qemu/hw/intc/xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "target/ppc/cpu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/dma.h"
  17#include "sysemu/reset.h"
  18#include "hw/qdev-properties.h"
  19#include "migration/vmstate.h"
  20#include "monitor/monitor.h"
  21#include "hw/irq.h"
  22#include "hw/ppc/xive.h"
  23#include "hw/ppc/xive_regs.h"
  24
  25/*
  26 * XIVE Thread Interrupt Management context
  27 */
  28
  29/*
  30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
  31 * register, which indicates a pending interrupt at the priority
  32 * corresponding to the bit number
  33 */
  34static uint8_t priority_to_ipb(uint8_t priority)
  35{
  36    return priority > XIVE_PRIORITY_MAX ?
  37        0 : 1 << (XIVE_PRIORITY_MAX - priority);
  38}
  39
  40/*
  41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
  42 * Interrupt Priority Register (PIPR), which contains the priority of
  43 * the most favored pending notification.
  44 */
  45static uint8_t ipb_to_pipr(uint8_t ibp)
  46{
  47    return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
  48}
  49
  50static void ipb_update(uint8_t *regs, uint8_t priority)
  51{
  52    regs[TM_IPB] |= priority_to_ipb(priority);
  53    regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  54}
  55
  56static uint8_t exception_mask(uint8_t ring)
  57{
  58    switch (ring) {
  59    case TM_QW1_OS:
  60        return TM_QW1_NSR_EO;
  61    case TM_QW3_HV_PHYS:
  62        return TM_QW3_NSR_HE;
  63    default:
  64        g_assert_not_reached();
  65    }
  66}
  67
  68static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
  69{
  70        switch (ring) {
  71        case TM_QW0_USER:
  72                return 0; /* Not supported */
  73        case TM_QW1_OS:
  74                return tctx->os_output;
  75        case TM_QW2_HV_POOL:
  76        case TM_QW3_HV_PHYS:
  77                return tctx->hv_output;
  78        default:
  79                return 0;
  80        }
  81}
  82
  83static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
  84{
  85    uint8_t *regs = &tctx->regs[ring];
  86    uint8_t nsr = regs[TM_NSR];
  87    uint8_t mask = exception_mask(ring);
  88
  89    qemu_irq_lower(xive_tctx_output(tctx, ring));
  90
  91    if (regs[TM_NSR] & mask) {
  92        uint8_t cppr = regs[TM_PIPR];
  93
  94        regs[TM_CPPR] = cppr;
  95
  96        /* Reset the pending buffer bit */
  97        regs[TM_IPB] &= ~priority_to_ipb(cppr);
  98        regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  99
 100        /* Drop Exception bit */
 101        regs[TM_NSR] &= ~mask;
 102    }
 103
 104    return (nsr << 8) | regs[TM_CPPR];
 105}
 106
 107static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
 108{
 109    uint8_t *regs = &tctx->regs[ring];
 110
 111    if (regs[TM_PIPR] < regs[TM_CPPR]) {
 112        switch (ring) {
 113        case TM_QW1_OS:
 114            regs[TM_NSR] |= TM_QW1_NSR_EO;
 115            break;
 116        case TM_QW3_HV_PHYS:
 117            regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
 118            break;
 119        default:
 120            g_assert_not_reached();
 121        }
 122        qemu_irq_raise(xive_tctx_output(tctx, ring));
 123    }
 124}
 125
 126static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
 127{
 128    if (cppr > XIVE_PRIORITY_MAX) {
 129        cppr = 0xff;
 130    }
 131
 132    tctx->regs[ring + TM_CPPR] = cppr;
 133
 134    /* CPPR has changed, check if we need to raise a pending exception */
 135    xive_tctx_notify(tctx, ring);
 136}
 137
 138static inline uint32_t xive_tctx_word2(uint8_t *ring)
 139{
 140    return *((uint32_t *) &ring[TM_WORD2]);
 141}
 142
 143/*
 144 * XIVE Thread Interrupt Management Area (TIMA)
 145 */
 146
 147static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
 148                                uint64_t value, unsigned size)
 149{
 150    xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
 151}
 152
 153static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 154{
 155    return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
 156}
 157
 158static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
 159                                      unsigned size)
 160{
 161    uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
 162    uint32_t qw2w2;
 163
 164    qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
 165    memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
 166    return qw2w2;
 167}
 168
 169static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
 170                            uint64_t value, unsigned size)
 171{
 172    tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
 173}
 174
 175static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
 176{
 177    return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
 178}
 179
 180/*
 181 * Define an access map for each page of the TIMA that we will use in
 182 * the memory region ops to filter values when doing loads and stores
 183 * of raw registers values
 184 *
 185 * Registers accessibility bits :
 186 *
 187 *    0x0 - no access
 188 *    0x1 - write only
 189 *    0x2 - read only
 190 *    0x3 - read/write
 191 */
 192
 193static const uint8_t xive_tm_hw_view[] = {
 194    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 195    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 196    0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 197    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
 198};
 199
 200static const uint8_t xive_tm_hv_view[] = {
 201    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 202    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 203    0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 204    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
 205};
 206
 207static const uint8_t xive_tm_os_view[] = {
 208    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 209    2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 210    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 211    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 212};
 213
 214static const uint8_t xive_tm_user_view[] = {
 215    3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
 216    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 217    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 218    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 219};
 220
 221/*
 222 * Overall TIMA access map for the thread interrupt management context
 223 * registers
 224 */
 225static const uint8_t *xive_tm_views[] = {
 226    [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
 227    [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
 228    [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
 229    [XIVE_TM_USER_PAGE] = xive_tm_user_view,
 230};
 231
 232/*
 233 * Computes a register access mask for a given offset in the TIMA
 234 */
 235static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
 236{
 237    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 238    uint8_t reg_offset = offset & 0x3F;
 239    uint8_t reg_mask = write ? 0x1 : 0x2;
 240    uint64_t mask = 0x0;
 241    int i;
 242
 243    for (i = 0; i < size; i++) {
 244        if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
 245            mask |= (uint64_t) 0xff << (8 * (size - i - 1));
 246        }
 247    }
 248
 249    return mask;
 250}
 251
 252static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 253                              unsigned size)
 254{
 255    uint8_t ring_offset = offset & 0x30;
 256    uint8_t reg_offset = offset & 0x3F;
 257    uint64_t mask = xive_tm_mask(offset, size, true);
 258    int i;
 259
 260    /*
 261     * Only 4 or 8 bytes stores are allowed and the User ring is
 262     * excluded
 263     */
 264    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 265        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
 266                      HWADDR_PRIx"\n", offset);
 267        return;
 268    }
 269
 270    /*
 271     * Use the register offset for the raw values and filter out
 272     * reserved values
 273     */
 274    for (i = 0; i < size; i++) {
 275        uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
 276        if (byte_mask) {
 277            tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
 278                byte_mask;
 279        }
 280    }
 281}
 282
 283static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 284{
 285    uint8_t ring_offset = offset & 0x30;
 286    uint8_t reg_offset = offset & 0x3F;
 287    uint64_t mask = xive_tm_mask(offset, size, false);
 288    uint64_t ret;
 289    int i;
 290
 291    /*
 292     * Only 4 or 8 bytes loads are allowed and the User ring is
 293     * excluded
 294     */
 295    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 296        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
 297                      HWADDR_PRIx"\n", offset);
 298        return -1;
 299    }
 300
 301    /* Use the register offset for the raw values */
 302    ret = 0;
 303    for (i = 0; i < size; i++) {
 304        ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
 305    }
 306
 307    /* filter out reserved values */
 308    return ret & mask;
 309}
 310
 311/*
 312 * The TM context is mapped twice within each page. Stores and loads
 313 * to the first mapping below 2K write and read the specified values
 314 * without modification. The second mapping above 2K performs specific
 315 * state changes (side effects) in addition to setting/returning the
 316 * interrupt management area context of the processor thread.
