qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Reference: Xilinx Zynq 7000 reference manual
   5 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
   6 *   - Chapter 19 UART Controller
   7 *   - Appendix B for Register details
   8 *
   9 * Copyright (c) 2010 Xilinx Inc.
  10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11 * Copyright (c) 2012 PetaLogix Pty Ltd.
  12 * Written by Haibing Ma
  13 *            M.Habib
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/sysbus.h"
  26#include "migration/vmstate.h"
  27#include "chardev/char-fe.h"
  28#include "chardev/char-serial.h"
  29#include "qemu/timer.h"
  30#include "qemu/log.h"
  31#include "qemu/module.h"
  32#include "hw/char/cadence_uart.h"
  33#include "hw/irq.h"
  34
  35#ifdef CADENCE_UART_ERR_DEBUG
  36#define DB_PRINT(...) do { \
  37    fprintf(stderr,  ": %s: ", __func__); \
  38    fprintf(stderr, ## __VA_ARGS__); \
  39    } while (0)
  40#else
  41    #define DB_PRINT(...)
  42#endif
  43
  44#define UART_SR_INTR_RTRIG     0x00000001
  45#define UART_SR_INTR_REMPTY    0x00000002
  46#define UART_SR_INTR_RFUL      0x00000004
  47#define UART_SR_INTR_TEMPTY    0x00000008
  48#define UART_SR_INTR_TFUL      0x00000010
  49/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  50#define UART_SR_TTRIG          0x00002000
  51#define UART_INTR_TTRIG        0x00000400
  52/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  53 * SR, then the same bit in CISR is set high too */
  54#define UART_SR_TO_CISR_MASK   0x0000001F
  55
  56#define UART_INTR_ROVR         0x00000020
  57#define UART_INTR_FRAME        0x00000040
  58#define UART_INTR_PARE         0x00000080
  59#define UART_INTR_TIMEOUT      0x00000100
  60#define UART_INTR_DMSI         0x00000200
  61#define UART_INTR_TOVR         0x00001000
  62
  63#define UART_SR_RACTIVE    0x00000400
  64#define UART_SR_TACTIVE    0x00000800
  65#define UART_SR_FDELT      0x00001000
  66
  67#define UART_CR_RXRST       0x00000001
  68#define UART_CR_TXRST       0x00000002
  69#define UART_CR_RX_EN       0x00000004
  70#define UART_CR_RX_DIS      0x00000008
  71#define UART_CR_TX_EN       0x00000010
  72#define UART_CR_TX_DIS      0x00000020
  73#define UART_CR_RST_TO      0x00000040
  74#define UART_CR_STARTBRK    0x00000080
  75#define UART_CR_STOPBRK     0x00000100
  76
  77#define UART_MR_CLKS            0x00000001
  78#define UART_MR_CHRL            0x00000006
  79#define UART_MR_CHRL_SH         1
  80#define UART_MR_PAR             0x00000038
  81#define UART_MR_PAR_SH          3
  82#define UART_MR_NBSTOP          0x000000C0
  83#define UART_MR_NBSTOP_SH       6
  84#define UART_MR_CHMODE          0x00000300
  85#define UART_MR_CHMODE_SH       8
  86#define UART_MR_UCLKEN          0x00000400
  87#define UART_MR_IRMODE          0x00000800
  88
  89#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  90#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  91#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  92#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  93#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  94#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  95#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  96#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
  97#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
  98#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
  99
 100#define UART_INPUT_CLK         50000000
 101
 102#define R_CR       (0x00/4)
 103#define R_MR       (0x04/4)
 104#define R_IER      (0x08/4)
 105#define R_IDR      (0x0C/4)
 106#define R_IMR      (0x10/4)
 107#define R_CISR     (0x14/4)
 108#define R_BRGR     (0x18/4)
 109#define R_RTOR     (0x1C/4)
 110#define R_RTRIG    (0x20/4)
 111#define R_MCR      (0x24/4)
 112#define R_MSR      (0x28/4)
 113#define R_SR       (0x2C/4)
 114#define R_TX_RX    (0x30/4)
 115#define R_BDIV     (0x34/4)
 116#define R_FDEL     (0x38/4)
 117#define R_PMIN     (0x3C/4)
 118#define R_PWID     (0x40/4)
 119#define R_TTRIG    (0x44/4)
 120
 121
 122static void uart_update_status(CadenceUARTState *s)
 123{
 124    s->r[R_SR] = 0;
 125
 126    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 127                                                           : 0;
 128    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 129    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 130
 131    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 132                                                           : 0;
 133    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 134    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 135
 136    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 137    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 138    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 139}
 140
 141static void fifo_trigger_update(void *opaque)
 142{
 143    CadenceUARTState *s = opaque;
 144
 145    if (s->r[R_RTOR]) {
 146        s->r[R_CISR] |= UART_INTR_TIMEOUT;
 147        uart_update_status(s);
 148    }
 149}
 150
