qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
  13 *
  14 *  http://www.nvmexpress.org/resources/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
  21 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  22 *              num_queues=<N[optional]>
  23 *
  24 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  25 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "hw/block/block.h"
  31#include "hw/pci/msix.h"
  32#include "hw/pci/pci.h"
  33#include "hw/qdev-properties.h"
  34#include "migration/vmstate.h"
  35#include "sysemu/sysemu.h"
  36#include "qapi/error.h"
  37#include "qapi/visitor.h"
  38#include "sysemu/block-backend.h"
  39
  40#include "qemu/log.h"
  41#include "qemu/module.h"
  42#include "qemu/cutils.h"
  43#include "trace.h"
  44#include "nvme.h"
  45
  46#define NVME_GUEST_ERR(trace, fmt, ...) \
  47    do { \
  48        (trace_##trace)(__VA_ARGS__); \
  49        qemu_log_mask(LOG_GUEST_ERROR, #trace \
  50            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
  51    } while (0)
  52
  53static void nvme_process_sq(void *opaque);
  54
  55static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
  56{
  57    if (n->cmbsz && addr >= n->ctrl_mem.addr &&
  58                addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
  59        memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
  60    } else {
  61        pci_dma_read(&n->parent_obj, addr, buf, size);
  62    }
  63}
  64
  65static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
  66{
  67    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
  68}
  69
  70static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
  71{
  72    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
  73}
  74
  75static void nvme_inc_cq_tail(NvmeCQueue *cq)
  76{
  77    cq->tail++;
  78    if (cq->tail >= cq->size) {
  79        cq->tail = 0;
  80        cq->phase = !cq->phase;
  81    }
  82}
  83
  84static void nvme_inc_sq_head(NvmeSQueue *sq)
  85{
  86    sq->head = (sq->head + 1) % sq->size;
  87}
  88
  89static uint8_t nvme_cq_full(NvmeCQueue *cq)
  90{
  91    return (cq->tail + 1) % cq->size == cq->head;
  92}
  93
  94static uint8_t nvme_sq_empty(NvmeSQueue *sq)
  95{
  96    return sq->head == sq->tail;
  97}
  98
  99static void nvme_irq_check(NvmeCtrl *n)
 100{
 101    if (msix_enabled(&(n->parent_obj))) {
 102        return;
 103    }
 104    if (~n->bar.intms & n->irq_status) {
 105        pci_irq_assert(&n->parent_obj);
 106    } else {
 107        pci_irq_deassert(&n->parent_obj);
 108    }
 109}
 110
 111static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 112{
 113    if (cq->irq_enabled) {
 114        if (msix_enabled(&(n->parent_obj))) {
 115            trace_nvme_irq_msix(cq->vector);
 116            msix_notify(&(n->parent_obj), cq->vector);
 117        } else {
 118            trace_nvme_irq_pin();
 119            assert(cq->cqid < 64);
 120            n->irq_status |= 1 << cq->cqid;
 121            nvme_irq_check(n);
 122        }
 123    } else {
 124        trace_nvme_irq_masked();
 125    }
 126}
 127
 128static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 129{
 130    if (cq->irq_enabled) {
 131        if (msix_enabled(&(n->parent_obj))) {
 132            return;
 133        } else {
 134            assert(cq->cqid < 64);
 135            n->irq_status &= ~(1 << cq->cqid);
 136            nvme_irq_check(n);
 137        }
 138    }
 139}
 140
 141static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
 142                             uint64_t prp2, uint32_t len, NvmeCtrl *n)
 143{
 144    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 145    trans_len = MIN(len, trans_len);
 146    int num_prps = (len >> n->page_bits) + 1;
 147
 148    if (unlikely(!prp1)) {
 149        trace_nvme_err_invalid_prp();
 150        return NVME_INVALID_FIELD | NVME_DNR;
 151    } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
 152               prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
 153        qsg->nsg = 0;
 154        qemu_iovec_init(iov, num_prps);
 155        qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
 156    } else {
 157        pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
 158        qemu_sglist_add(qsg, prp1, trans_len);
 159    }
 160    len -= trans_len;
 161    if (len) {
 162        if (unlikely(!prp2)) {
 163            trace_nvme_err_invalid_prp2_missing();
 164            goto unmap;
 165        }
 166        if (len > n->page_size) {
 167            uint64_t prp_list[n->max_prp_ents];
 168            uint32_t nents, prp_trans;
 169            int i = 0;
 170
 171            nents = (len + n->page_size - 1) >> n->page_bits;
 172            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 173            nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 174            while (len != 0) {
 175                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 176
 177                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 178                    if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 179                        trace_nvme_err_invalid_prplist_ent(prp_ent);
 180                        goto unmap;
 181                    }
 182
 183                    i = 0;
 184                    nents = (len + n->page_size - 1) >> n->page_bits;
 185                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 186                    nvme_addr_read(n, prp_ent, (void *)prp_list,
 187                        prp_trans);
 188                    prp_ent = le64_to_cpu(prp_list[i]);
 189                }
 190
 191                if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 192                    trace_nvme_err_invalid_prplist_ent(prp_ent);
 193                    goto unmap;
 194                }
 195
 196                trans_len = MIN(len, n->page_size);
 197                if (qsg->nsg){
 198                    qemu_sglist_add(qsg, prp_ent, trans_len);
 199                } else {
 200                    qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
 201                }
 202                len -= trans_len;
 203                i++;
 204            }
 205        } else {
 206            if (unlikely(prp2 & (n->page_size - 1))) {
 207                trace_nvme_err_invalid_prp2_align(prp2);
 208                goto unmap;
 209            }
 210            if (qsg->nsg) {
 211                qemu_sglist_add(qsg, prp2, len);
 212            } else {
 213                qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
 214            }
 215        }
 216    }
 217    return NVME_SUCCESS;
 218
 219 unmap:
 220    qemu_sglist_destroy(qsg);