 317 */
 318static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 319{
 320    return xive_tctx_accept(tctx, TM_QW1_OS);
 321}
 322
 323static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
 324                                uint64_t value, unsigned size)
 325{
 326    xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
 327}
 328
 329/*
 330 * Adjust the IPB to allow a CPU to process event queues of other
 331 * priorities during one physical interrupt cycle.
 332 */
 333static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
 334                                   uint64_t value, unsigned size)
 335{
 336    ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
 337    xive_tctx_notify(tctx, TM_QW1_OS);
 338}
 339
 340static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
 341                                    unsigned size)
 342{
 343    uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
 344    uint32_t qw1w2;
 345
 346    qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0);
 347    memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
 348    return qw1w2;
 349}
 350
 351/*
 352 * Define a mapping of "special" operations depending on the TIMA page
 353 * offset and the size of the operation.
 354 */
 355typedef struct XiveTmOp {
 356    uint8_t  page_offset;
 357    uint32_t op_offset;
 358    unsigned size;
 359    void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 360                              unsigned size);
 361    uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
 362} XiveTmOp;
 363
 364static const XiveTmOp xive_tm_operations[] = {
 365    /*
 366     * MMIOs below 2K : raw values and special operations without side
 367     * effects
 368     */
 369    { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
 370    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
 371    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
 372    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
 373
 374    /* MMIOs above 2K : special operations with side effects */
 375    { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
 376    { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
 377    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
 378    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
 379    { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
 380    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
 381    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
 382};
 383
 384static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
 385{
 386    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 387    uint32_t op_offset = offset & 0xFFF;
 388    int i;
 389
 390    for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
 391        const XiveTmOp *xto = &xive_tm_operations[i];
 392
 393        /* Accesses done from a more privileged TIMA page is allowed */
 394        if (xto->page_offset >= page_offset &&
 395            xto->op_offset == op_offset &&
 396            xto->size == size &&
 397            ((write && xto->write_handler) || (!write && xto->read_handler))) {
 398            return xto;
 399        }
 400    }
 401    return NULL;
 402}
 403
 404/*
 405 * TIMA MMIO handlers
 406 */
 407void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 408                        unsigned size)
 409{
 410    const XiveTmOp *xto;
 411
 412    /*
 413     * TODO: check V bit in Q[0-3]W2
 414     */
 415
 416    /*
 417     * First, check for special operations in the 2K region
 418     */
 419    if (offset & 0x800) {
 420        xto = xive_tm_find_op(offset, size, true);
 421        if (!xto) {
 422            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
 423                          "@%"HWADDR_PRIx"\n", offset);
 424        } else {
 425            xto->write_handler(tctx, offset, value, size);
 426        }
 427        return;
 428    }
 429
 430    /*
 431     * Then, for special operations in the region below 2K.
 432     */
 433    xto = xive_tm_find_op(offset, size, true);
 434    if (xto) {
 435        xto->write_handler(tctx, offset, value, size);
 436        return;
 437    }
 438
 439    /*
 440     * Finish with raw access to the register values
 441     */
 442    xive_tm_raw_write(tctx, offset, value, size);
 443}
 444
 445uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 446{
 447    const XiveTmOp *xto;
 448
 449    /*
 450     * TODO: check V bit in Q[0-3]W2
 451     */
 452
 453    /*
 454     * First, check for special operations in the 2K region
 455     */
 456    if (offset & 0x800) {
 457        xto = xive_tm_find_op(offset, size, false);
 458        if (!xto) {
 459            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
 460                          "@%"HWADDR_PRIx"\n", offset);
 461            return -1;
 462        }
 463        return xto->read_handler(tctx, offset, size);
 464    }
 465
 466    /*
 467     * Then, for special operations in the region below 2K.
 468     */
 469    xto = xive_tm_find_op(offset, size, false);
 470    if (xto) {
 471        return xto->read_handler(tctx, offset, size);
 472    }
 473
 474    /*
 475     * Finish with raw access to the register values
 476     */
 477    return xive_tm_raw_read(tctx, offset, size);
 478}
 479
 480static void xive_tm_write(void *opaque, hwaddr offset,
 481                          uint64_t value, unsigned size)
 482{
 483    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 484
 485    xive_tctx_tm_write(tctx, offset, value, size);
 486}
 487
 488static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 489{
 490    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 491
 492    return xive_tctx_tm_read(tctx, offset, size);
 493}
 494
 495const MemoryRegionOps xive_tm_ops = {
 496    .read = xive_tm_read,
 497    .write = xive_tm_write,
 498    .endianness = DEVICE_BIG_ENDIAN,
 499    .valid = {
 500        .min_access_size = 1,
 501        .max_access_size = 8,
 502    },
 503    .impl = {
 504        .min_access_size = 1,
 505        .max_access_size = 8,
 506    },
 507};
 508
 509static char *xive_tctx_ring_print(uint8_t *ring)
 510{
 511    uint32_t w2 = xive_tctx_word2(ring);
 512
 513    return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
 514                   "%02x  %02x   %02x  %08x",
 515                   ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
 516                   ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
 517                   be32_to_cpu(w2));
 518}
 519
 520static const char * const xive_tctx_ring_names[] = {
 521    "USER", "OS", "POOL", "PHYS",
 522};
 523
 524void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
 525{
 526    int cpu_index;
 527    int i;
 528
 529    /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
 530     * are hot plugged or unplugged.