 151static void uart_rx_reset(CadenceUARTState *s)
 152{
 153    s->rx_wpos = 0;
 154    s->rx_count = 0;
 155    qemu_chr_fe_accept_input(&s->chr);
 156}
 157
 158static void uart_tx_reset(CadenceUARTState *s)
 159{
 160    s->tx_count = 0;
 161}
 162
 163static void uart_send_breaks(CadenceUARTState *s)
 164{
 165    int break_enabled = 1;
 166
 167    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 168                      &break_enabled);
 169}
 170
 171static void uart_parameters_setup(CadenceUARTState *s)
 172{
 173    QEMUSerialSetParams ssp;
 174    unsigned int baud_rate, packet_size;
 175
 176    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 177            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 178
 179    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 180    packet_size = 1;
 181
 182    switch (s->r[R_MR] & UART_MR_PAR) {
 183    case UART_PARITY_EVEN:
 184        ssp.parity = 'E';
 185        packet_size++;
 186        break;
 187    case UART_PARITY_ODD:
 188        ssp.parity = 'O';
 189        packet_size++;
 190        break;
 191    default:
 192        ssp.parity = 'N';
 193        break;
 194    }
 195
 196    switch (s->r[R_MR] & UART_MR_CHRL) {
 197    case UART_DATA_BITS_6:
 198        ssp.data_bits = 6;
 199        break;
 200    case UART_DATA_BITS_7:
 201        ssp.data_bits = 7;
 202        break;
 203    default:
 204        ssp.data_bits = 8;
 205        break;
 206    }
 207
 208    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 209    case UART_STOP_BITS_1:
 210        ssp.stop_bits = 1;
 211        break;
 212    default:
 213        ssp.stop_bits = 2;
 214        break;
 215    }
 216
 217    packet_size += ssp.data_bits + ssp.stop_bits;
 218    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 219    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 220}
 221
 222static int uart_can_receive(void *opaque)
 223{
 224    CadenceUARTState *s = opaque;
 225    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 226    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 227
 228    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 229        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 230    }
 231    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 232        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 233    }
 234    return ret;
 235}
 236
 237static void uart_ctrl_update(CadenceUARTState *s)
 238{
 239    if (s->r[R_CR] & UART_CR_TXRST) {
 240        uart_tx_reset(s);
 241    }
 242
 243    if (s->r[R_CR] & UART_CR_RXRST) {
 244        uart_rx_reset(s);
 245    }
 246
 247    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 248
 249    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 250        uart_send_breaks(s);
 251    }
 252}
 253
 254static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 255{
 256    CadenceUARTState *s = opaque;
 257    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 258    int i;
 259
 260    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 261        return;
 262    }
 263
 264    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 265        s->r[R_CISR] |= UART_INTR_ROVR;
 266    } else {
 267        for (i = 0; i < size; i++) {
 268            s->rx_fifo[s->rx_wpos] = buf[i];
 269            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 270            s->rx_count++;
 271        }
 272        timer_mod(s->fifo_trigger_handle, new_rx_time +
 273                                                (s->char_tx_time * 4));
 274    }
 275    uart_update_status(s);
 276}
 277
 278static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 279                                  void *opaque)
 280{
 281    CadenceUARTState *s = opaque;
 282    int ret;
 283
 284    /* instant drain the fifo when there's no back-end */
 285    if (!qemu_chr_fe_backend_connected(&s->chr)) {
 286        s->tx_count = 0;
 287        return FALSE;
 288    }
 289
 290    if (!s->tx_count) {
 291        return FALSE;
 292    }
 293
 294    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
 295
 296    if (ret >= 0) {
 297        s->tx_count -= ret;
 298        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 299    }
 300
 301    if (s->tx_count) {
 302        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
 303                                        cadence_uart_xmit, s);
 304        if (!r) {
 305            s->tx_count = 0;
 306            return FALSE;
 307        }
 308    }
 309
 310    uart_update_status(s);
 311    return FALSE;
 312}
 313
 314static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 315                               int size)
 316{
 317    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 318        return;
 319    }
 320
 321    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 322        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 323        /*
 324         * This can only be a guest error via a bad tx fifo register push,
 325         * as can_receive() should stop remote loop and echo modes ever getting
 326         * us to here.