 221    return NVME_INVALID_FIELD | NVME_DNR;
 222}
 223
 224static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 225                                   uint64_t prp1, uint64_t prp2)
 226{
 227    QEMUSGList qsg;
 228    QEMUIOVector iov;
 229    uint16_t status = NVME_SUCCESS;
 230
 231    if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
 232        return NVME_INVALID_FIELD | NVME_DNR;
 233    }
 234    if (qsg.nsg > 0) {
 235        if (dma_buf_write(ptr, len, &qsg)) {
 236            status = NVME_INVALID_FIELD | NVME_DNR;
 237        }
 238        qemu_sglist_destroy(&qsg);
 239    } else {
 240        if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
 241            status = NVME_INVALID_FIELD | NVME_DNR;
 242        }
 243        qemu_iovec_destroy(&iov);
 244    }
 245    return status;
 246}
 247
 248static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 249    uint64_t prp1, uint64_t prp2)
 250{
 251    QEMUSGList qsg;
 252    QEMUIOVector iov;
 253    uint16_t status = NVME_SUCCESS;
 254
 255    trace_nvme_dma_read(prp1, prp2);
 256
 257    if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
 258        return NVME_INVALID_FIELD | NVME_DNR;
 259    }
 260    if (qsg.nsg > 0) {
 261        if (unlikely(dma_buf_read(ptr, len, &qsg))) {
 262            trace_nvme_err_invalid_dma();
 263            status = NVME_INVALID_FIELD | NVME_DNR;
 264        }
 265        qemu_sglist_destroy(&qsg);
 266    } else {
 267        if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
 268            trace_nvme_err_invalid_dma();
 269            status = NVME_INVALID_FIELD | NVME_DNR;
 270        }
 271        qemu_iovec_destroy(&iov);
 272    }
 273    return status;
 274}
 275
 276static void nvme_post_cqes(void *opaque)
 277{
 278    NvmeCQueue *cq = opaque;
 279    NvmeCtrl *n = cq->ctrl;
 280    NvmeRequest *req, *next;
 281
 282    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 283        NvmeSQueue *sq;
 284        hwaddr addr;
 285
 286        if (nvme_cq_full(cq)) {
 287            break;
 288        }
 289
 290        QTAILQ_REMOVE(&cq->req_list, req, entry);
 291        sq = req->sq;
 292        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 293        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 294        req->cqe.sq_head = cpu_to_le16(sq->head);
 295        addr = cq->dma_addr + cq->tail * n->cqe_size;
 296        nvme_inc_cq_tail(cq);
 297        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 298            sizeof(req->cqe));
 299        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 300    }
 301    if (cq->tail != cq->head) {
 302        nvme_irq_assert(n, cq);
 303    }
 304}
 305
 306static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 307{
 308    assert(cq->cqid == req->sq->cqid);
 309    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 310    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 311    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 312}
 313
 314static void nvme_rw_cb(void *opaque, int ret)
 315{
 316    NvmeRequest *req = opaque;
 317    NvmeSQueue *sq = req->sq;
 318    NvmeCtrl *n = sq->ctrl;
 319    NvmeCQueue *cq = n->cq[sq->cqid];
 320
 321    if (!ret) {
 322        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
 323        req->status = NVME_SUCCESS;
 324    } else {
 325        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
 326        req->status = NVME_INTERNAL_DEV_ERROR;
 327    }
 328    if (req->has_sg) {
 329        qemu_sglist_destroy(&req->qsg);
 330    }
 331    nvme_enqueue_req_completion(cq, req);
 332}
 333
 334static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 335    NvmeRequest *req)
 336{
 337    req->has_sg = false;
 338    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 339         BLOCK_ACCT_FLUSH);
 340    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
 341
 342    return NVME_NO_COMPLETE;
 343}
 344
 345static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 346    NvmeRequest *req)
 347{
 348    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 349    const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 350    const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 351    uint64_t slba = le64_to_cpu(rw->slba);
 352    uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
 353    uint64_t offset = slba << data_shift;
 354    uint32_t count = nlb << data_shift;
 355
 356    if (unlikely(slba + nlb > ns->id_ns.nsze)) {
 357        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 358        return NVME_LBA_RANGE | NVME_DNR;
 359    }
 360
 361    req->has_sg = false;
 362    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 363                     BLOCK_ACCT_WRITE);
 364    req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
 365                                        BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
 366    return NVME_NO_COMPLETE;
 367}
 368
 369static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 370    NvmeRequest *req)
 371{
 372    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 373    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
 374    uint64_t slba = le64_to_cpu(rw->slba);
 375    uint64_t prp1 = le64_to_cpu(rw->prp1);
 376    uint64_t prp2 = le64_to_cpu(rw->prp2);
 377
 378    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 379    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 380    uint64_t data_size = (uint64_t)nlb << data_shift;
 381    uint64_t data_offset = slba << data_shift;
 382    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
 383    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 384
 385    trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
 386
 387    if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
 388        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 389        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 390        return NVME_LBA_RANGE | NVME_DNR;
 391    }
 392
 393    if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
 394        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 395        return NVME_INVALID_FIELD | NVME_DNR;
 396    }
 397
 398    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
 399    if (req->qsg.nsg > 0) {
 400        req->has_sg = true;
 401        req->aiocb = is_write ?
 402            dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 403                          nvme_rw_cb, req) :
 404            dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 405                         nvme_rw_cb, req);
 406    } else {
 407        req->has_sg = false;
 408        req->aiocb = is_write ?