 531     */
 532    if (!tctx) {
 533        return;
 534    }
 535
 536    cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
 537
 538    if (kvm_irqchip_in_kernel()) {
 539        Error *local_err = NULL;
 540
 541        kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
 542        if (local_err) {
 543            error_report_err(local_err);
 544            return;
 545        }
 546    }
 547
 548    monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
 549                   "  W2\n", cpu_index);
 550
 551    for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
 552        char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
 553        monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
 554                       xive_tctx_ring_names[i], s);
 555        g_free(s);
 556    }
 557}
 558
 559void xive_tctx_reset(XiveTCTX *tctx)
 560{
 561    memset(tctx->regs, 0, sizeof(tctx->regs));
 562
 563    /* Set some defaults */
 564    tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
 565    tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
 566    tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
 567
 568    /*
 569     * Initialize PIPR to 0xFF to avoid phantom interrupts when the
 570     * CPPR is first set.
 571     */
 572    tctx->regs[TM_QW1_OS + TM_PIPR] =
 573        ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
 574    tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
 575        ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
 576}
 577
 578static void xive_tctx_realize(DeviceState *dev, Error **errp)
 579{
 580    XiveTCTX *tctx = XIVE_TCTX(dev);
 581    PowerPCCPU *cpu;
 582    CPUPPCState *env;
 583    Object *obj;
 584    Error *local_err = NULL;
 585
 586    obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
 587    if (!obj) {
 588        error_propagate(errp, local_err);
 589        error_prepend(errp, "required link 'cpu' not found: ");
 590        return;
 591    }
 592
 593    cpu = POWERPC_CPU(obj);
 594    tctx->cs = CPU(obj);
 595
 596    env = &cpu->env;
 597    switch (PPC_INPUT(env)) {
 598    case PPC_FLAGS_INPUT_POWER9:
 599        tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
 600        tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
 601        break;
 602
 603    default:
 604        error_setg(errp, "XIVE interrupt controller does not support "
 605                   "this CPU bus model");
 606        return;
 607    }
 608
 609    /* Connect the presenter to the VCPU (required for CPU hotplug) */
 610    if (kvm_irqchip_in_kernel()) {
 611        kvmppc_xive_cpu_connect(tctx, &local_err);
 612        if (local_err) {
 613            error_propagate(errp, local_err);
 614            return;
 615        }
 616    }
 617}
 618
 619static int vmstate_xive_tctx_pre_save(void *opaque)
 620{
 621    Error *local_err = NULL;
 622
 623    if (kvm_irqchip_in_kernel()) {
 624        kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
 625        if (local_err) {
 626            error_report_err(local_err);
 627            return -1;
 628        }
 629    }
 630
 631    return 0;
 632}
 633
 634static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
 635{
 636    Error *local_err = NULL;
 637
 638    if (kvm_irqchip_in_kernel()) {
 639        /*
 640         * Required for hotplugged CPU, for which the state comes
 641         * after all states of the machine.
 642         */
 643        kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
 644        if (local_err) {
 645            error_report_err(local_err);
 646            return -1;
 647        }
 648    }
 649
 650    return 0;
 651}
 652
 653static const VMStateDescription vmstate_xive_tctx = {
 654    .name = TYPE_XIVE_TCTX,
 655    .version_id = 1,
 656    .minimum_version_id = 1,
 657    .pre_save = vmstate_xive_tctx_pre_save,
 658    .post_load = vmstate_xive_tctx_post_load,
 659    .fields = (VMStateField[]) {
 660        VMSTATE_BUFFER(regs, XiveTCTX),
 661        VMSTATE_END_OF_LIST()
 662    },
 663};
 664
 665static void xive_tctx_class_init(ObjectClass *klass, void *data)
 666{
 667    DeviceClass *dc = DEVICE_CLASS(klass);
 668
 669    dc->desc = "XIVE Interrupt Thread Context";
 670    dc->realize = xive_tctx_realize;
 671    dc->vmsd = &vmstate_xive_tctx;
 672    /*
 673     * Reason: part of XIVE interrupt controller, needs to be wired up
 674     * by xive_tctx_create().
 675     */
 676    dc->user_creatable = false;
 677}
 678
 679static const TypeInfo xive_tctx_info = {
 680    .name          = TYPE_XIVE_TCTX,
 681    .parent        = TYPE_DEVICE,
 682    .instance_size = sizeof(XiveTCTX),
 683    .class_init    = xive_tctx_class_init,
 684};
 685
 686Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
 687{
 688    Error *local_err = NULL;
 689    Object *obj;
 690
 691    obj = object_new(TYPE_XIVE_TCTX);
 692    object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
 693    object_unref(obj);
 694    object_ref(cpu);
 695    object_property_add_const_link(obj, "cpu", cpu, &error_abort);
 696    object_property_set_bool(obj, true, "realized", &local_err);
 697    if (local_err) {
 698        goto error;
 699    }
 700
 701    return obj;
 702
 703error:
 704    object_unparent(obj);
 705    error_propagate(errp, local_err);
 706    return NULL;
 707}
 708
 709void xive_tctx_destroy(XiveTCTX *tctx)
 710{
 711    Object *obj = OBJECT(tctx);
 712
 713    object_unref(object_property_get_link(obj, "cpu", &error_abort));
 714    object_unparent(obj);
 715}
 716
 717/*
 718 * XIVE ESB helpers
 719 */
 720
 721static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
 722{
 723    uint8_t old_pq = *pq & 0x3;
 724
 725    *pq &= ~0x3;
 726    *pq |= value & 0x3;
 727
 728    return old_pq;
 729}
 730
 731static bool xive_esb_trigger(uint8_t *pq)
 732{
 733    uint8_t old_pq = *pq & 0x3;
 734
 735    switch (old_pq) {
 736    case XIVE_ESB_RESET:
 737        xive_esb_set(pq, XIVE_ESB_PENDING);
 738        return true;
 739    case XIVE_ESB_PENDING:
 740    case XIVE_ESB_QUEUED:
 741        xive_esb_set(pq, XIVE_ESB_QUEUED);
 742        return false;
 743    case XIVE_ESB_OFF:
 744        xive_esb_set(pq, XIVE_ESB_OFF);
 745        return false;
 746    default:
 747         g_assert_not_reached();
 748    }
 749}
 750
 751static bool xive_esb_eoi(uint8_t *pq)
 752{
 753    uint8_t old_pq = *pq & 0x3;
 754
 755    switch (old_pq) {
 756    case XIVE_ESB_RESET:
 757    case XIVE_ESB_PENDING:
 758        xive_esb_set(pq, XIVE_ESB_RESET);
 759        return false;
 760    case XIVE_ESB_QUEUED:
 761        xive_esb_set(pq, XIVE_ESB_PENDING);
 762        return true;
 763    case XIVE_ESB_OFF:
 764        xive_esb_set(pq, XIVE_ESB_OFF);
 765        return false;
 766    default:
 767         g_assert_not_reached();
 768    }
 769}
 770
 771/*
 772 * XIVE Interrupt Source (or IVSE)
 773 */
 774
 775uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
 776{
 777    assert(srcno < xsrc->nr_irqs);
 778
 779    return xsrc->status[srcno] & 0x3;
 780}
 781
 782uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
 783{
 784    assert(srcno < xsrc->nr_irqs);
 785
 786    return xive_esb_set(&xsrc->status[srcno], pq);
 787}
 788
 789/*
 790 * Returns whether the event notification should be forwarded.
