio(sbd, &s->iomem);
 913    /* ??? For now we only implement the master interface.  */
 914    stellaris_i2c_reset(s);
 915}
 916
 917/* Analogue to Digital Converter.  This is only partially implemented,
 918   enough for applications that use a combined ADC and timer tick.  */
 919
 920#define STELLARIS_ADC_EM_CONTROLLER 0
 921#define STELLARIS_ADC_EM_COMP       1
 922#define STELLARIS_ADC_EM_EXTERNAL   4
 923#define STELLARIS_ADC_EM_TIMER      5
 924#define STELLARIS_ADC_EM_PWM0       6
 925#define STELLARIS_ADC_EM_PWM1       7
 926#define STELLARIS_ADC_EM_PWM2       8
 927
 928#define STELLARIS_ADC_FIFO_EMPTY    0x0100
 929#define STELLARIS_ADC_FIFO_FULL     0x1000
 930
 931#define TYPE_STELLARIS_ADC "stellaris-adc"
 932#define STELLARIS_ADC(obj) \
 933    OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
 934
 935typedef struct StellarisADCState {
 936    SysBusDevice parent_obj;
 937
 938    MemoryRegion iomem;
 939    uint32_t actss;
 940    uint32_t ris;
 941    uint32_t im;
 942    uint32_t emux;
 943    uint32_t ostat;
 944    uint32_t ustat;
 945    uint32_t sspri;
 946    uint32_t sac;
 947    struct {
 948        uint32_t state;
 949        uint32_t data[16];
 950    } fifo[4];
 951    uint32_t ssmux[4];
 952    uint32_t ssctl[4];
 953    uint32_t noise;
 954    qemu_irq irq[4];
 955} stellaris_adc_state;
 956
 957static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
 958{
 959    int tail;
 960
 961    tail = s->fifo[n].state & 0xf;
 962    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
 963        s->ustat |= 1 << n;
 964    } else {
 965        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
 966        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
 967        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
 968            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
 969    }
 970    return s->fifo[n].data[tail];
 971}
 972
 973static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
 974                                     uint32_t value)
 975{
 976    int head;
 977
 978    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
 979       FIFO fir each sequencer.  */
 980    head = (s->fifo[n].state >> 4) & 0xf;
 981    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
 982        s->ostat |= 1 << n;
 983        return;
 984    }
 985    s->fifo[n].data[head] = value;
 986    head = (head + 1) & 0xf;
 987    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
 988    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
 989    if ((s->fifo[n].state & 0xf) == head)
 990        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
 991}
 992
 993static void stellaris_adc_update(stellaris_adc_state *s)
 994{
 995    int level;
 996    int n;
 997
 998    for (n = 0; n < 4; n++) {
 999        level = (s->ris & s->im & (1 << n)) != 0;
1000        qemu_set_irq(s->irq[n], level);
1001    }
1002}
1003
1004static void stellaris_adc_trigger(void *opaque, int irq, int level)
1005{
1006    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1007    int n;
1008
1009    for (n = 0; n < 4; n++) {
1010        if ((s->actss & (1 << n)) == 0) {
1011            continue;
1012        }
1013
1014        if (((s->emux >> (n * 4)) & 0xff) != 5) {
1015            continue;
1016        }
1017
1018        /* Some applications use the ADC as a random number source, so introduce
1019           some variation into the signal.  */
1020        s->noise = s->noise * 314159 + 1;
1021        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1022        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1023        s->ris |= (1 << n);
1024        stellaris_adc_update(s);
1025    }
1026}
1027
1028static void stellaris_adc_reset(stellaris_adc_state *s)
1029{
1030    int n;
1031
1032    for (n = 0; n < 4; n++) {
1033        s->ssmux[n] = 0;
1034        s->ssctl[n] = 0;
1035        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1036    }
1037}
1038
1039static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1040                                   unsigned size)
1041{
1042    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1043
1044    /* TODO: Implement this.  */
1045    if (offset >= 0x40 && offset < 0xc0) {
1046        int n;
1047        n = (offset - 0x40) >> 5;
1048        switch (offset & 0x1f) {
1049        case 0x00: /* SSMUX */
1050            return s->ssmux[n];
1051        case 0x04: /* SSCTL */
1052            return s->ssctl[n];
1053        case 0x08: /* SSFIFO */
1054            return stellaris_adc_fifo_read(s, n);
1055        case 0x0c: /* SSFSTAT */
1056            return s->fifo[n].state;
1057        default:
1058            break;
1059        }
1060    }
1061    switch (offset) {
1062    case 0x00: /* ACTSS */
1063        return s->actss;
1064    case 0x04: /* RIS */
1065        return s->ris;
1066    case 0x08: /* IM */