 409            blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 410                            req) :
 411            blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 412                           req);
 413    }
 414
 415    return NVME_NO_COMPLETE;
 416}
 417
 418static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 419{
 420    NvmeNamespace *ns;
 421    uint32_t nsid = le32_to_cpu(cmd->nsid);
 422
 423    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 424        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 425        return NVME_INVALID_NSID | NVME_DNR;
 426    }
 427
 428    ns = &n->namespaces[nsid - 1];
 429    switch (cmd->opcode) {
 430    case NVME_CMD_FLUSH:
 431        return nvme_flush(n, ns, cmd, req);
 432    case NVME_CMD_WRITE_ZEROS:
 433        return nvme_write_zeros(n, ns, cmd, req);
 434    case NVME_CMD_WRITE:
 435    case NVME_CMD_READ:
 436        return nvme_rw(n, ns, cmd, req);
 437    default:
 438        trace_nvme_err_invalid_opc(cmd->opcode);
 439        return NVME_INVALID_OPCODE | NVME_DNR;
 440    }
 441}
 442
 443static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 444{
 445    n->sq[sq->sqid] = NULL;
 446    timer_del(sq->timer);
 447    timer_free(sq->timer);
 448    g_free(sq->io_req);
 449    if (sq->sqid) {
 450        g_free(sq);
 451    }
 452}
 453
 454static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
 455{
 456    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 457    NvmeRequest *req, *next;
 458    NvmeSQueue *sq;
 459    NvmeCQueue *cq;
 460    uint16_t qid = le16_to_cpu(c->qid);
 461
 462    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
 463        trace_nvme_err_invalid_del_sq(qid);
 464        return NVME_INVALID_QID | NVME_DNR;
 465    }
 466
 467    trace_nvme_del_sq(qid);
 468
 469    sq = n->sq[qid];
 470    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 471        req = QTAILQ_FIRST(&sq->out_req_list);
 472        assert(req->aiocb);
 473        blk_aio_cancel(req->aiocb);
 474    }
 475    if (!nvme_check_cqid(n, sq->cqid)) {
 476        cq = n->cq[sq->cqid];
 477        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 478
 479        nvme_post_cqes(cq);
 480        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 481            if (req->sq == sq) {
 482                QTAILQ_REMOVE(&cq->req_list, req, entry);
 483                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 484            }
 485        }
 486    }
 487
 488    nvme_free_sq(sq, n);
 489    return NVME_SUCCESS;
 490}
 491
 492static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 493    uint16_t sqid, uint16_t cqid, uint16_t size)
 494{
 495    int i;
 496    NvmeCQueue *cq;
 497
 498    sq->ctrl = n;
 499    sq->dma_addr = dma_addr;
 500    sq->sqid = sqid;
 501    sq->size = size;
 502    sq->cqid = cqid;
 503    sq->head = sq->tail = 0;
 504    sq->io_req = g_new(NvmeRequest, sq->size);
 505
 506    QTAILQ_INIT(&sq->req_list);
 507    QTAILQ_INIT(&sq->out_req_list);
 508    for (i = 0; i < sq->size; i++) {
 509        sq->io_req[i].sq = sq;
 510        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 511    }
 512    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 513
 514    assert(n->cq[cqid]);
 515    cq = n->cq[cqid];
 516    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 517    n->sq[sqid] = sq;
 518}
 519
 520static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
 521{
 522    NvmeSQueue *sq;
 523    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
 524
 525    uint16_t cqid = le16_to_cpu(c->cqid);
 526    uint16_t sqid = le16_to_cpu(c->sqid);
 527    uint16_t qsize = le16_to_cpu(c->qsize);
 528    uint16_t qflags = le16_to_cpu(c->sq_flags);
 529    uint64_t prp1 = le64_to_cpu(c->prp1);
 530
 531    trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
 532
 533    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
 534        trace_nvme_err_invalid_create_sq_cqid(cqid);
 535        return NVME_INVALID_CQID | NVME_DNR;
 536    }
 537    if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
 538        trace_nvme_err_invalid_create_sq_sqid(sqid);
 539        return NVME_INVALID_QID | NVME_DNR;
 540    }
 541    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 542        trace_nvme_err_invalid_create_sq_size(qsize);
 543        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 544    }
 545    if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
 546        trace_nvme_err_invalid_create_sq_addr(prp1);
 547        return NVME_INVALID_FIELD | NVME_DNR;
 548    }
 549    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
 550        trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
 551        return NVME_INVALID_FIELD | NVME_DNR;
 552    }
 553    sq = g_malloc0(sizeof(*sq));
 554    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 555    return NVME_SUCCESS;
 556}
 557
 558static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 559{
 560    n->cq[cq->cqid] = NULL;
 561    timer_del(cq->timer);
 562    timer_free(cq->timer);
 563    msix_vector_unuse(&n->parent_obj, cq->vector);
 564    if (cq->cqid) {
 565        g_free(cq);
 566    }
 567}
 568
 569static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
 570{
 571    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 572    NvmeCQueue *cq;
 573    uint16_t qid = le16_to_cpu(c->qid);
 574
 575    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
 576        trace_nvme_err_invalid_del_cq_cqid(qid);
 577        return NVME_INVALID_CQID | NVME_DNR;
 578    }
 579
 580    cq = n->cq[qid];