 791 */
 792static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
 793{
 794    uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
 795
 796    xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
 797
 798    switch (old_pq) {
 799    case XIVE_ESB_RESET:
 800        xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
 801        return true;
 802    default:
 803        return false;
 804    }
 805}
 806
 807/*
 808 * Returns whether the event notification should be forwarded.
 809 */
 810static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
 811{
 812    bool ret;
 813
 814    assert(srcno < xsrc->nr_irqs);
 815
 816    ret = xive_esb_trigger(&xsrc->status[srcno]);
 817
 818    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 819        xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
 820        qemu_log_mask(LOG_GUEST_ERROR,
 821                      "XIVE: queued an event on LSI IRQ %d\n", srcno);
 822    }
 823
 824    return ret;
 825}
 826
 827/*
 828 * Returns whether the event notification should be forwarded.
 829 */
 830static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
 831{
 832    bool ret;
 833
 834    assert(srcno < xsrc->nr_irqs);
 835
 836    ret = xive_esb_eoi(&xsrc->status[srcno]);
 837
 838    /*
 839     * LSI sources do not set the Q bit but they can still be
 840     * asserted, in which case we should forward a new event
 841     * notification
 842     */
 843    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 844        xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
 845        ret = xive_source_lsi_trigger(xsrc, srcno);
 846    }
 847
 848    return ret;
 849}
 850
 851/*
 852 * Forward the source event notification to the Router
 853 */
 854static void xive_source_notify(XiveSource *xsrc, int srcno)
 855{
 856    XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
 857
 858    if (xnc->notify) {
 859        xnc->notify(xsrc->xive, srcno);
 860    }
 861}
 862
 863/*
 864 * In a two pages ESB MMIO setting, even page is the trigger page, odd
 865 * page is for management
 866 */
 867static inline bool addr_is_even(hwaddr addr, uint32_t shift)
 868{
 869    return !((addr >> shift) & 1);
 870}
 871
 872static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
 873{
 874    return xive_source_esb_has_2page(xsrc) &&
 875        addr_is_even(addr, xsrc->esb_shift - 1);
 876}
 877
 878/*
 879 * ESB MMIO loads
 880 *                      Trigger page    Management/EOI page
 881 *
 882 * ESB MMIO setting     2 pages         1 or 2 pages
 883 *
 884 * 0x000 .. 0x3FF       -1              EOI and return 0|1
 885 * 0x400 .. 0x7FF       -1              EOI and return 0|1
 886 * 0x800 .. 0xBFF       -1              return PQ
 887 * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
 888 * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
 889 * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
 890 * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
 891 */
 892static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
 893{
 894    XiveSource *xsrc = XIVE_SOURCE(opaque);
 895    uint32_t offset = addr & 0xFFF;
 896    uint32_t srcno = addr >> xsrc->esb_shift;
 897    uint64_t ret = -1;
 898
 899    /* In a two pages ESB MMIO setting, trigger page should not be read */
 900    if (xive_source_is_trigger_page(xsrc, addr)) {
 901        qemu_log_mask(LOG_GUEST_ERROR,
 902                      "XIVE: invalid load on IRQ %d trigger page at "
 903                      "0x%"HWADDR_PRIx"\n", srcno, addr);
 904        return -1;
 905    }
 906
 907    switch (offset) {
 908    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
 909        ret = xive_source_esb_eoi(xsrc, srcno);
 910
 911        /* Forward the source event notification for routing */
 912        if (ret) {
 913            xive_source_notify(xsrc, srcno);
 914        }
 915        break;
 916
 917    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
 918        ret = xive_source_esb_get(xsrc, srcno);
 919        break;
 920
 921    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 922    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 923    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 924    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 925        ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 926        break;
 927    default:
 928        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
 929                      offset);
 930    }
 931
 932    return ret;
 933}
 934
 935/*
 936 * ESB MMIO stores
 937 *                      Trigger page    Management/EOI page
 938 *
 939 * ESB MMIO setting     2 pages         1 or 2 pages
 940 *
 941 * 0x000 .. 0x3FF       Trigger         Trigger
 942 * 0x400 .. 0x7FF       Trigger         EOI
 943 * 0x800 .. 0xBFF       Trigger         undefined
 944 * 0xC00 .. 0xCFF       Trigger         PQ=00
 945 * 0xD00 .. 0xDFF       Trigger         PQ=01
 946 * 0xE00 .. 0xDFF       Trigger         PQ=10
 947 * 0xF00 .. 0xDFF       Trigger         PQ=11
 948 */
 949static void xive_source_esb_write(void *opaque, hwaddr addr,
 950                                  uint64_t value, unsigned size)
 951{
 952    XiveSource *xsrc = XIVE_SOURCE(opaque);
 953    uint32_t offset = addr & 0xFFF;
 954    uint32_t srcno = addr >> xsrc->esb_shift;
 955    bool notify = false;
 956
 957    /* In a two pages ESB MMIO setting, trigger page only triggers */
 958    if (xive_source_is_trigger_page(xsrc, addr)) {
 959        notify = xive_source_esb_trigger(xsrc, srcno);
 960        goto out;
 961    }
 962
 963    switch (offset) {
 964    case 0 ... 0x3FF:
 965        notify = xive_source_esb_trigger(xsrc, srcno);