1067        return s->im;
1068    case 0x0c: /* ISC */
1069        return s->ris & s->im;
1070    case 0x10: /* OSTAT */
1071        return s->ostat;
1072    case 0x14: /* EMUX */
1073        return s->emux;
1074    case 0x18: /* USTAT */
1075        return s->ustat;
1076    case 0x20: /* SSPRI */
1077        return s->sspri;
1078    case 0x30: /* SAC */
1079        return s->sac;
1080    default:
1081        qemu_log_mask(LOG_GUEST_ERROR,
1082                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1083        return 0;
1084    }
1085}
1086
1087static void stellaris_adc_write(void *opaque, hwaddr offset,
1088                                uint64_t value, unsigned size)
1089{
1090    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1091
1092    /* TODO: Implement this.  */
1093    if (offset >= 0x40 && offset < 0xc0) {
1094        int n;
1095        n = (offset - 0x40) >> 5;
1096        switch (offset & 0x1f) {
1097        case 0x00: /* SSMUX */
1098            s->ssmux[n] = value & 0x33333333;
1099            return;
1100        case 0x04: /* SSCTL */
1101            if (value != 6) {
1102                qemu_log_mask(LOG_UNIMP,
1103                              "ADC: Unimplemented sequence %" PRIx64 "\n",
1104                              value);
1105            }
1106            s->ssctl[n] = value;
1107            return;
1108        default:
1109            break;
1110        }
1111    }
1112    switch (offset) {
1113    case 0x00: /* ACTSS */
1114        s->actss = value & 0xf;
1115        break;
1116    case 0x08: /* IM */
1117        s->im = value;
1118        break;
1119    case 0x0c: /* ISC */
1120        s->ris &= ~value;
1121        break;
1122    case 0x10: /* OSTAT */
1123        s->ostat &= ~value;
1124        break;
1125    case 0x14: /* EMUX */
1126        s->emux = value;
1127        break;
1128    case 0x18: /* USTAT */
1129        s->ustat &= ~value;
1130        break;
1131    case 0x20: /* SSPRI */
1132        s->sspri = value;
1133        break;
1134    case 0x28: /* PSSI */
1135        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1136        break;
1137    case 0x30: /* SAC */
1138        s->sac = value;
1139        break;
1140    default:
1141        qemu_log_mask(LOG_GUEST_ERROR,
1142                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1143    }
1144    stellaris_adc_update(s);
1145}
1146
1147static const MemoryRegionOps stellaris_adc_ops = {
1148    .read = stellaris_adc_read,
1149    .write = stellaris_adc_write,
1150    .endianness = DEVICE_NATIVE_ENDIAN,
1151};
1152
1153static const VMStateDescription vmstate_stellaris_adc = {
1154    .name = "stellaris_adc",
1155    .version_id = 1,
1156    .minimum_version_id = 1,
1157    .fields = (VMStateField[]) {
1158        VMSTATE_UINT32(actss, stellaris_adc_state),
1159        VMSTATE_UINT32(ris, stellaris_adc_state),
1160        VMSTATE_UINT32(im, stellaris_adc_state),
1161        VMSTATE_UINT32(emux, stellaris_adc_state),
1162        VMSTATE_UINT32(ostat, stellaris_adc_state),
1163        VMSTATE_UINT32(ustat, stellaris_adc_state),
1164        VMSTATE_UINT32(sspri, stellaris_adc_state),
1165        VMSTATE_UINT32(sac, stellaris_adc_state),
1166        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1167        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1168        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1169        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1170        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1171        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1172        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1173        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1174        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1175        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1176        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1177        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1178        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1179        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1180        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1181        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1182        VMSTATE_UINT32(noise, stellaris_adc_state),
1183        VMSTATE_END_OF_LIST()
1184    }
1185};
1186
1187static void stellaris_adc_init(Object *obj)
1188{
1189    DeviceState *dev = DEVICE(obj);
1190    stellaris_adc_state *s = STELLARIS_ADC(obj);
1191    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1192    int n;
1193
1194    for (n = 0; n < 4; n++) {
1195        sysbus_init_irq(sbd, &s->irq[n]);
1196    }
1197
1198    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1199                          "adc", 0x1000);
1200    sysbus_init_mmio(sbd, &s->iomem);
1201    stellaris_adc_reset(s);