 327         */
 328        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 329        s->r[R_CISR] |= UART_INTR_ROVR;
 330    }
 331
 332    memcpy(s->tx_fifo + s->tx_count, buf, size);
 333    s->tx_count += size;
 334
 335    cadence_uart_xmit(NULL, G_IO_OUT, s);
 336}
 337
 338static void uart_receive(void *opaque, const uint8_t *buf, int size)
 339{
 340    CadenceUARTState *s = opaque;
 341    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 342
 343    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 344        uart_write_rx_fifo(opaque, buf, size);
 345    }
 346    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 347        uart_write_tx_fifo(s, buf, size);
 348    }
 349}
 350
 351static void uart_event(void *opaque, int event)
 352{
 353    CadenceUARTState *s = opaque;
 354    uint8_t buf = '\0';
 355
 356    if (event == CHR_EVENT_BREAK) {
 357        uart_write_rx_fifo(opaque, &buf, 1);
 358    }
 359
 360    uart_update_status(s);
 361}
 362
 363static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 364{
 365    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 366        return;
 367    }
 368
 369    if (s->rx_count) {
 370        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 371                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 372        *c = s->rx_fifo[rx_rpos];
 373        s->rx_count--;
 374
 375        qemu_chr_fe_accept_input(&s->chr);
 376    } else {
 377        *c = 0;
 378    }
 379
 380    uart_update_status(s);
 381}
 382
 383static void uart_write(void *opaque, hwaddr offset,
 384                          uint64_t value, unsigned size)
 385{
 386    CadenceUARTState *s = opaque;
 387
 388    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 389    offset >>= 2;
 390    if (offset >= CADENCE_UART_R_MAX) {
 391        return;
 392    }
 393    switch (offset) {
 394    case R_IER: /* ier (wts imr) */
 395        s->r[R_IMR] |= value;
 396        break;
 397    case R_IDR: /* idr (wtc imr) */
 398        s->r[R_IMR] &= ~value;
 399        break;
 400    case R_IMR: /* imr (read only) */
 401        break;
 402    case R_CISR: /* cisr (wtc) */
 403        s->r[R_CISR] &= ~value;
 404        break;
 405    case R_TX_RX: /* UARTDR */
 406        switch (s->r[R_MR] & UART_MR_CHMODE) {
 407        case NORMAL_MODE:
 408            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 409            break;
 410        case LOCAL_LOOPBACK:
 411            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 412            break;
 413        }
 414        break;
 415    case R_BRGR: /* Baud rate generator */
 416        if (value >= 0x01) {
 417            s->r[offset] = value & 0xFFFF;
 418        }
 419        break;
 420    case R_BDIV:    /* Baud rate divider */
 421        if (value >= 0x04) {
 422            s->r[offset] = value & 0xFF;
 423        }
 424        break;
 425    default:
 426        s->r[offset] = value;
 427    }
 428
 429    switch (offset) {
 430    case R_CR:
 431        uart_ctrl_update(s);
 432        break;
 433    case R_MR:
 434        uart_parameters_setup(s);
 435        break;
 436    }
 437    uart_update_status(s);
 438}
 439
 440static uint64_t uart_read(void *opaque, hwaddr offset,
 441        unsigned size)
 442{
 443    CadenceUARTState *s = opaque;
 444    uint32_t c = 0;
 445
 446    offset >>= 2;
 447    if (offset >= CADENCE_UART_R_MAX) {
 448        c = 0;
 449    } else if (offset == R_TX_RX) {
 450        uart_read_rx_fifo(s, &c);
 451    } else {
 452       c = s->r[offset];
 453    }
 454
 455    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 456    return c;