 966        break;
 967
 968    case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
 969        if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
 970            qemu_log_mask(LOG_GUEST_ERROR,
 971                          "XIVE: invalid Store EOI for IRQ %d\n", srcno);
 972            return;
 973        }
 974
 975        notify = xive_source_esb_eoi(xsrc, srcno);
 976        break;
 977
 978    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 979    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 980    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 981    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 982        xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 983        break;
 984
 985    default:
 986        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
 987                      offset);
 988        return;
 989    }
 990
 991out:
 992    /* Forward the source event notification for routing */
 993    if (notify) {
 994        xive_source_notify(xsrc, srcno);
 995    }
 996}
 997
 998static const MemoryRegionOps xive_source_esb_ops = {
 999    .read = xive_source_esb_read,
1000    .write = xive_source_esb_write,
1001    .endianness = DEVICE_BIG_ENDIAN,
1002    .valid = {
1003        .min_access_size = 8,
1004        .max_access_size = 8,
1005    },
1006    .impl = {
1007        .min_access_size = 8,
1008        .max_access_size = 8,
1009    },
1010};
1011
1012void xive_source_set_irq(void *opaque, int srcno, int val)
1013{
1014    XiveSource *xsrc = XIVE_SOURCE(opaque);
1015    bool notify = false;
1016
1017    if (xive_source_irq_is_lsi(xsrc, srcno)) {
1018        if (val) {
1019            notify = xive_source_lsi_trigger(xsrc, srcno);
1020        } else {
1021            xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1022        }
1023    } else {
1024        if (val) {
1025            notify = xive_source_esb_trigger(xsrc, srcno);
1026        }
1027    }
1028
1029    /* Forward the source event notification for routing */
1030    if (notify) {
1031        xive_source_notify(xsrc, srcno);
1032    }
1033}
1034
1035void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1036{
1037    int i;
1038
1039    for (i = 0; i < xsrc->nr_irqs; i++) {
1040        uint8_t pq = xive_source_esb_get(xsrc, i);
1041
1042        if (pq == XIVE_ESB_OFF) {
1043            continue;
1044        }
1045
1046        monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1047                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1048                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
1049                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1050                       xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1051    }
1052}
1053
1054static void xive_source_reset(void *dev)
1055{
1056    XiveSource *xsrc = XIVE_SOURCE(dev);
1057
1058    /* Do not clear the LSI bitmap */
1059
1060    /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1061    memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1062}
1063
1064static void xive_source_realize(DeviceState *dev, Error **errp)
1065{
1066    XiveSource *xsrc = XIVE_SOURCE(dev);
1067    Object *obj;
1068    Error *local_err = NULL;
1069
1070    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1071    if (!obj) {
1072        error_propagate(errp, local_err);
1073        error_prepend(errp, "required link 'xive' not found: ");
1074        return;
1075    }
1076
1077    xsrc->xive = XIVE_NOTIFIER(obj);
1078
1079    if (!xsrc->nr_irqs) {
1080        error_setg(errp, "Number of interrupt needs to be greater than 0");
1081        return;
1082    }
1083
1084    if (xsrc->esb_shift != XIVE_ESB_4K &&
1085        xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1086        xsrc->esb_shift != XIVE_ESB_64K &&
1087        xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1088        error_setg(errp, "Invalid ESB shift setting");
1089        return;
1090    }
1091
1092    xsrc->status = g_malloc0(xsrc->nr_irqs);
1093    xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1094
1095    if (!kvm_irqchip_in_kernel()) {
1096        memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1097                              &xive_source_esb_ops, xsrc, "xive.esb",
1098                              (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1099    }
1100
1101    qemu_register_reset(xive_source_reset, dev);
1102}
1103
1104static const VMStateDescription vmstate_xive_source = {
1105    .name = TYPE_XIVE_SOURCE,
1106    .version_id = 1,
1107    .minimum_version_id = 1,
1108    .fields = (VMStateField[]) {
1109        VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1110        VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1111        VMSTATE_END_OF_LIST()
1112    },
1113};
1114
1115/*
1116 * The default XIVE interrupt source setting for the ESB MMIOs is two
1117 * 64k pages without Store EOI, to be in sync with KVM.
1118 */
1119static Property xive_source_properties[] = {
1120    DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1121    DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1122    DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1123    DEFINE_PROP_END_OF_LIST(),
1124};
1125
1126static void xive_source_class_init(ObjectClass *klass, void *data)
1127{
1128    DeviceClass *dc = DEVICE_CLASS(klass);
1129
1130    dc->desc    = "XIVE Interrupt Source";
1131    dc->props   = xive_source_properties;
1132    dc->realize = xive_source_realize;
1133    dc->vmsd    = &vmstate_xive_source;
1134    /*
1135     * Reason: part of XIVE interrupt controller, needs to be wired up,
1136     * e.g. by spapr_xive_instance_init().