1202    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1203}
1204
1205static
1206void do_sys_reset(void *opaque, int n, int level)
1207{
1208    if (level) {
1209        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1210    }
1211}
1212
1213/* Board init.  */
1214static stellaris_board_info stellaris_boards[] = {
1215  { "LM3S811EVB",
1216    0,
1217    0x0032000e,
1218    0x001f001f, /* dc0 */
1219    0x001132bf,
1220    0x01071013,
1221    0x3f0f01ff,
1222    0x0000001f,
1223    BP_OLED_I2C
1224  },
1225  { "LM3S6965EVB",
1226    0x10010002,
1227    0x1073402e,
1228    0x00ff007f, /* dc0 */
1229    0x001133ff,
1230    0x030f5317,
1231    0x0f0f87ff,
1232    0x5000007f,
1233    BP_OLED_SSI | BP_GAMEPAD
1234  }
1235};
1236
1237static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1238{
1239    static const int uart_irq[] = {5, 6, 33, 34};
1240    static const int timer_irq[] = {19, 21, 23, 35};
1241    static const uint32_t gpio_addr[7] =
1242      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1243        0x40024000, 0x40025000, 0x40026000};
1244    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1245
1246    /* Memory map of SoC devices, from
1247     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1248     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1249     *
1250     * 40000000 wdtimer
1251     * 40002000 i2c (unimplemented)
1252     * 40004000 GPIO
1253     * 40005000 GPIO
1254     * 40006000 GPIO
1255     * 40007000 GPIO
1256     * 40008000 SSI
1257     * 4000c000 UART
1258     * 4000d000 UART
1259     * 4000e000 UART
1260     * 40020000 i2c
1261     * 40021000 i2c (unimplemented)
1262     * 40024000 GPIO
1263     * 40025000 GPIO
1264     * 40026000 GPIO
1265     * 40028000 PWM (unimplemented)
1266     * 4002c000 QEI (unimplemented)
1267     * 4002d000 QEI (unimplemented)
1268     * 40030000 gptimer
1269     * 40031000 gptimer
1270     * 40032000 gptimer
1271     * 40033000 gptimer
1272     * 40038000 ADC
1273     * 4003c000 analogue comparator (unimplemented)
1274     * 40048000 ethernet
1275     * 400fc000 hibernation module (unimplemented)
1276     * 400fd000 flash memory control (unimplemented)
1277     * 400fe000 system control
1278     */
1279
1280    DeviceState *gpio_dev[7], *nvic;
1281    qemu_irq gpio_in[7][8];
1282    qemu_irq gpio_out[7][8];
1283    qemu_irq adc;
1284    int sram_size;
1285    int flash_size;
1286    I2CBus *i2c;
1287    DeviceState *dev;
1288    int i;
1289    int j;
1290
1291    MemoryRegion *sram = g_new(MemoryRegion, 1);
1292    MemoryRegion *flash = g_new(MemoryRegion, 1);
1293    MemoryRegion *system_memory = get_system_memory();
1294
1295    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1296    sram_size = ((board->dc0 >> 18) + 1) * 1024;
1297
1298    /* Flash programming is done via the SCU, so pretend it is ROM.  */
1299    memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1300                           &error_fatal);
1301    memory_region_set_readonly(flash, true);
1302    memory_region_add_subregion(system_memory, 0, flash);
1303
1304    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1305                           &error_fatal);
1306    memory_region_add_subregion(system_memory, 0x20000000, sram);
1307
1308    nvic = qdev_create(NULL, TYPE_ARMV7M);
1309    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1310    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1311    qdev_prop_set_bit(nvic, "enable-bitband", true);
1312    object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1313                                     "memory", &error_abort);
1314    /* This will exit with an error if the user passed us a bad cpu_type */
1315    qdev_init_nofail(nvic);
1316
1317    qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1318                                qemu_allocate_irq(&do_sys_reset, NULL, 0));
1319
1320    if (board->dc1 & (1 << 16)) {
1321        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1322                                    qdev_get_gpio_in(nvic, 14),
1323                                    qdev_get_gpio_in(nvic, 15),
1324                                    qdev_get_gpio_in(nvic, 16),
1325                                    qdev_get_gpio_in(nvic, 17),
1326                                    NULL);
1327        adc = qdev_get_gpio_in(dev, 0);
1328    } else {
1329        adc = NULL;
1330    }
1331    for (i = 0; i < 4; i++) {
1332        if (board->dc2 & (0x10000 << i)) {
1333            dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1334                                       0x40030000 + i * 0x1000,
1335                                       qdev_get_gpio_in(nvic, timer_irq[i]));
1336            /* TODO: This is incorrect, but we get away with it because
1337               the ADC output is only ever pulsed.  */
1338            qdev_connect_gpio_out(dev, 0, adc);