 581    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
 582        trace_nvme_err_invalid_del_cq_notempty(qid);
 583        return NVME_INVALID_QUEUE_DEL;
 584    }
 585    nvme_irq_deassert(n, cq);
 586    trace_nvme_del_cq(qid);
 587    nvme_free_cq(cq, n);
 588    return NVME_SUCCESS;
 589}
 590
 591static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 592    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
 593{
 594    cq->ctrl = n;
 595    cq->cqid = cqid;
 596    cq->size = size;
 597    cq->dma_addr = dma_addr;
 598    cq->phase = 1;
 599    cq->irq_enabled = irq_enabled;
 600    cq->vector = vector;
 601    cq->head = cq->tail = 0;
 602    QTAILQ_INIT(&cq->req_list);
 603    QTAILQ_INIT(&cq->sq_list);
 604    msix_vector_use(&n->parent_obj, cq->vector);
 605    n->cq[cqid] = cq;
 606    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 607}
 608
 609static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
 610{
 611    NvmeCQueue *cq;
 612    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
 613    uint16_t cqid = le16_to_cpu(c->cqid);
 614    uint16_t vector = le16_to_cpu(c->irq_vector);
 615    uint16_t qsize = le16_to_cpu(c->qsize);
 616    uint16_t qflags = le16_to_cpu(c->cq_flags);
 617    uint64_t prp1 = le64_to_cpu(c->prp1);
 618
 619    trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
 620                         NVME_CQ_FLAGS_IEN(qflags) != 0);
 621
 622    if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
 623        trace_nvme_err_invalid_create_cq_cqid(cqid);
 624        return NVME_INVALID_CQID | NVME_DNR;
 625    }
 626    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 627        trace_nvme_err_invalid_create_cq_size(qsize);
 628        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 629    }
 630    if (unlikely(!prp1)) {
 631        trace_nvme_err_invalid_create_cq_addr(prp1);
 632        return NVME_INVALID_FIELD | NVME_DNR;
 633    }
 634    if (unlikely(vector > n->num_queues)) {
 635        trace_nvme_err_invalid_create_cq_vector(vector);
 636        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 637    }
 638    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
 639        trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
 640        return NVME_INVALID_FIELD | NVME_DNR;
 641    }
 642
 643    cq = g_malloc0(sizeof(*cq));
 644    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 645        NVME_CQ_FLAGS_IEN(qflags));
 646    return NVME_SUCCESS;
 647}
 648
 649static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
 650{
 651    uint64_t prp1 = le64_to_cpu(c->prp1);
 652    uint64_t prp2 = le64_to_cpu(c->prp2);
 653
 654    trace_nvme_identify_ctrl();
 655
 656    return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
 657        prp1, prp2);
 658}
 659
 660static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
 661{
 662    NvmeNamespace *ns;
 663    uint32_t nsid = le32_to_cpu(c->nsid);
 664    uint64_t prp1 = le64_to_cpu(c->prp1);
 665    uint64_t prp2 = le64_to_cpu(c->prp2);
 666
 667    trace_nvme_identify_ns(nsid);
 668
 669    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 670        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 671        return NVME_INVALID_NSID | NVME_DNR;
 672    }
 673
 674    ns = &n->namespaces[nsid - 1];
 675
 676    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
 677        prp1, prp2);
 678}
 679
 680static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
 681{
 682    static const int data_len = 4 * KiB;
 683    uint32_t min_nsid = le32_to_cpu(c->nsid);
 684    uint64_t prp1 = le64_to_cpu(c->prp1);
 685    uint64_t prp2 = le64_to_cpu(c->prp2);
 686    uint32_t *list;
 687    uint16_t ret;
 688    int i, j = 0;
 689
 690    trace_nvme_identify_nslist(min_nsid);
 691
 692    list = g_malloc0(data_len);
 693    for (i = 0; i < n->num_namespaces; i++) {
 694        if (i < min_nsid) {
 695            continue;
 696        }
 697        list[j++] = cpu_to_le32(i + 1);
 698        if (j == data_len / sizeof(uint32_t)) {
 699            break;
 700        }
 701    }
 702    ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
 703    g_free(list);
 704    return ret;
 705}
 706
 707static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
 708{
 709    NvmeIdentify *c = (NvmeIdentify *)cmd;
 710
 711    switch (le32_to_cpu(c->cns)) {
 712    case 0x00:
 713        return nvme_identify_ns(n, c);
 714    case 0x01:
 715        return nvme_identify_ctrl(n, c);
 716    case 0x02:
 717        return nvme_identify_nslist(n, c);
 718    default:
 719        trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
 720        return NVME_INVALID_FIELD | NVME_DNR;
 721    }
 722}
 723
 724static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
 725{
 726    trace_nvme_setfeat_timestamp(ts);
 727
 728    n->host_timestamp = le64_to_cpu(ts);
 729    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 730}
 731
 732static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
 733{
 734    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 735    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
 736
 737    union nvme_timestamp {
 738        struct {
 739            uint64_t timestamp:48;
 740            uint64_t sync:1;
 741            uint64_t origin:3;
 742            uint64_t rsvd1:12;
 743        };
 744        uint64_t all;
 745    };
 746
 747    union nvme_timestamp ts;
 748    ts.all = 0;
 749
 750    /*
 751     * If the sum of the Timestamp value set by the host and the elapsed
 752     * time exceeds 2^48, the value returned should be reduced modulo 2^48.