1137     */
1138    dc->user_creatable = false;
1139}
1140
1141static const TypeInfo xive_source_info = {
1142    .name          = TYPE_XIVE_SOURCE,
1143    .parent        = TYPE_DEVICE,
1144    .instance_size = sizeof(XiveSource),
1145    .class_init    = xive_source_class_init,
1146};
1147
1148/*
1149 * XiveEND helpers
1150 */
1151
1152void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1153{
1154    uint64_t qaddr_base = xive_end_qaddr(end);
1155    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1156    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1157    uint32_t qentries = 1 << (qsize + 10);
1158    int i;
1159
1160    /*
1161     * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1162     */
1163    monitor_printf(mon, " [ ");
1164    qindex = (qindex - (width - 1)) & (qentries - 1);
1165    for (i = 0; i < width; i++) {
1166        uint64_t qaddr = qaddr_base + (qindex << 2);
1167        uint32_t qdata = -1;
1168
1169        if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1170                            sizeof(qdata))) {
1171            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1172                          HWADDR_PRIx "\n", qaddr);
1173            return;
1174        }
1175        monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1176                       be32_to_cpu(qdata));
1177        qindex = (qindex + 1) & (qentries - 1);
1178    }
1179    monitor_printf(mon, "]");
1180}
1181
1182void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1183{
1184    uint64_t qaddr_base = xive_end_qaddr(end);
1185    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1186    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1187    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1188    uint32_t qentries = 1 << (qsize + 10);
1189
1190    uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1191    uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1192    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1193    uint8_t pq;
1194
1195    if (!xive_end_is_valid(end)) {
1196        return;
1197    }
1198
1199    pq = xive_get_field32(END_W1_ESn, end->w1);
1200
1201    monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1202                   end_idx,
1203                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
1204                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1205                   xive_end_is_valid(end)    ? 'v' : '-',
1206                   xive_end_is_enqueue(end)  ? 'q' : '-',
1207                   xive_end_is_notify(end)   ? 'n' : '-',
1208                   xive_end_is_backlog(end)  ? 'b' : '-',
1209                   xive_end_is_escalate(end) ? 'e' : '-',
1210                   xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1211                   xive_end_is_silent_escalation(end)   ? 's' : '-',
1212                   priority, nvt_blk, nvt_idx);
1213
1214    if (qaddr_base) {
1215        monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1216                       qaddr_base, qindex, qentries, qgen);
1217        xive_end_queue_pic_print_info(end, 6, mon);
1218    }
1219    monitor_printf(mon, "\n");
1220}
1221
1222static void xive_end_enqueue(XiveEND *end, uint32_t data)
1223{
1224    uint64_t qaddr_base = xive_end_qaddr(end);
1225    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1226    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1227    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1228
1229    uint64_t qaddr = qaddr_base + (qindex << 2);
1230    uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1231    uint32_t qentries = 1 << (qsize + 10);
1232
1233    if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1234        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1235                      HWADDR_PRIx "\n", qaddr);
1236        return;
1237    }
1238
1239    qindex = (qindex + 1) & (qentries - 1);
1240    if (qindex == 0) {
1241        qgen ^= 1;
1242        end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1243    }
1244    end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1245}
1246
1247void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1248                                   Monitor *mon)
1249{
1250    XiveEAS *eas = (XiveEAS *) &end->w4;
1251    uint8_t pq;
1252
1253    if (!xive_end_is_escalate(end)) {
1254        return;
1255    }
1256
1257    pq = xive_get_field32(END_W1_ESe, end->w1);
1258
1259    monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1260                   end_idx,
1261                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
1262                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1263                   xive_eas_is_valid(eas) ? 'V' : ' ',
1264                   xive_eas_is_masked(eas) ? 'M' : ' ',
1265                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1266                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1267                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1268}
1269
1270/*
1271 * XIVE Router (aka. Virtualization Controller or IVRE)
1272 */
1273
1274int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1275                        XiveEAS *eas)
1276{
1277    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1278
1279    return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1280}
1281
1282int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1283                        XiveEND *end)
1284{
1285   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1286
1287   return xrc->get_end(xrtr, end_blk, end_idx, end);
1288}
1289
1290int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1291                          XiveEND *end, uint8_t word_number)
1292{
1293   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1294
1295   return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1296}
1297
1298int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1299                        XiveNVT *nvt)
1300{
1301   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1302
1303   return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1304}
1305
1306int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1307                        XiveNVT *nvt, uint8_t word_number)
1308{
1309   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1310
1311   return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1312}
1313
1314XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1315{
1316    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1317
1318    return xrc->get_tctx(xrtr, cs);
1319}
1320
1321/*
1322 * Encode the HW CAM line in the block group mode format :
1323 *
1324 *   chip << 19 | 0000000 0 0001 thread (7Bit)
1325 */
1326static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1327{
1328    CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1329    uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1330
1331    return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1332}
1333
1334/*
1335 * The thread context register words are in big-endian format.
1336 */
1337static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1338                                     uint8_t nvt_blk, uint32_t nvt_idx,
1339                                     bool cam_ignore, uint32_t logic_serv)
1340{
1341    uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1342    uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1343    uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1344    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1345    uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1346
1347    /*
1348     * TODO (PowerNV): ignore mode. The low order bits of the NVT
1349     * identifier are ignored in the "CAM" match.
1350     */
1351
1352    if (format == 0) {
1353        if (cam_ignore == true) {
1354            /*
1355             * F=0 & i=1: Logical server notification (bits ignored at
1356             * the end of the NVT identifier)
1357             */
1358            qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1359                          nvt_blk, nvt_idx);
1360             return -1;
1361        }
1362
1363        /* F=0 & i=0: Specific NVT notification */
1364
1365        /* PHYS ring */
1366        if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1367            cam == xive_tctx_hw_cam_line(tctx)) {
1368            return TM_QW3_HV_PHYS;
1369        }
1370
1371        /* HV POOL ring */
1372        if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1373            cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1374            return TM_QW2_HV_POOL;
1375        }
1376
1377        /* OS ring */
1378        if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1379            cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1380            return TM_QW1_OS;
1381        }
1382    } else {
1383        /* F=1 : User level Event-Based Branch (EBB) notification */
1384
1385        /* USER ring */
1386        if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1387             (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1388             (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1389             (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1390            return TM_QW0_USER;
1391        }
1392    }
1393    return -1;
1394}
1395
1396typedef struct XiveTCTXMatch {
1397    XiveTCTX *tctx;
1398    uint8_t ring;
1399} XiveTCTXMatch;
1400
1401static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1402                                 uint8_t nvt_blk, uint32_t nvt_idx,
1403                                 bool cam_ignore, uint8_t priority,
1404                                 uint32_t logic_serv, XiveTCTXMatch *match)
1405{
1406    CPUState *cs;
1407
1408    /*
1409     * TODO (PowerNV): handle chip_id overwrite of block field for
1410     * hardwired CAM compares
1411     */
1412
1413    CPU_FOREACH(cs) {
1414        XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1415        int ring;
1416
1417        /*
1418         * Skip partially initialized vCPUs. This can happen when
1419         * vCPUs are hotplugged.
1420         */
1421        if (!tctx) {
1422            continue;
1423        }
1424
1425        /*
1426         * HW checks that the CPU is enabled in the Physical Thread
1427         * Enable Register (PTER).
1428         */
1429
1430        /*
1431         * Check the thread context CAM lines and record matches. We
1432         * will handle CPU exception delivery later
1433         */
1434        ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1435                                         cam_ignore, logic_serv);
1436        /*
1437         * Save the context and follow on to catch duplicates, that we
1438         * don't support yet.
1439         */
1440        if (ring != -1) {
1441            if (match->tctx) {
1442                qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1443                              "context NVT %x/%x\n", nvt_blk, nvt_idx);
1444                return false;
1445            }
1446
1447            match->ring = ring;
1448            match->tctx = tctx;
1449        }
1450    }
1451
1452    if (!match->tctx) {
1453        qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1454                      nvt_blk, nvt_idx);
1455        return false;
1456    }
1457
1458    return true;
1459}
1460
1461/*
1462 * This is our simple Xive Presenter Engine model. It is merged in the
1463 * Router as it does not require an extra object.
