qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/timer.h"
  11#include "hw/ptimer.h"
  12#include "migration/vmstate.h"
  13#include "qemu/host-utils.h"
  14#include "sysemu/replay.h"
  15#include "sysemu/qtest.h"
  16#include "block/aio.h"
  17#include "sysemu/cpus.h"
  18
  19#define DELTA_ADJUST     1
  20#define DELTA_NO_ADJUST -1
  21
  22struct ptimer_state
  23{
  24    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  25    uint64_t limit;
  26    uint64_t delta;
  27    uint32_t period_frac;
  28    int64_t period;
  29    int64_t last_event;
  30    int64_t next_event;
  31    uint8_t policy_mask;
  32    QEMUTimer *timer;
  33    ptimer_cb callback;
  34    void *callback_opaque;
  35    /*
  36     * These track whether we're in a transaction block, and if we
  37     * need to do a timer reload when the block finishes. They don't
  38     * need to be migrated because migration can never happen in the
  39     * middle of a transaction block.
  40     */
  41    bool in_transaction;
  42    bool need_reload;
  43};
  44
  45/* Use a bottom-half routine to avoid reentrancy issues.  */
  46static void ptimer_trigger(ptimer_state *s)
  47{
  48    s->callback(s->callback_opaque);
  49}
  50
  51static void ptimer_reload(ptimer_state *s, int delta_adjust)
  52{
  53    uint32_t period_frac;
  54    uint64_t period;
  55    uint64_t delta;
  56    bool suppress_trigger = false;
  57
  58    /*
  59     * Note that if delta_adjust is 0 then we must be here because of
  60     * a count register write or timer start, not because of timer expiry.
  61     * In that case the policy might require us to suppress the timer trigger
  62     * that we would otherwise generate for a zero delta.
  63     */
  64    if (delta_adjust == 0 &&
  65        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
  66        suppress_trigger = true;
  67    }
  68    if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
  69        && !suppress_trigger) {
  70        ptimer_trigger(s);
  71    }
  72
  73    /*
  74     * Note that ptimer_trigger() might call the device callback function,
  75     * which can then modify timer state, so we must not cache any fields
  76     * from ptimer_state until after we have called it.
  77     */
  78    delta = s->delta;
  79    period = s->period;
  80    period_frac = s->period_frac;
  81
  82    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  83        delta = s->delta = s->limit;
  84    }
  85
  86    if (s->period == 0) {
  87        if (!qtest_enabled()) {
  88            fprintf(stderr, "Timer with period zero, disabling\n");
  89        }
  90        timer_del(s->timer);
  91        s->enabled = 0;
  92        return;
  93    }
  94
  95    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
  96        if (delta_adjust != DELTA_NO_ADJUST) {
  97            delta += delta_adjust;
  98        }
  99    }
 100
 101    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
 102        if (s->enabled == 1 && s->limit == 0) {
 103            delta = 1;
 104        }
 105    }
 106
 107    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 108        if (delta_adjust != DELTA_NO_ADJUST) {
 109            delta = 1;
 110        }
 111    }
 112
 113    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 114        if (s->enabled == 1 && s->limit != 0) {
 115            delta = 1;
 116        }
 117    }
 118
 119    if (delta == 0) {
 120        if (!qtest_enabled()) {
 121            fprintf(stderr, "Timer with delta zero, disabling\n");
 122        }
 123        timer_del(s->timer);
 124        s->enabled = 0;
 125        return;
 126    }
 127
 128    /*
 129     * Artificially limit timeout rate to something
 130     * achievable under QEMU.  Otherwise, QEMU spends all
 131     * its time generating timer interrupts, and there
 132     * is no forward progress.
 133     * About ten microseconds is the fastest that really works
 134     * on the current generation of host machines.
 135     */
 136
 137    if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
 138        period = 10000 / delta;
 139        period_frac = 0;
 140    }
 141
 142    s->last_event = s->next_event;
 143    s->next_event = s->last_event + delta * period;
 144    if (period_frac) {
 145        s->next_event += ((int64_t)period_frac * delta) >> 32;
 146    }
 147    timer_mod(s->timer, s->next_event);
 148}
 149
 150static void ptimer_tick(void *opaque)
 151{
 152    ptimer_state *s = (ptimer_state *)opaque;
 153    bool trigger = true;
 154
 155    /*
 156     * We perform all the tick actions within a begin/commit block
 157     * because the callback function that ptimer_trigger() calls
 158     * might make calls into the ptimer APIs that provoke another
 159     * trigger, and we want that to cause the callback function
 160     * to be called iteratively, not recursively.