1339        }
1340    }
1341
1342    stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1343                       board, nd_table[0].macaddr.a);
1344
1345
1346    if (board->dc1 & (1 << 3)) { /* watchdog present */
1347        dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1348
1349        /* system_clock_scale is valid now */
1350        uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1351        qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1352
1353        qdev_init_nofail(dev);
1354        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1355                        0,
1356                        0x40000000u);
1357        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1358                           0,
1359                           qdev_get_gpio_in(nvic, 18));
1360    }
1361
1362
1363    for (i = 0; i < 7; i++) {
1364        if (board->dc4 & (1 << i)) {
1365            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1366                                               qdev_get_gpio_in(nvic,
1367                                                                gpio_irq[i]));
1368            for (j = 0; j < 8; j++) {
1369                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1370                gpio_out[i][j] = NULL;
1371            }
1372        }
1373    }
1374
1375    if (board->dc2 & (1 << 12)) {
1376        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1377                                   qdev_get_gpio_in(nvic, 8));
1378        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1379        if (board->peripherals & BP_OLED_I2C) {
1380            i2c_create_slave(i2c, "ssd0303", 0x3d);
1381        }
1382    }
1383
1384    for (i = 0; i < 4; i++) {
1385        if (board->dc2 & (1 << i)) {
1386            pl011_luminary_create(0x4000c000 + i * 0x1000,
1387                                  qdev_get_gpio_in(nvic, uart_irq[i]),
1388                                  serial_hd(i));
1389        }
1390    }
1391    if (board->dc2 & (1 << 4)) {
1392        dev = sysbus_create_simple("pl022", 0x40008000,
1393                                   qdev_get_gpio_in(nvic, 7));
1394        if (board->peripherals & BP_OLED_SSI) {
1395            void *bus;
1396            DeviceState *sddev;
1397            DeviceState *ssddev;
1398
1399            /* Some boards have both an OLED controller and SD card connected to
1400             * the same SSI port, with the SD card chip select connected to a
1401             * GPIO pin.  Technically the OLED chip select is connected to the
1402             * SSI Fss pin.  We do not bother emulating that as both devices
1403             * should never be selected simultaneously, and our OLED controller
1404             * ignores stray 0xff commands that occur when deselecting the SD
1405             * card.
1406             */
1407            bus = qdev_get_child_bus(dev, "ssi");
1408
1409            sddev = ssi_create_slave(bus, "ssi-sd");
1410            ssddev = ssi_create_slave(bus, "ssd0323");
1411            gpio_out[GPIO_D][0] = qemu_irq_split(
1412                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1413                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1414            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1415
1416            /* Make sure the select pin is high.  */
1417            qemu_irq_raise(gpio_out[GPIO_D][0]);
1418        }
1419    }
1420    if (board->dc4 & (1 << 28)) {
1421        DeviceState *enet;
1422
1423        qemu_check_nic_model(&nd_table[0], "stellaris");
1424
1425        enet = qdev_create(NULL, "stellaris_enet");
1426        qdev_set_nic_properties(enet, &nd_table[0]);
1427        qdev_init_nofail(enet);
1428        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1429        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1430    }
1431    if (board->peripherals & BP_GAMEPAD) {
1432        qemu_irq gpad_irq[5];
1433        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1434
1435        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1436        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1437        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1438        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1439        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1440
1441        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1442    }
1443    for (i = 0; i < 7; i++) {
1444        if (board->dc4 & (1 << i)) {
1445            for (j = 0; j < 8; j++) {
1446                if (gpio_out[i][j]) {
1447                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1448                }
1449            }
1450        }
1451    }
1452
1453    /* Add dummy regions for the devices we don't implement yet,
1454     * so guest accesses don't cause unlogged crashes.