 753     */
 754    ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
 755
 756    /* If the host timestamp is non-zero, set the timestamp origin */
 757    ts.origin = n->host_timestamp ? 0x01 : 0x00;
 758
 759    trace_nvme_getfeat_timestamp(ts.all);
 760
 761    return cpu_to_le64(ts.all);
 762}
 763
 764static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
 765{
 766    uint64_t prp1 = le64_to_cpu(cmd->prp1);
 767    uint64_t prp2 = le64_to_cpu(cmd->prp2);
 768
 769    uint64_t timestamp = nvme_get_timestamp(n);
 770
 771    return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
 772                                 sizeof(timestamp), prp1, prp2);
 773}
 774
 775static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 776{
 777    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 778    uint32_t result;
 779
 780    switch (dw10) {
 781    case NVME_VOLATILE_WRITE_CACHE:
 782        result = blk_enable_write_cache(n->conf.blk);
 783        trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
 784        break;
 785    case NVME_NUMBER_OF_QUEUES:
 786        result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 787        trace_nvme_getfeat_numq(result);
 788        break;
 789    case NVME_TIMESTAMP:
 790        return nvme_get_feature_timestamp(n, cmd);
 791        break;
 792    default:
 793        trace_nvme_err_invalid_getfeat(dw10);
 794        return NVME_INVALID_FIELD | NVME_DNR;
 795    }
 796
 797    req->cqe.result = result;
 798    return NVME_SUCCESS;
 799}
 800
 801static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
 802{
 803    uint16_t ret;
 804    uint64_t timestamp;
 805    uint64_t prp1 = le64_to_cpu(cmd->prp1);
 806    uint64_t prp2 = le64_to_cpu(cmd->prp2);
 807
 808    ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
 809                                sizeof(timestamp), prp1, prp2);
 810    if (ret != NVME_SUCCESS) {
 811        return ret;
 812    }
 813
 814    nvme_set_timestamp(n, timestamp);
 815
 816    return NVME_SUCCESS;
 817}
 818
 819static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 820{
 821    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 822    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 823
 824    switch (dw10) {
 825    case NVME_VOLATILE_WRITE_CACHE:
 826        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
 827        break;
 828    case NVME_NUMBER_OF_QUEUES:
 829        trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
 830                                ((dw11 >> 16) & 0xFFFF) + 1,
 831                                n->num_queues - 1, n->num_queues - 1);
 832        req->cqe.result =
 833            cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 834        break;
 835
 836    case NVME_TIMESTAMP:
 837        return nvme_set_feature_timestamp(n, cmd);
 838        break;
 839
 840    default:
 841        trace_nvme_err_invalid_setfeat(dw10);
 842        return NVME_INVALID_FIELD | NVME_DNR;
 843    }
 844    return NVME_SUCCESS;
 845}
 846
 847static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 848{
 849    switch (cmd->opcode) {
 850    case NVME_ADM_CMD_DELETE_SQ:
 851        return nvme_del_sq(n, cmd);
 852    case NVME_ADM_CMD_CREATE_SQ:
 853        return nvme_create_sq(n, cmd);
 854    case NVME_ADM_CMD_DELETE_CQ:
 855        return nvme_del_cq(n, cmd);
 856    case NVME_ADM_CMD_CREATE_CQ:
 857        return nvme_create_cq(n, cmd);
 858    case NVME_ADM_CMD_IDENTIFY:
 859        return nvme_identify(n, cmd);
 860    case NVME_ADM_CMD_SET_FEATURES:
 861        return nvme_set_feature(n, cmd, req);
 862    case NVME_ADM_CMD_GET_FEATURES:
 863        return nvme_get_feature(n, cmd, req);
 864    default:
 865        trace_nvme_err_invalid_admin_opc(cmd->opcode);
 866        return NVME_INVALID_OPCODE | NVME_DNR;
 867    }
 868}
 869
 870static void nvme_process_sq(void *opaque)
 871{
 872    NvmeSQueue *sq = opaque;
 873    NvmeCtrl *n = sq->ctrl;
 874    NvmeCQueue *cq = n->cq[sq->cqid];
 875
 876    uint16_t status;
 877    hwaddr addr;
 878    NvmeCmd cmd;
 879    NvmeRequest *req;
 880
 881    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 882        addr = sq->dma_addr + sq->head * n->sqe_size;
 883        nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
 884        nvme_inc_sq_head(sq);
 885
 886        req = QTAILQ_FIRST(&sq->req_list);
 887        QTAILQ_REMOVE(&sq->req_list, req, entry);
 888        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 889        memset(&req->cqe, 0, sizeof(req->cqe));
 890        req->cqe.cid = cmd.cid;
 891
 892        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
 893            nvme_admin_cmd(n, &cmd, req);
 894        if (status != NVME_NO_COMPLETE) {
 895            req->status = status;
 896            nvme_enqueue_req_completion(cq, req);
 897        }
 898    }
 899}
 900
 901static void nvme_clear_ctrl(NvmeCtrl *n)
 902{
 903    int i;
 904
 905    blk_drain(n->conf.blk);
 906
 907    for (i = 0; i < n->num_queues; i++) {
 908        if (n->sq[i] != NULL) {
 909            nvme_free_sq(n->sq[i], n);
 910        }
 911    }
 912    for (i = 0; i < n->num_queues; i++) {
 913        if (n->cq[i] != NULL) {
 914            nvme_free_cq(n->cq[i], n);
 915        }
 916    }
 917
 918    blk_flush(n->conf.blk);
 919    n->bar.cc = 0;
 920}
 921
 922static int nvme_start_ctrl(NvmeCtrl *n)
 923{
 924    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
 925    uint32_t page_size = 1 << page_bits;
 926
 927    if (unlikely(n->cq[0])) {
 928        trace_nvme_err_startfail_cq();
 929        return -1;
 930    }
 931    if (unlikely(n->sq[0])) {
 932        trace_nvme_err_startfail_sq();
 933        return -1;
 934    }
 935    if (unlikely(!n->bar.asq)) {
 936        trace_nvme_err_startfail_nbarasq();
 937        return -1;
 938    }
 939    if (unlikely(!n->bar.acq)) {
 940        trace_nvme_err_startfail_nbaracq();
 941        return -1;
 942    }
 943    if (unlikely(n->bar.asq & (page_size - 1))) {
 944        trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
 945        return -1;
 946    }
 947    if (unlikely(n->bar.acq & (page_size - 1))) {
 948        trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
 949        return -1;
 950    }
 951    if (unlikely(NVME_CC_MPS(n->bar.cc) <
 952                 NVME_CAP_MPSMIN(n->bar.cap))) {
 953        trace_nvme_err_startfail_page_too_small(
 954                    NVME_CC_MPS(n->bar.cc),
 955                    NVME_CAP_MPSMIN(n->bar.cap));
 956        return -1;
 957    }
 958    if (unlikely(NVME_CC_MPS(n->bar.cc) >
 959                 NVME_CAP_MPSMAX(n->bar.cap))) {
 960        trace_nvme_err_startfail_page_too_large(
 961                    NVME_CC_MPS(n->bar.cc),