 161     */
 162    ptimer_transaction_begin(s);
 163
 164    if (s->enabled == 2) {
 165        s->delta = 0;
 166        s->enabled = 0;
 167    } else {
 168        int delta_adjust = DELTA_ADJUST;
 169
 170        if (s->delta == 0 || s->limit == 0) {
 171            /* If a "continuous trigger" policy is not used and limit == 0,
 172               we should error out. delta == 0 means that this tick is
 173               caused by a "no immediate reload" policy, so it shouldn't
 174               be adjusted.  */
 175            delta_adjust = DELTA_NO_ADJUST;
 176        }
 177
 178        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 179            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 180               policy isn't used.  */
 181            trigger = (delta_adjust == DELTA_ADJUST);
 182        }
 183
 184        s->delta = s->limit;
 185
 186        ptimer_reload(s, delta_adjust);
 187    }
 188
 189    if (trigger) {
 190        ptimer_trigger(s);
 191    }
 192
 193    ptimer_transaction_commit(s);
 194}
 195
 196uint64_t ptimer_get_count(ptimer_state *s)
 197{
 198    uint64_t counter;
 199
 200    if (s->enabled && s->delta != 0) {
 201        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 202        int64_t next = s->next_event;
 203        int64_t last = s->last_event;
 204        bool expired = (now - next >= 0);
 205        bool oneshot = (s->enabled == 2);
 206
 207        /* Figure out the current counter value.  */
 208        if (expired) {
 209            /* Prevent timer underflowing if it should already have
 210               triggered.  */
 211            counter = 0;
 212        } else {
 213            uint64_t rem;
 214            uint64_t div;
 215            int clz1, clz2;
 216            int shift;
 217            uint32_t period_frac = s->period_frac;
 218            uint64_t period = s->period;
 219
 220            if (!oneshot && (s->delta * period < 10000) && !use_icount) {
 221                period = 10000 / s->delta;
 222                period_frac = 0;
 223            }
 224
 225            /* We need to divide time by period, where time is stored in
 226               rem (64-bit integer) and period is stored in period/period_frac
 227               (64.32 fixed point).
 228
 229               Doing full precision division is hard, so scale values and
 230               do a 64-bit division.  The result should be rounded down,
 231               so that the rounding error never causes the timer to go
 232               backwards.
 233            */
 234
 235            rem = next - now;
 236            div = period;
 237
 238            clz1 = clz64(rem);
 239            clz2 = clz64(div);
 240            shift = clz1 < clz2 ? clz1 : clz2;
 241
 242            rem <<= shift;
 243            div <<= shift;
 244            if (shift >= 32) {
 245                div |= ((uint64_t)period_frac << (shift - 32));
 246            } else {
 247                if (shift != 0)
 248                    div |= (period_frac >> (32 - shift));
 249                /* Look at remaining bits of period_frac and round div up if 
 250                   necessary.  */
 251                if ((uint32_t)(period_frac << shift))
 252                    div += 1;
 253            }
 254            counter = rem / div;
 255
 256            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 257                /* Before wrapping around, timer should stay with counter = 0
 258                   for a one period.  */
 259                if (!oneshot && s->delta == s->limit) {
 260                    if (now == last) {
 261                        /* Counter == delta here, check whether it was
 262                           adjusted and if it was, then right now it is
 263                           that "one period".  */
 264                        if (counter == s->limit + DELTA_ADJUST) {
 265                            return 0;
 266                        }
 267                    } else if (counter == s->limit) {
 268                        /* Since the counter is rounded down and now != last,
 269                           the counter == limit means that delta was adjusted
 270                           by +1 and right now it is that adjusted period.  */
 271                        return 0;
 272                    }
 273                }
 274            }
 275        }
 276
 277        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 278            /* If now == last then delta == limit, i.e. the counter already
 279               represents the correct value. It would be rounded down a 1ns
 280               later.  */
 281            if (now != last) {
 282                counter += 1;
 283            }
 284        }
 285    } else {
 286        counter = s->delta;