1464 *
1465 * It receives notification requests sent by the IVRE to find one
1466 * matching NVT (or more) dispatched on the processor threads. In case
1467 * of a single NVT notification, the process is abreviated and the
1468 * thread is signaled if a match is found. In case of a logical server
1469 * notification (bits ignored at the end of the NVT identifier), the
1470 * IVPE and IVRE select a winning thread using different filters. This
1471 * involves 2 or 3 exchanges on the PowerBus that the model does not
1472 * support.
1473 *
1474 * The parameters represent what is sent on the PowerBus
1475 */
1476static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1477                                  uint8_t nvt_blk, uint32_t nvt_idx,
1478                                  bool cam_ignore, uint8_t priority,
1479                                  uint32_t logic_serv)
1480{
1481    XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1482    bool found;
1483
1484    found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1485                                 priority, logic_serv, &match);
1486    if (found) {
1487        ipb_update(&match.tctx->regs[match.ring], priority);
1488        xive_tctx_notify(match.tctx, match.ring);
1489    }
1490
1491    return found;
1492}
1493
1494/*
1495 * Notification using the END ESe/ESn bit (Event State Buffer for
1496 * escalation and notification). Profide futher coalescing in the
1497 * Router.
1498 */
1499static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1500                                      uint32_t end_idx, XiveEND *end,
1501                                      uint32_t end_esmask)
1502{
1503    uint8_t pq = xive_get_field32(end_esmask, end->w1);
1504    bool notify = xive_esb_trigger(&pq);
1505
1506    if (pq != xive_get_field32(end_esmask, end->w1)) {
1507        end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1508        xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1509    }
1510
1511    /* ESe/n[Q]=1 : end of notification */
1512    return notify;
1513}
1514
1515/*
1516 * An END trigger can come from an event trigger (IPI or HW) or from
1517 * another chip. We don't model the PowerBus but the END trigger
1518 * message has the same parameters than in the function below.
1519 */
1520static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1521                                   uint32_t end_idx, uint32_t end_data)
1522{
1523    XiveEND end;
1524    uint8_t priority;
1525    uint8_t format;
1526    uint8_t nvt_blk;
1527    uint32_t nvt_idx;
1528    XiveNVT nvt;
1529    bool found;
1530
1531    /* END cache lookup */
1532    if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1533        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1534                      end_idx);
1535        return;
1536    }
1537
1538    if (!xive_end_is_valid(&end)) {
1539        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1540                      end_blk, end_idx);
1541        return;
1542    }
1543
1544    if (xive_end_is_enqueue(&end)) {
1545        xive_end_enqueue(&end, end_data);
1546        /* Enqueuing event data modifies the EQ toggle and index */
1547        xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1548    }
1549
1550    /*
1551     * When the END is silent, we skip the notification part.
1552     */
1553    if (xive_end_is_silent_escalation(&end)) {
1554        goto do_escalation;
1555    }
1556
1557    /*
1558     * The W7 format depends on the F bit in W6. It defines the type
1559     * of the notification :
1560     *
1561     *   F=0 : single or multiple NVT notification
1562     *   F=1 : User level Event-Based Branch (EBB) notification, no
1563     *         priority
1564     */
1565    format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1566    priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1567
1568    /* The END is masked */
1569    if (format == 0 && priority == 0xff) {
1570        return;
1571    }
1572
1573    /*
1574     * Check the END ESn (Event State Buffer for notification) for
1575     * even futher coalescing in the Router
1576     */
1577    if (!xive_end_is_notify(&end)) {
1578        /* ESn[Q]=1 : end of notification */
1579        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1580                                       &end, END_W1_ESn)) {
1581            return;
1582        }
1583    }
1584
1585    /*
1586     * Follows IVPE notification
1587     */
1588    nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1589    nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1590
1591    /* NVT cache lookup */
1592    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1593        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1594                      nvt_blk, nvt_idx);
1595        return;
1596    }
1597
1598    if (!xive_nvt_is_valid(&nvt)) {
1599        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1600                      nvt_blk, nvt_idx);
1601        return;
1602    }
1603
1604    found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx,
1605                          xive_get_field32(END_W7_F0_IGNORE, end.w7),
1606                          priority,
1607                          xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1608
1609    /* TODO: Auto EOI. */
1610
1611    if (found) {
1612        return;
1613    }
1614
1615    /*
1616     * If no matching NVT is dispatched on a HW thread :
1617     * - specific VP: update the NVT structure if backlog is activated
1618     * - logical server : forward request to IVPE (not supported)
1619     */
1620    if (xive_end_is_backlog(&end)) {
1621        if (format == 1) {
1622            qemu_log_mask(LOG_GUEST_ERROR,
1623                          "XIVE: END %x/%x invalid config: F1 & backlog\n",
1624                          end_blk, end_idx);
1625            return;
1626        }
1627        /* Record the IPB in the associated NVT structure */
1628        ipb_update((uint8_t *) &nvt.w4, priority);
1629        xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1630
1631        /*
1632         * On HW, follows a "Broadcast Backlog" to IVPEs
1633         */
1634    }
1635
1636do_escalation:
1637    /*
1638     * If activated, escalate notification using the ESe PQ bits and
1639     * the EAS in w4-5
1640     */
1641    if (!xive_end_is_escalate(&end)) {
1642        return;
1643    }
1644
1645    /*
1646     * Check the END ESe (Event State Buffer for escalation) for even
1647     * futher coalescing in the Router
1648     */
1649    if (!xive_end_is_uncond_escalation(&end)) {
1650        /* ESe[Q]=1 : end of notification */
1651        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1652                                       &end, END_W1_ESe)) {
1653            return;
1654        }
1655    }
1656
1657    /*
1658     * The END trigger becomes an Escalation trigger
1659     */
1660    xive_router_end_notify(xrtr,
1661                           xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1662                           xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1663                           xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1664}
1665
1666void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1667{
1668    XiveRouter *xrtr = XIVE_ROUTER(xn);
1669    uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1670    uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1671    XiveEAS eas;
1672
1673    /* EAS cache lookup */
1674    if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1675        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1676        return;
1677    }
1678
1679    /*
1680     * The IVRE checks the State Bit Cache at this point. We skip the
1681     * SBC lookup because the state bits of the sources are modeled
1682     * internally in QEMU.