 962                    NVME_CAP_MPSMAX(n->bar.cap));
 963        return -1;
 964    }
 965    if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
 966                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
 967        trace_nvme_err_startfail_cqent_too_small(
 968                    NVME_CC_IOCQES(n->bar.cc),
 969                    NVME_CTRL_CQES_MIN(n->bar.cap));
 970        return -1;
 971    }
 972    if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
 973                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
 974        trace_nvme_err_startfail_cqent_too_large(
 975                    NVME_CC_IOCQES(n->bar.cc),
 976                    NVME_CTRL_CQES_MAX(n->bar.cap));
 977        return -1;
 978    }
 979    if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
 980                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
 981        trace_nvme_err_startfail_sqent_too_small(
 982                    NVME_CC_IOSQES(n->bar.cc),
 983                    NVME_CTRL_SQES_MIN(n->bar.cap));
 984        return -1;
 985    }
 986    if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
 987                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
 988        trace_nvme_err_startfail_sqent_too_large(
 989                    NVME_CC_IOSQES(n->bar.cc),
 990                    NVME_CTRL_SQES_MAX(n->bar.cap));
 991        return -1;
 992    }
 993    if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
 994        trace_nvme_err_startfail_asqent_sz_zero();
 995        return -1;
 996    }
 997    if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
 998        trace_nvme_err_startfail_acqent_sz_zero();
 999        return -1;
1000    }
1001
1002    n->page_bits = page_bits;
1003    n->page_size = page_size;
1004    n->max_prp_ents = n->page_size / sizeof(uint64_t);
1005    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1006    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1007    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1008        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1009    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1010        NVME_AQA_ASQS(n->bar.aqa) + 1);
1011
1012    nvme_set_timestamp(n, 0ULL);
1013
1014    return 0;
1015}
1016
1017static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1018    unsigned size)
1019{
1020    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1021        NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
1022                       "MMIO write not 32-bit aligned,"
1023                       " offset=0x%"PRIx64"", offset);
1024        /* should be ignored, fall through for now */
1025    }
1026
1027    if (unlikely(size < sizeof(uint32_t))) {
1028        NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
1029                       "MMIO write smaller than 32-bits,"
1030                       " offset=0x%"PRIx64", size=%u",
1031                       offset, size);
1032        /* should be ignored, fall through for now */
1033    }
1034
1035    switch (offset) {
1036    case 0xc:   /* INTMS */
1037        if (unlikely(msix_enabled(&(n->parent_obj)))) {
1038            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1039                           "undefined access to interrupt mask set"
1040                           " when MSI-X is enabled");
1041            /* should be ignored, fall through for now */
1042        }
1043        n->bar.intms |= data & 0xffffffff;
1044        n->bar.intmc = n->bar.intms;
1045        trace_nvme_mmio_intm_set(data & 0xffffffff,
1046                                 n->bar.intmc);
1047        nvme_irq_check(n);
1048        break;
1049    case 0x10:  /* INTMC */
1050        if (unlikely(msix_enabled(&(n->parent_obj)))) {
1051            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1052                           "undefined access to interrupt mask clr"
1053                           " when MSI-X is enabled");
1054            /* should be ignored, fall through for now */
1055        }
1056        n->bar.intms &= ~(data & 0xffffffff);
1057        n->bar.intmc = n->bar.intms;
1058        trace_nvme_mmio_intm_clr(data & 0xffffffff,
1059                                 n->bar.intmc);
1060        nvme_irq_check(n);
1061        break;
1062    case 0x14:  /* CC */
1063        trace_nvme_mmio_cfg(data & 0xffffffff);
1064        /* Windows first sends data, then sends enable bit */
1065        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1066            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1067        {
1068            n->bar.cc = data;
1069        }
1070
1071        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1072            n->bar.cc = data;
1073            if (unlikely(nvme_start_ctrl(n))) {
1074                trace_nvme_err_startfail();
1075                n->bar.csts = NVME_CSTS_FAILED;
1076            } else {
1077                trace_nvme_mmio_start_success();
1078                n->bar.csts = NVME_CSTS_READY;
1079            }
1080        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1081            trace_nvme_mmio_stopped();
1082            nvme_clear_ctrl(n);
1083            n->bar.csts &= ~NVME_CSTS_READY;
1084        }
1085        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1086            trace_nvme_mmio_shutdown_set();
1087            nvme_clear_ctrl(n);
1088            n->bar.cc = data;
1089            n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1090        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1091            trace_nvme_mmio_shutdown_cleared();
1092            n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1093            n->bar.cc = data;
1094        }
1095        break;
1096    case 0x1C:  /* CSTS */
1097        if (data & (1 << 4)) {
1098            NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
1099                           "attempted to W1C CSTS.NSSRO"
1100                           " but CAP.NSSRS is zero (not supported)");
1101        } else if (data != 0) {
1102            NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
1103                           "attempted to set a read only bit"
1104                           " of controller status");
1105        }
1106        break;
1107    case 0x20:  /* NSSR */
1108        if (data == 0x4E564D65) {
1109            trace_nvme_ub_mmiowr_ssreset_unsupported();
1110        } else {
1111            /* The spec says that writes of other values have no effect */
1112            return;
1113        }
1114        break;
1115    case 0x24:  /* AQA */
1116        n->bar.aqa = data & 0xffffffff;
1117        trace_nvme_mmio_aqattr(data & 0xffffffff);
1118        break;
1119    case 0x28:  /* ASQ */
1120        n->bar.asq = data;