 457}
 458
 459static const MemoryRegionOps uart_ops = {
 460    .read = uart_read,
 461    .write = uart_write,
 462    .endianness = DEVICE_NATIVE_ENDIAN,
 463};
 464
 465static void cadence_uart_reset(DeviceState *dev)
 466{
 467    CadenceUARTState *s = CADENCE_UART(dev);
 468
 469    s->r[R_CR] = 0x00000128;
 470    s->r[R_IMR] = 0;
 471    s->r[R_CISR] = 0;
 472    s->r[R_RTRIG] = 0x00000020;
 473    s->r[R_BRGR] = 0x0000028B;
 474    s->r[R_BDIV] = 0x0000000F;
 475    s->r[R_TTRIG] = 0x00000020;
 476
 477    uart_rx_reset(s);
 478    uart_tx_reset(s);
 479
 480    uart_update_status(s);
 481}
 482
 483static void cadence_uart_realize(DeviceState *dev, Error **errp)
 484{
 485    CadenceUARTState *s = CADENCE_UART(dev);
 486
 487    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 488                                          fifo_trigger_update, s);
 489
 490    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
 491                             uart_event, NULL, s, NULL, true);
 492}
 493
 494static void cadence_uart_init(Object *obj)
 495{
 496    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 497    CadenceUARTState *s = CADENCE_UART(obj);
 498
 499    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 500    sysbus_init_mmio(sbd, &s->iomem);
 501    sysbus_init_irq(sbd, &s->irq);
 502
 503    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 504}
 505
 506static int cadence_uart_post_load(void *opaque, int version_id)
 507{
 508    CadenceUARTState *s = opaque;
 509
 510    /* Ensure these two aren't invalid numbers */
 511    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
 512        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
 513        /* Value is invalid, abort */
 514        return 1;
 515    }
 516
 517    uart_parameters_setup(s);
 518    uart_update_status(s);
 519    return 0;
 520}
 521
 522static const VMStateDescription vmstate_cadence_uart = {
 523    .name = "cadence_uart",
 524    .version_id = 2,
 525    .minimum_version_id = 2,
 526    .post_load = cadence_uart_post_load,
 527    .fields = (VMStateField[]) {
 528        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 529        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 530                            CADENCE_UART_RX_FIFO_SIZE),
 531        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 532                            CADENCE_UART_TX_FIFO_SIZE),
 533        VMSTATE_UINT32(rx_count, CadenceUARTState),
 534        VMSTATE_UINT32(tx_count, CadenceUARTState),
 535        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 536        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 537        VMSTATE_END_OF_LIST()
 538    }
 539};
 540
 541static Property cadence_uart_properties[] = {
 542    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 543    DEFINE_PROP_END_OF_LIST(),
 544};
 545
 546static void cadence_uart_class_init(ObjectClass *klass, void *data)
 547{
 548    DeviceClass *dc = DEVICE_CLASS(klass);
 549
 550    dc->realize = cadence_uart_realize;
 551    dc->vmsd = &vmstate_cadence_uart;
 552    dc->reset = cadence_uart_reset;
 553    dc->props = cadence_uart_properties;
 554  }
 555
 556static const TypeInfo cadence_uart_info = {
 557    .name          = TYPE_CADENCE_UART,
 558    .parent        = TYPE_SYS_BUS_DEVICE,
 559    .instance_size = sizeof(CadenceUARTState),
 560    .instance_init = cadence_uart_init,
 561    .class_init    = cadence_uart_class_init,
 562};
 563
 564static void cadence_uart_register_types(void)
 565{
 566    type_register_static(&cadence_uart_info);
 567}
 568
 569type_init(cadence_uart_register_types)
 570