1683     */
1684
1685    if (!xive_eas_is_valid(&eas)) {
1686        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1687        return;
1688    }
1689
1690    if (xive_eas_is_masked(&eas)) {
1691        /* Notification completed */
1692        return;
1693    }
1694
1695    /*
1696     * The event trigger becomes an END trigger
1697     */
1698    xive_router_end_notify(xrtr,
1699                           xive_get_field64(EAS_END_BLOCK, eas.w),
1700                           xive_get_field64(EAS_END_INDEX, eas.w),
1701                           xive_get_field64(EAS_END_DATA,  eas.w));
1702}
1703
1704static void xive_router_class_init(ObjectClass *klass, void *data)
1705{
1706    DeviceClass *dc = DEVICE_CLASS(klass);
1707    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1708
1709    dc->desc    = "XIVE Router Engine";
1710    xnc->notify = xive_router_notify;
1711}
1712
1713static const TypeInfo xive_router_info = {
1714    .name          = TYPE_XIVE_ROUTER,
1715    .parent        = TYPE_SYS_BUS_DEVICE,
1716    .abstract      = true,
1717    .class_size    = sizeof(XiveRouterClass),
1718    .class_init    = xive_router_class_init,
1719    .interfaces    = (InterfaceInfo[]) {
1720        { TYPE_XIVE_NOTIFIER },
1721        { }
1722    }
1723};
1724
1725void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1726{
1727    if (!xive_eas_is_valid(eas)) {
1728        return;
1729    }
1730
1731    monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1732                   lisn, xive_eas_is_masked(eas) ? "M" : " ",
1733                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1734                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1735                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1736}
1737
1738/*
1739 * END ESB MMIO loads
1740 */
1741static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1742{
1743    XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1744    uint32_t offset = addr & 0xFFF;
1745    uint8_t end_blk;
1746    uint32_t end_idx;
1747    XiveEND end;
1748    uint32_t end_esmask;
1749    uint8_t pq;
1750    uint64_t ret = -1;
1751
1752    end_blk = xsrc->block_id;
1753    end_idx = addr >> (xsrc->esb_shift + 1);
1754
1755    if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1756        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1757                      end_idx);
1758        return -1;
1759    }
1760
1761    if (!xive_end_is_valid(&end)) {
1762        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1763                      end_blk, end_idx);
1764        return -1;
1765    }
1766
1767    end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1768    pq = xive_get_field32(end_esmask, end.w1);
1769
1770    switch (offset) {
1771    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1772        ret = xive_esb_eoi(&pq);
1773
1774        /* Forward the source event notification for routing ?? */
1775        break;
1776
1777    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1778        ret = pq;
1779        break;
1780
1781    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1782    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1783    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1784    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1785        ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1786        break;
1787    default:
1788        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1789                      offset);
1790        return -1;
1791    }
1792
1793    if (pq != xive_get_field32(end_esmask, end.w1)) {
1794        end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1795        xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1796    }
1797
1798    return ret;
1799}
1800
1801/*
1802 * END ESB MMIO stores are invalid
1803 */
1804static void xive_end_source_write(void *opaque, hwaddr addr,
1805                                  uint64_t value, unsigned size)
1806{
1807    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1808                  HWADDR_PRIx"\n", addr);
1809}
1810
1811static const MemoryRegionOps xive_end_source_ops = {
1812    .read = xive_end_source_read,
1813    .write = xive_end_source_write,
1814    .endianness = DEVICE_BIG_ENDIAN,
1815    .valid = {
1816        .min_access_size = 8,
1817        .max_access_size = 8,
1818    },
1819    .impl = {
1820        .min_access_size = 8,
1821        .max_access_size = 8,
1822    },
1823};
1824
1825static void xive_end_source_realize(DeviceState *dev, Error **errp)
1826{
1827    XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1828    Object *obj;
1829    Error *local_err = NULL;
1830
1831    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1832    if (!obj) {
1833        error_propagate(errp, local_err);
1834        error_prepend(errp, "required link 'xive' not found: ");
1835        return;
1836    }
1837
1838    xsrc->xrtr = XIVE_ROUTER(obj);
1839
1840    if (!xsrc->nr_ends) {
1841        error_setg(errp, "Number of interrupt needs to be greater than 0");
1842        return;
1843    }
1844
1845    if (xsrc->esb_shift != XIVE_ESB_4K &&
1846        xsrc->esb_shift != XIVE_ESB_64K) {
1847        error_setg(errp, "Invalid ESB shift setting");
1848        return;
1849    }
1850
1851    /*
1852     * Each END is assigned an even/odd pair of MMIO pages, the even page
1853     * manages the ESn field while the odd page manages the ESe field.
1854     */
1855    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1856                          &xive_end_source_ops, xsrc, "xive.end",
1857                          (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1858}
1859
1860static Property xive_end_source_properties[] = {
1861    DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1862    DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1863    DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1864    DEFINE_PROP_END_OF_LIST(),
1865};
1866
1867static void xive_end_source_class_init(ObjectClass *klass, void *data)
1868{
1869    DeviceClass *dc = DEVICE_CLASS(klass);
1870
1871    dc->desc    = "XIVE END Source";
1872    dc->props   = xive_end_source_properties;
1873    dc->realize = xive_end_source_realize;
1874    /*
1875     * Reason: part of XIVE interrupt controller, needs to be wired up,
1876     * e.g. by spapr_xive_instance_init().
1877     */
1878    dc->user_creatable = false;
1879}
1880
1881static const TypeInfo xive_end_source_info = {
1882    .name          = TYPE_XIVE_END_SOURCE,
1883    .parent        = TYPE_DEVICE,
1884    .instance_size = sizeof(XiveENDSource),
1885    .class_init    = xive_end_source_class_init,
1886};
1887
1888/*
1889 * XIVE Notifier
1890 */
1891static const TypeInfo xive_notifier_info = {
1892    .name = TYPE_XIVE_NOTIFIER,
1893    .parent = TYPE_INTERFACE,
1894    .class_size = sizeof(XiveNotifierClass),
1895};
1896
1897static void xive_register_types(void)
1898{
1899    type_register_static(&xive_source_info);
1900    type_register_static(&xive_notifier_info);
1901    type_register_static(&xive_router_info);
1902    type_register_static(&xive_end_source_info);
1903    type_register_static(&xive_tctx_info);
1904}
1905
1906type_init(xive_register_types)
1907