1121        trace_nvme_mmio_asqaddr(data);
1122        break;
1123    case 0x2c:  /* ASQ hi */
1124        n->bar.asq |= data << 32;
1125        trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1126        break;
1127    case 0x30:  /* ACQ */
1128        trace_nvme_mmio_acqaddr(data);
1129        n->bar.acq = data;
1130        break;
1131    case 0x34:  /* ACQ hi */
1132        n->bar.acq |= data << 32;
1133        trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1134        break;
1135    case 0x38:  /* CMBLOC */
1136        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1137                       "invalid write to reserved CMBLOC"
1138                       " when CMBSZ is zero, ignored");
1139        return;
1140    case 0x3C:  /* CMBSZ */
1141        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1142                       "invalid write to read only CMBSZ, ignored");
1143        return;
1144    default:
1145        NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1146                       "invalid MMIO write,"
1147                       " offset=0x%"PRIx64", data=%"PRIx64"",
1148                       offset, data);
1149        break;
1150    }
1151}
1152
1153static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1154{
1155    NvmeCtrl *n = (NvmeCtrl *)opaque;
1156    uint8_t *ptr = (uint8_t *)&n->bar;
1157    uint64_t val = 0;
1158
1159    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1160        NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1161                       "MMIO read not 32-bit aligned,"
1162                       " offset=0x%"PRIx64"", addr);
1163        /* should RAZ, fall through for now */
1164    } else if (unlikely(size < sizeof(uint32_t))) {
1165        NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1166                       "MMIO read smaller than 32-bits,"
1167                       " offset=0x%"PRIx64"", addr);
1168        /* should RAZ, fall through for now */
1169    }
1170
1171    if (addr < sizeof(n->bar)) {
1172        memcpy(&val, ptr + addr, size);
1173    } else {
1174        NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1175                       "MMIO read beyond last register,"
1176                       " offset=0x%"PRIx64", returning 0", addr);
1177    }
1178
1179    return val;
1180}
1181
1182static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1183{
1184    uint32_t qid;
1185
1186    if (unlikely(addr & ((1 << 2) - 1))) {
1187        NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1188                       "doorbell write not 32-bit aligned,"
1189                       " offset=0x%"PRIx64", ignoring", addr);
1190        return;
1191    }
1192
1193    if (((addr - 0x1000) >> 2) & 1) {
1194        /* Completion queue doorbell write */
1195
1196        uint16_t new_head = val & 0xffff;
1197        int start_sqs;
1198        NvmeCQueue *cq;
1199
1200        qid = (addr - (0x1000 + (1 << 2))) >> 3;
1201        if (unlikely(nvme_check_cqid(n, qid))) {
1202            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1203                           "completion queue doorbell write"
1204                           " for nonexistent queue,"
1205                           " sqid=%"PRIu32", ignoring", qid);
1206            return;
1207        }
1208
1209        cq = n->cq[qid];
1210        if (unlikely(new_head >= cq->size)) {
1211            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1212                           "completion queue doorbell write value"
1213                           " beyond queue size, sqid=%"PRIu32","
1214                           " new_head=%"PRIu16", ignoring",
1215                           qid, new_head);
1216            return;
1217        }
1218
1219        start_sqs = nvme_cq_full(cq) ? 1 : 0;
1220        cq->head = new_head;
1221        if (start_sqs) {
1222            NvmeSQueue *sq;
1223            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1224                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1225            }
1226            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1227        }
1228
1229        if (cq->tail == cq->head) {
1230            nvme_irq_deassert(n, cq);
1231        }
1232    } else {
1233        /* Submission queue doorbell write */
1234
1235        uint16_t new_tail = val & 0xffff;
1236        NvmeSQueue *sq;
1237
1238        qid = (addr - 0x1000) >> 3;
1239        if (unlikely(nvme_check_sqid(n, qid))) {
1240            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1241                           "submission queue doorbell write"
1242                           " for nonexistent queue,"
1243                           " sqid=%"PRIu32", ignoring", qid);
1244            return;
1245        }
1246
1247        sq = n->sq[qid];
1248        if (unlikely(new_tail >= sq->size)) {
1249            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1250                           "submission queue doorbell write value"
1251                           " beyond queue size, sqid=%"PRIu32","
1252                           " new_tail=%"PRIu16", ignoring",
1253                           qid, new_tail);
1254            return;
1255        }
1256
1257        sq->tail = new_tail;
1258        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1259    }
1260}
1261
1262static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1263    unsigned size)
1264{
1265    NvmeCtrl *n = (NvmeCtrl *)opaque;
1266    if (addr < sizeof(n->bar)) {
1267        nvme_write_bar(n, addr, data, size);
1268    } else if (addr >= 0x1000) {
1269        nvme_process_db(n, addr, data);
1270    }
1271}
1272
1273static const MemoryRegionOps nvme_mmio_ops = {
1274    .read = nvme_mmio_read,
1275    .write = nvme_mmio_write,
1276    .endianness = DEVICE_LITTLE_ENDIAN,
1277    .impl = {
1278        .min_access_size = 2,
1279        .max_access_size = 8,
1280    },
1281};
1282
1283static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1284    unsigned size)
1285{
1286    NvmeCtrl *n = (NvmeCtrl *)opaque;
1287    stn_le_p(&n->cmbuf[addr], size, data);
1288}
1289
1290static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1291{
1292    NvmeCtrl *n = (NvmeCtrl *)opaque;
1293    return ldn_le_p(&n->cmbuf[addr], size);
1294}
1295
1296static const MemoryRegionOps nvme_cmb_ops = {
1297    .read = nvme_cmb_read,
1298    .write = nvme_cmb_write,
1299    .endianness = DEVICE_LITTLE_ENDIAN,
1300    .impl = {
1301        .min_access_size = 1,
1302        .max_access_size = 8,
1303    },
1304};
1305
1306static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1307{
1308    NvmeCtrl *n = NVME(pci_dev);
1309    NvmeIdCtrl *id = &n->id_ctrl;
1310
1311    int i;
1312    int64_t bs_size;
1313    uint8_t *pci_conf;
1314