1455     */
1456    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1457    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1458    create_unimplemented_device("PWM", 0x40028000, 0x1000);
1459    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1460    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1461    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1462    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1463    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1464
1465    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1466}
1467
1468/* FIXME: Figure out how to generate these from stellaris_boards.  */
1469static void lm3s811evb_init(MachineState *machine)
1470{
1471    stellaris_init(machine, &stellaris_boards[0]);
1472}
1473
1474static void lm3s6965evb_init(MachineState *machine)
1475{
1476    stellaris_init(machine, &stellaris_boards[1]);
1477}
1478
1479static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1480{
1481    MachineClass *mc = MACHINE_CLASS(oc);
1482
1483    mc->desc = "Stellaris LM3S811EVB";
1484    mc->init = lm3s811evb_init;
1485    mc->ignore_memory_transaction_failures = true;
1486    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1487}
1488
1489static const TypeInfo lm3s811evb_type = {
1490    .name = MACHINE_TYPE_NAME("lm3s811evb"),
1491    .parent = TYPE_MACHINE,
1492    .class_init = lm3s811evb_class_init,
1493};
1494
1495static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1496{
1497    MachineClass *mc = MACHINE_CLASS(oc);
1498
1499    mc->desc = "Stellaris LM3S6965EVB";
1500    mc->init = lm3s6965evb_init;
1501    mc->ignore_memory_transaction_failures = true;
1502    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1503}
1504
1505static const TypeInfo lm3s6965evb_type = {
1506    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1507    .parent = TYPE_MACHINE,
1508    .class_init = lm3s6965evb_class_init,
1509};
1510
1511static void stellaris_machine_init(void)
1512{
1513    type_register_static(&lm3s811evb_type);
1514    type_register_static(&lm3s6965evb_type);
1515}
1516
1517type_init(stellaris_machine_init)
1518
1519static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1520{
1521    DeviceClass *dc = DEVICE_CLASS(klass);
1522
1523    dc->vmsd = &vmstate_stellaris_i2c;
1524}
1525
1526static const TypeInfo stellaris_i2c_info = {
1527    .name          = TYPE_STELLARIS_I2C,
1528    .parent        = TYPE_SYS_BUS_DEVICE,
1529    .instance_size = sizeof(stellaris_i2c_state),
1530    .instance_init = stellaris_i2c_init,
1531    .class_init    = stellaris_i2c_class_init,
1532};
1533
1534static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1535{
1536    DeviceClass *dc = DEVICE_CLASS(klass);
1537
1538    dc->vmsd = &vmstate_stellaris_gptm;
1539}
1540
1541static const TypeInfo stellaris_gptm_info = {
1542    .name          = TYPE_STELLARIS_GPTM,
1543    .parent        = TYPE_SYS_BUS_DEVICE,
1544    .instance_size = sizeof(gptm_state),
1545    .instance_init = stellaris_gptm_init,
1546    .class_init    = stellaris_gptm_class_init,
1547};
1548
1549static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1550{
1551    DeviceClass *dc = DEVICE_CLASS(klass);
1552
1553    dc->vmsd = &vmstate_stellaris_adc;
1554}
1555
1556static const TypeInfo stellaris_adc_info = {
1557    .name          = TYPE_STELLARIS_ADC,
1558    .parent        = TYPE_SYS_BUS_DEVICE,
1559    .instance_size = sizeof(stellaris_adc_state),
1560    .instance_init = stellaris_adc_init,
1561    .class_init    = stellaris_adc_class_init,
1562};
1563
1564static void stellaris_register_types(void)
1565{
1566    type_register_static(&stellaris_i2c_info);
1567    type_register_static(&stellaris_gptm_info);
1568    type_register_static(&stellaris_adc_info);
1569}
1570
1571type_init(stellaris_register_types)
1572