 287    }
 288    return counter;
 289}
 290
 291void ptimer_set_count(ptimer_state *s, uint64_t count)
 292{
 293    assert(s->in_transaction);
 294    s->delta = count;
 295    if (s->enabled) {
 296        s->need_reload = true;
 297    }
 298}
 299
 300void ptimer_run(ptimer_state *s, int oneshot)
 301{
 302    bool was_disabled = !s->enabled;
 303
 304    assert(s->in_transaction);
 305
 306    if (was_disabled && s->period == 0) {
 307        if (!qtest_enabled()) {
 308            fprintf(stderr, "Timer with period zero, disabling\n");
 309        }
 310        return;
 311    }
 312    s->enabled = oneshot ? 2 : 1;
 313    if (was_disabled) {
 314        s->need_reload = true;
 315    }
 316}
 317
 318/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 319   is immediately restarted.  */
 320void ptimer_stop(ptimer_state *s)
 321{
 322    assert(s->in_transaction);
 323
 324    if (!s->enabled)
 325        return;
 326
 327    s->delta = ptimer_get_count(s);
 328    timer_del(s->timer);
 329    s->enabled = 0;
 330    s->need_reload = false;
 331}
 332
 333/* Set counter increment interval in nanoseconds.  */
 334void ptimer_set_period(ptimer_state *s, int64_t period)
 335{
 336    assert(s->in_transaction);
 337    s->delta = ptimer_get_count(s);
 338    s->period = period;
 339    s->period_frac = 0;
 340    if (s->enabled) {
 341        s->need_reload = true;
 342    }
 343}
 344
 345/* Set counter frequency in Hz.  */
 346void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 347{
 348    assert(s->in_transaction);
 349    s->delta = ptimer_get_count(s);
 350    s->period = 1000000000ll / freq;
 351    s->period_frac = (1000000000ll << 32) / freq;
 352    if (s->enabled) {
 353        s->need_reload = true;
 354    }
 355}
 356
 357/* Set the initial countdown value.  If reload is nonzero then also set
 358   count = limit.  */
 359void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 360{
 361    assert(s->in_transaction);
 362    s->limit = limit;
 363    if (reload)
 364        s->delta = limit;
 365    if (s->enabled && reload) {
 366        s->need_reload = true;
 367    }
 368}
 369
 370uint64_t ptimer_get_limit(ptimer_state *s)
 371{
 372    return s->limit;
 373}
 374
 375void ptimer_transaction_begin(ptimer_state *s)
 376{
 377    assert(!s->in_transaction);
 378    s->in_transaction = true;
 379    s->need_reload = false;
 380}
 381
 382void ptimer_transaction_commit(ptimer_state *s)
 383{
 384    assert(s->in_transaction);
 385    /*
 386     * We must loop here because ptimer_reload() can call the callback
 387     * function, which might then update ptimer state in a way that
 388     * means we need to do another reload and possibly another callback.
 389     * A disabled timer never needs reloading (and if we don't check
 390     * this then we loop forever if ptimer_reload() disables the timer).
 391     */
 392    while (s->need_reload && s->enabled) {
 393        s->need_reload = false;
 394        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 395        ptimer_reload(s, 0);
 396    }
 397    /* Now we've finished reload we can leave the transaction block. */
 398    s->in_transaction = false;
 399}
 400
 401const VMStateDescription vmstate_ptimer = {
 402    .name = "ptimer",
 403    .version_id = 1,
 404    .minimum_version_id = 1,
 405    .fields = (VMStateField[]) {
 406        VMSTATE_UINT8(enabled, ptimer_state),
 407        VMSTATE_UINT64(limit, ptimer_state),
 408        VMSTATE_UINT64(delta, ptimer_state),
 409        VMSTATE_UINT32(period_frac, ptimer_state),
 410        VMSTATE_INT64(period, ptimer_state),
 411        VMSTATE_INT64(last_event, ptimer_state),
 412        VMSTATE_INT64(next_event, ptimer_state),
 413        VMSTATE_TIMER_PTR(timer, ptimer_state),
 414        VMSTATE_END_OF_LIST()
 415    }
 416};
 417
 418ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
 419                          uint8_t policy_mask)
 420{
 421    ptimer_state *s;
 422
 423    /* The callback function is mandatory. */
 424    assert(callback);
 425
 426    s = g_new0(ptimer_state, 1);
 427    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 428    s->policy_mask = policy_mask;
 429    s->callback = callback;
 430    s->callback_opaque = callback_opaque;
 431
 432    /*
 433     * These two policies are incompatible -- trigger-on-decrement implies
 434     * a timer trigger when the count becomes 0, but no-immediate-trigger
 435     * implies a trigger when the count stops being 0.
 436     */
 437    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 438             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 439    return s;
 440}
 441
 442void ptimer_free(ptimer_state *s)
 443{
 444    timer_free(s->timer);
 445    g_free(s);
 446}
 447