1315    if (!n->num_queues) {
1316        error_setg(errp, "num_queues can't be zero");
1317        return;
1318    }
1319
1320    if (!n->conf.blk) {
1321        error_setg(errp, "drive property not set");
1322        return;
1323    }
1324
1325    bs_size = blk_getlength(n->conf.blk);
1326    if (bs_size < 0) {
1327        error_setg(errp, "could not get backing file size");
1328        return;
1329    }
1330
1331    if (!n->serial) {
1332        error_setg(errp, "serial property not set");
1333        return;
1334    }
1335    blkconf_blocksizes(&n->conf);
1336    if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1337                                       false, errp)) {
1338        return;
1339    }
1340
1341    pci_conf = pci_dev->config;
1342    pci_conf[PCI_INTERRUPT_PIN] = 1;
1343    pci_config_set_prog_interface(pci_dev->config, 0x2);
1344    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1345    pcie_endpoint_cap_init(pci_dev, 0x80);
1346
1347    n->num_namespaces = 1;
1348    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1349    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1350
1351    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1352    n->sq = g_new0(NvmeSQueue *, n->num_queues);
1353    n->cq = g_new0(NvmeCQueue *, n->num_queues);
1354
1355    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1356                          "nvme", n->reg_size);
1357    pci_register_bar(pci_dev, 0,
1358        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1359        &n->iomem);
1360    msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
1361
1362    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1363    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1364    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1365    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1366    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1367    id->rab = 6;
1368    id->ieee[0] = 0x00;
1369    id->ieee[1] = 0x02;
1370    id->ieee[2] = 0xb3;
1371    id->oacs = cpu_to_le16(0);
1372    id->frmw = 7 << 1;
1373    id->lpa = 1 << 0;
1374    id->sqes = (0x6 << 4) | 0x6;
1375    id->cqes = (0x4 << 4) | 0x4;
1376    id->nn = cpu_to_le32(n->num_namespaces);
1377    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1378    id->psd[0].mp = cpu_to_le16(0x9c4);
1379    id->psd[0].enlat = cpu_to_le32(0x10);
1380    id->psd[0].exlat = cpu_to_le32(0x4);
1381    if (blk_enable_write_cache(n->conf.blk)) {
1382        id->vwc = 1;
1383    }
1384
1385    n->bar.cap = 0;
1386    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1387    NVME_CAP_SET_CQR(n->bar.cap, 1);
1388    NVME_CAP_SET_TO(n->bar.cap, 0xf);
1389    NVME_CAP_SET_CSS(n->bar.cap, 1);
1390    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1391
1392    n->bar.vs = 0x00010200;
1393    n->bar.intmc = n->bar.intms = 0;
1394
1395    if (n->cmb_size_mb) {
1396
1397        NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1398        NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1399
1400        NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1401        NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1402        NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1403        NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1404        NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1405        NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1406        NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1407
1408        n->cmbloc = n->bar.cmbloc;
1409        n->cmbsz = n->bar.cmbsz;
1410
1411        n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1412        memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1413                              "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1414        pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1415            PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1416            PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1417
1418    }
1419
1420    for (i = 0; i < n->num_namespaces; i++) {
1421        NvmeNamespace *ns = &n->namespaces[i];
1422        NvmeIdNs *id_ns = &ns->id_ns;
1423        id_ns->nsfeat = 0;
1424        id_ns->nlbaf = 0;
1425        id_ns->flbas = 0;
1426        id_ns->mc = 0;
1427        id_ns->dpc = 0;
1428        id_ns->dps = 0;
1429        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1430        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1431            cpu_to_le64(n->ns_size >>
1432                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1433    }
1434}
1435
1436static void nvme_exit(PCIDevice *pci_dev)
1437{
1438    NvmeCtrl *n = NVME(pci_dev);
1439
1440    nvme_clear_ctrl(n);
1441    g_free(n->namespaces);
1442    g_free(n->cq);
1443    g_free(n->sq);
1444
1445    if (n->cmb_size_mb) {
1446        g_free(n->cmbuf);
1447    }
1448    msix_uninit_exclusive_bar(pci_dev);
1449}
1450
1451static Property nvme_props[] = {
1452    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1453    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1454    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1455    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1456    DEFINE_PROP_END_OF_LIST(),
1457};
1458
1459static const VMStateDescription nvme_vmstate = {
1460    .name = "nvme",
1461    .unmigratable = 1,
1462};
1463
1464static void nvme_class_init(ObjectClass *oc, void *data)
1465{
1466    DeviceClass *dc = DEVICE_CLASS(oc);
1467    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1468
1469    pc->realize = nvme_realize;
1470    pc->exit = nvme_exit;
1471    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1472    pc->vendor_id = PCI_VENDOR_ID_INTEL;
1473    pc->device_id = 0x5845;
1474    pc->revision = 2;
1475
1476    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1477    dc->desc = "Non-Volatile Memory Express";
1478    dc->props = nvme_props;
1479    dc->vmsd = &nvme_vmstate;
1480}
1481
1482static void nvme_instance_init(Object *obj)
1483{
1484    NvmeCtrl *s = NVME(obj);
1485
1486    device_add_bootindex_property(obj, &s->conf.bootindex,
1487                                  "bootindex", "/namespace@1,0",
1488                                  DEVICE(obj), &error_abort);
1489}
1490
1491static const TypeInfo nvme_info = {
1492    .name          = TYPE_NVME,
1493    .parent        = TYPE_PCI_DEVICE,
1494    .instance_size = sizeof(NvmeCtrl),
1495    .class_init    = nvme_class_init,
1496    .instance_init = nvme_instance_init,
1497    .interfaces = (InterfaceInfo[]) {
1498        { INTERFACE_PCIE_DEVICE },
1499        { }
1500    },
1501};
1502
1503static void nvme_register_types(void)
1504{
1505    type_register_static(&nvme_info);
1506}
1507
1508type_init(nvme_register_types)
1509